web2019/static/js/three-r76.js

41508 lines
941 KiB
JavaScript
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// File:src/Three.js
/**
* @author mrdoob / http://mrdoob.com/
*/
var THREE = { REVISION: '76' };
//
if ( typeof define === 'function' && define.amd ) {
define( 'three', THREE );
} else if ( 'undefined' !== typeof exports && 'undefined' !== typeof module ) {
module.exports = THREE;
}
//
if ( Number.EPSILON === undefined ) {
Number.EPSILON = Math.pow( 2, - 52 );
}
//
if ( Math.sign === undefined ) {
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign
Math.sign = function ( x ) {
return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x;
};
}
if ( Function.prototype.name === undefined && Object.defineProperty !== undefined ) {
// Missing in IE9-11.
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name
Object.defineProperty( Function.prototype, 'name', {
get: function () {
return this.toString().match( /^\s*function\s*(\S*)\s*\(/ )[ 1 ];
}
} );
}
if ( Object.assign === undefined ) {
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
Object.defineProperty( Object, 'assign', {
writable: true,
configurable: true,
value: function ( target ) {
'use strict';
if ( target === undefined || target === null ) {
throw new TypeError( "Cannot convert first argument to object" );
}
var to = Object( target );
for ( var i = 1, n = arguments.length; i !== n; ++ i ) {
var nextSource = arguments[ i ];
if ( nextSource === undefined || nextSource === null ) continue;
nextSource = Object( nextSource );
var keysArray = Object.keys( nextSource );
for ( var nextIndex = 0, len = keysArray.length; nextIndex !== len; ++ nextIndex ) {
var nextKey = keysArray[ nextIndex ];
var desc = Object.getOwnPropertyDescriptor( nextSource, nextKey );
if ( desc !== undefined && desc.enumerable ) {
to[ nextKey ] = nextSource[ nextKey ];
}
}
}
return to;
}
} );
}
// https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent.button
THREE.MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2 };
// GL STATE CONSTANTS
THREE.CullFaceNone = 0;
THREE.CullFaceBack = 1;
THREE.CullFaceFront = 2;
THREE.CullFaceFrontBack = 3;
THREE.FrontFaceDirectionCW = 0;
THREE.FrontFaceDirectionCCW = 1;
// SHADOWING TYPES
THREE.BasicShadowMap = 0;
THREE.PCFShadowMap = 1;
THREE.PCFSoftShadowMap = 2;
// MATERIAL CONSTANTS
// side
THREE.FrontSide = 0;
THREE.BackSide = 1;
THREE.DoubleSide = 2;
// shading
THREE.FlatShading = 1;
THREE.SmoothShading = 2;
// colors
THREE.NoColors = 0;
THREE.FaceColors = 1;
THREE.VertexColors = 2;
// blending modes
THREE.NoBlending = 0;
THREE.NormalBlending = 1;
THREE.AdditiveBlending = 2;
THREE.SubtractiveBlending = 3;
THREE.MultiplyBlending = 4;
THREE.CustomBlending = 5;
// custom blending equations
// (numbers start from 100 not to clash with other
// mappings to OpenGL constants defined in Texture.js)
THREE.AddEquation = 100;
THREE.SubtractEquation = 101;
THREE.ReverseSubtractEquation = 102;
THREE.MinEquation = 103;
THREE.MaxEquation = 104;
// custom blending destination factors
THREE.ZeroFactor = 200;
THREE.OneFactor = 201;
THREE.SrcColorFactor = 202;
THREE.OneMinusSrcColorFactor = 203;
THREE.SrcAlphaFactor = 204;
THREE.OneMinusSrcAlphaFactor = 205;
THREE.DstAlphaFactor = 206;
THREE.OneMinusDstAlphaFactor = 207;
// custom blending source factors
//THREE.ZeroFactor = 200;
//THREE.OneFactor = 201;
//THREE.SrcAlphaFactor = 204;
//THREE.OneMinusSrcAlphaFactor = 205;
//THREE.DstAlphaFactor = 206;
//THREE.OneMinusDstAlphaFactor = 207;
THREE.DstColorFactor = 208;
THREE.OneMinusDstColorFactor = 209;
THREE.SrcAlphaSaturateFactor = 210;
// depth modes
THREE.NeverDepth = 0;
THREE.AlwaysDepth = 1;
THREE.LessDepth = 2;
THREE.LessEqualDepth = 3;
THREE.EqualDepth = 4;
THREE.GreaterEqualDepth = 5;
THREE.GreaterDepth = 6;
THREE.NotEqualDepth = 7;
// TEXTURE CONSTANTS
THREE.MultiplyOperation = 0;
THREE.MixOperation = 1;
THREE.AddOperation = 2;
// Tone Mapping modes
THREE.NoToneMapping = 0; // do not do any tone mapping, not even exposure (required for special purpose passes.)
THREE.LinearToneMapping = 1; // only apply exposure.
THREE.ReinhardToneMapping = 2;
THREE.Uncharted2ToneMapping = 3; // John Hable
THREE.CineonToneMapping = 4; // optimized filmic operator by Jim Hejl and Richard Burgess-Dawson
// Mapping modes
THREE.UVMapping = 300;
THREE.CubeReflectionMapping = 301;
THREE.CubeRefractionMapping = 302;
THREE.EquirectangularReflectionMapping = 303;
THREE.EquirectangularRefractionMapping = 304;
THREE.SphericalReflectionMapping = 305;
THREE.CubeUVReflectionMapping = 306;
THREE.CubeUVRefractionMapping = 307;
// Wrapping modes
THREE.RepeatWrapping = 1000;
THREE.ClampToEdgeWrapping = 1001;
THREE.MirroredRