fix helper PLL glitches

sim: rename collector to phase_collector
sim: add period_collector for gtx tags
sim: trigger helper PLL after period_collector_r
sim: remove cycle slip compensation
sim: generator gtx in time loop
wave_gen: replace square generator with phase accumulator
wave_gen&wrpll: add white_noise generator
docs: remove section & png about cycle slipping and deglitcher failure
This commit is contained in:
morgan 2023-12-12 13:32:22 +08:00
parent da5908e754
commit 0a66f4c343
6 changed files with 114 additions and 153 deletions

View File

@ -49,20 +49,3 @@ source .venv/bin/activate
## Limitation
As the simulation is not cycle nor delay accurate, there will be more glitches than the hardware implementation
### Helper PLL glitches (remedies are added to follow hardware behavior)
- Cycle slipping issue will appear as $|\Delta{period}| \sim N$
- During hardware testing, slipping issue is not common
- It's recommended to turn cycle_slip_comp ON to reduce slipping and have a more accurate simulation
![cycle_slip](img/cycle_slipping.png)
- Deglitcher fail issue will appear as $|\Delta{period}| \sim N/2$
- There are no such issue for hardware
- It's recommended to set blind_period higher than the hardware setting (around 300 is sufficient)
![deglitch_fail](img/deglitch_fail.png)

Binary file not shown.

Before

(image error) Size: 22 KiB

Binary file not shown.

Before

(image error) Size: 23 KiB

View File

@ -6,7 +6,8 @@ from wave_gen import square
@njit
def simulation_jit(
time,
gtx,
gtx_freq,
gtx_jitter,
helper_pll,
main_pll,
h_KP,
@ -16,13 +17,13 @@ def simulation_jit(
m_KI,
m_KD,
dcxo_freq,
dcxo_jitter_SD,
h_jitter,
m_jitter,
base_adpll,
N,
adpll_write_period,
blind_period,
start_up_delay,
cycle_slip_comp=True,
helper_init_freq=0
):
@ -30,6 +31,7 @@ def simulation_jit(
main = np.zeros(arr_len, dtype=np.int8)
helper = np.zeros(arr_len, dtype=np.int8)
gtx = np.zeros(arr_len, dtype=np.int8)
gtx_tag = 0
gtx_ready = 0
@ -40,7 +42,6 @@ def simulation_jit(
main_ready = 0
main_FF = 0
main_beating = np.zeros(arr_len, dtype=np.int8)
collector_r = 0
phase_err_arr = np.zeros(arr_len, dtype=np.int16)
period_err_arr = np.zeros(arr_len, dtype=np.int16)
@ -50,15 +51,20 @@ def simulation_jit(
helperfreq = np.zeros(arr_len, dtype=np.int32)
mainfreq = np.zeros(arr_len, dtype=np.int32)
# initial condition
main_init_offset = (np.random.uniform(0, 360)) / (360 * dcxo_freq)
helper_init_offset = (np.random.uniform(0, 360)) / (360 * dcxo_freq)
phase_collector_r = 0
colr_gtx_tag = colr_main_tag = 0
phase_collector_state = 0
# intermediate values
helper_jitter = np.random.normal(0, dcxo_jitter_SD)
main_jitter = np.random.normal(0, dcxo_jitter_SD)
helper_cycle_num = 0
main_cycle_num = 0
period_collector_r = 0
colr_last_gtx_tag = 0
beating_period = 0
period_collector_state = 0
# initial condition
timestep = time[1] - time[0]
gtx_phase = 0
h_phase = np.random.uniform(0, 360)
m_phase = np.random.uniform(0, 360)
if main_pll and not helper_pll:
helper_freq = helper_init_freq
@ -66,12 +72,10 @@ def simulation_jit(
helper_freq = dcxo_freq * (1 + base_adpll * 0.0001164 / 1_000_000) * ((N-1) / N)
main_freq = dcxo_freq * (1 + base_adpll * 0.0001164 / 1_000_000)
FSM_state = 0
coll_gtx_tag = coll_main_tag = 0
last_gtx_tag = last_gtx_FF = last_gtx_beat = 0
last_main_tag = last_main_FF = last_main_beat = 0
last_helper = last_main = 0
last_helper = 0
counter = 0
gtx_blind_counter = 0
@ -84,38 +88,32 @@ def simulation_jit(
wait_main = True
# firmware values
FW_gtx_tag = FW_last_gtx_tag = 0
FW_gtx_tag = 0
FW_main_tag = 0
period_err = last_period_err = 0
h_prop = h_integrator = h_derivative = 0
h_adpll = base_adpll
h_i2c_active = False
period_colr_arm = h_i2c_active = False
phase_err = last_phase_err = 0
m_prop = m_integrator = m_derivative = 0
m_adpll = base_adpll
m_i2c_active = False
phase_colr_arm = m_i2c_active = False
adpll_active = False
adpll_max = 8161512
def clip(n, minn, maxn): return max(min(maxn, n), minn)
for i, t in enumerate(time):
helper[i], helper_cycle_num, helper_jitter = square(
t + helper_init_offset, helper_freq, dcxo_jitter_SD, helper_jitter, helper_cycle_num)
main[i], main_cycle_num, main_jitter = square(
t + main_init_offset, main_freq, dcxo_jitter_SD, main_jitter, main_cycle_num)
h_phase += 360 * helper_freq * (timestep + h_jitter[i])
helper[i] = square(h_phase)
# continuous glitchless output, assume very small frequency change
if h_i2c_active and helper[i]:
helper_freq = dcxo_freq * (1 + h_adpll * 0.0001164 / 1_000_000) * ((N-1) / N)
h_i2c_active = False
m_phase += 360 * main_freq * (timestep + m_jitter[i])
main[i] = square(m_phase)
if m_i2c_active and main[i]:
main_freq = dcxo_freq * (1 + m_adpll * 0.0001164 / 1_000_000)
m_i2c_active = False
gtx_phase += 360 * gtx_freq * (timestep + gtx_jitter[i])
gtx[i] = square(gtx_phase)
if not last_helper and helper[i]:
@ -130,12 +128,15 @@ def simulation_jit(
main_blind_counter, main_blinded, blind_period,
last_main_beat, last_main_tag, counter)
collector_r, wait_gtx, wait_main, coll_gtx_tag, coll_main_tag, FSM_state = Collector_FSM(gtx_ready, main_ready, gtx_tag, main_tag,
wait_gtx, wait_main, coll_gtx_tag, coll_main_tag, FSM_state)
phase_collector_r, wait_gtx, wait_main, colr_gtx_tag, colr_main_tag, phase_collector_state = phase_collector_FSM(gtx_ready, main_ready, gtx_tag, main_tag,
wait_gtx, wait_main, colr_gtx_tag, colr_main_tag, phase_collector_state)
if collector_r:
FW_gtx_tag = coll_gtx_tag
FW_main_tag = coll_main_tag
if phase_collector_r:
FW_gtx_tag = colr_gtx_tag
FW_main_tag = colr_main_tag
period_collector_r, colr_last_gtx_tag, beating_period, period_collector_state = period_collector_FSM(gtx_ready, gtx_tag,
colr_last_gtx_tag, period_collector_state)
counter += 1
@ -158,20 +159,11 @@ def simulation_jit(
if i > start_up_delay:
# Firmware filters
if adpll_active and collector_r:
if cycle_slip_comp:
period = FW_gtx_tag - FW_last_gtx_tag
if period > 3 * N/2:
period = period - N
period_err = N - period
else:
period_err = (N - (FW_gtx_tag - FW_last_gtx_tag))
tag_diff = ((FW_main_tag - FW_gtx_tag) % N)
if tag_diff > N/2:
phase_err = tag_diff - N
else:
phase_err = tag_diff
if period_colr_arm and period_collector_r:
period_colr_arm = False
period_err = N - beating_period
if helper_pll:
h_prop = period_err * h_KP
@ -180,8 +172,18 @@ def simulation_jit(
h_adpll = clip(int(base_adpll + h_prop + h_integrator + h_derivative), -adpll_max, adpll_max)
last_period_err = period_err
helper_freq = dcxo_freq * (1 + h_adpll * 0.0001164 / 1_000_000) * ((N-1) / N)
h_i2c_active = True
if phase_colr_arm and phase_collector_r:
phase_colr_arm = False
tag_diff = ((FW_main_tag - FW_gtx_tag) % N)
if tag_diff > N/2:
phase_err = tag_diff - N
else:
phase_err = tag_diff
if main_pll:
m_prop = phase_err * m_KP
m_integrator += phase_err * m_KI
@ -189,16 +191,13 @@ def simulation_jit(
m_adpll = clip(int(base_adpll + m_prop + m_integrator + m_derivative), -adpll_max, adpll_max)
last_phase_err = phase_err
main_freq = dcxo_freq * (1 + m_adpll * 0.0001164 / 1_000_000)
m_i2c_active = True
adpll_active = False
if i % adpll_write_period == 0:
adpll_active = True
FW_last_gtx_tag = FW_gtx_tag
period_colr_arm = phase_colr_arm = True
last_helper = helper[i]
last_main = main[i]
# Data
period_err_arr[i] = period_err
@ -208,7 +207,7 @@ def simulation_jit(
helperfreq[i] = helper_freq
mainfreq[i] = main_freq
return period_err_arr, phase_err_arr, helper_adpll_arr, main_adpll_arr, gtx_beating, main_beating, helper, main, helperfreq, mainfreq
return period_err_arr, phase_err_arr, helper_adpll_arr, main_adpll_arr, gtx_beating, main_beating, gtx, helper, main, helperfreq, mainfreq
@njit
@ -237,37 +236,55 @@ def Deglitcher(beating, t_out, t_ready, blind_counter, blinded, blind_period, la
@njit
def Collector_FSM(g_tag_r, m_tag_r, gtx_tag, main_tag, wait_gtx, wait_main, coll_gtx_tag, coll_main_tag, FSM_state):
def phase_collector_FSM(g_tag_r, m_tag_r, gtx_tag, main_tag, wait_gtx, wait_main, colr_gtx_tag, colr_main_tag, FSM_state):
collector_r = 0
match FSM_state:
case 0: # IDEL
if g_tag_r and m_tag_r:
coll_gtx_tag = gtx_tag
coll_main_tag = main_tag
colr_gtx_tag = gtx_tag
colr_main_tag = main_tag
FSM_state = 3 # OUTPUT
elif g_tag_r:
coll_gtx_tag = gtx_tag
colr_gtx_tag = gtx_tag
wait_main = True
FSM_state = 2 # WAITMAIN
elif m_tag_r:
coll_main_tag = main_tag
colr_main_tag = main_tag
wait_gtx = True
FSM_state = 1 # WAITGTX
case 1: # WAITGTX
if g_tag_r:
coll_gtx_tag = gtx_tag
colr_gtx_tag = gtx_tag
FSM_state = 3 # OUTPUT
case 2: # WAITMAIN
if m_tag_r:
coll_main_tag = main_tag
colr_main_tag = main_tag
FSM_state = 3 # OUTPUT
case 3: # OUTPUT
wait_gtx = wait_main = False
collector_r = 1
FSM_state = 0
return collector_r, wait_gtx, wait_main, coll_gtx_tag, coll_main_tag, FSM_state
return collector_r, wait_gtx, wait_main, colr_gtx_tag, colr_main_tag, FSM_state
@njit
def period_collector_FSM(g_tag_r, gtx_tag, colr_last_gtx_tag, FSM_state):
collector_r = 0
beating_period = 0
match FSM_state:
case 0: # IDEL
if g_tag_r:
colr_last_gtx_tag = gtx_tag
FSM_state = 1
case 1: # OUTPUT
if g_tag_r:
beating_period = gtx_tag - colr_last_gtx_tag
collector_r = 1
FSM_state = 0 # IDEL
return collector_r, colr_last_gtx_tag, beating_period, FSM_state

View File

@ -1,69 +1,28 @@
import numpy as np
import numba as nb
from numba import njit
@njit
def square(time, freq, jitter_SD, jitter, cycle_num):
"""
A scipy like square wave with jitter
Parameters
----------
time : timestamp, in seconds
freq : frequency in Hz
jitter_SD : standard deviation of jitter, in seconds
jitter : gaussian noise with `jitter_SD` as its standard deviation
cycle_num : time // period = cycle_num
----------
"""
period = 1/(freq)
quarter = (period / 4)
out = 0
# A T/4 shift is applied to the following to match scipy square fn
# ┌──────┐
# ───┘ └────
# T/4 3T/4
nth_cycle, t = np.divmod(time + period / 4, period)
if t >= (quarter + jitter) and t <= (3*quarter + jitter):
out = 1
else:
out = 0
# update jitter every cycle
if nth_cycle != cycle_num:
jitter = np.random.normal(0, jitter_SD)
cycle_num = nth_cycle
return out, cycle_num, jitter
def white_noise(low, high, size, seed=None):
return np.random.default_rng(seed).uniform(low, high, size)
@njit
def square_arr(time, freq, jitter_SD):
"""
A scipy like square wave with jitter
Parameters
----------
time : numpy array
freq : frequency in Hz
jitter_SD : standard deviation of jitter, in seconds
----------
"""
wave = np.zeros(len(time))
jitter = np.random.normal(0, jitter_SD)
cycle_num = 0
for i, t in enumerate(time):
wave[i], cycle_num, jitter = square(t, freq, jitter_SD, jitter, cycle_num)
@njit(fastmath=True)
def square_with_jitter(time, freq, jitter):
n = len(time)
wave = np.empty(n)
timestep = time[1] - time[0]
phase = 0.
for i in range(n):
phase += 360 * freq * (timestep + jitter[i])
wave[i] = square(phase)
return wave
@njit
def square(x):
if np.mod(x, 360) < 180:
return 0
else:
return 1

View File

@ -1,5 +1,5 @@
import numpy as np
from wave_gen import square_arr
from wave_gen import white_noise
from sim import simulation_jit
@ -12,16 +12,16 @@ class WRPLL_simulator():
helper_filter,
main_filter,
gtx_freq,
gtx_jitter_SD,
gtx_jitter,
dcxo_freq,
dcxo_jitter_SD,
dcxo_jitter,
freq_acquisition_SD,
N,
adpll_write_period,
blind_period,
start_up_delay,
cycle_slip_comp,
helper_init_freq=None
helper_init_freq=None,
seed=None
):
self.time = time
@ -34,13 +34,15 @@ class WRPLL_simulator():
self.m_KD = main_filter["KD"]
# init condition
self.gtx_freq = gtx_freq
self.gtx_jitter = white_noise(-gtx_jitter, gtx_jitter, len(time), seed)
self.dcxo_freq = dcxo_freq
self.dcxo_jitter_SD = dcxo_jitter_SD
self.h_jitter = white_noise(-dcxo_jitter, dcxo_jitter, len(time), seed)
self.m_jitter = white_noise(-dcxo_jitter, dcxo_jitter, len(time), seed)
self.N = N
self.helper_init_freq = helper_init_freq
self.gtx = square_arr(time, gtx_freq, gtx_jitter_SD)
# freq_acquisition() error
freq_diff = gtx_freq - dcxo_freq + np.random.normal(0, freq_acquisition_SD)
self.base_adpll = int(freq_diff * (1 / dcxo_freq) * (1e6 / 0.0001164))
@ -49,7 +51,6 @@ class WRPLL_simulator():
self.adpll_write_period = adpll_write_period
self.blind_period = blind_period
self.start_up_delay = start_up_delay
self.cycle_slip_comp = cycle_slip_comp
if type(self.sim_mode) is not str:
raise ValueError(f"pll_type {type(self.sim_mode)} is not a string")
@ -68,9 +69,10 @@ class WRPLL_simulator():
def run(self):
print("running simulation...")
self.period_err, self.phase_err, self.helper_adpll, self.main_adpll, self.gtx_beating, self.main_beating, self.helper, self.main, self.helperfreq, self.mainfreq = simulation_jit(
self.period_err, self.phase_err, self.helper_adpll, self.main_adpll, self.gtx_beating, self.main_beating, self.gtx, self.helper, self.main, self.helperfreq, self.mainfreq = simulation_jit(
self.time,
self.gtx,
self.gtx_freq,
self.gtx_jitter,
self.helper_pll,
self.main_pll,
self.h_KP,
@ -80,13 +82,13 @@ class WRPLL_simulator():
self.m_KI,
self.m_KD,
self.dcxo_freq,
self.dcxo_jitter_SD,
self.h_jitter,
self.m_jitter,
self.base_adpll,
self.N,
self.adpll_write_period,
self.blind_period,
self.start_up_delay,
self.cycle_slip_comp,
self.helper_init_freq
)
print("Done!")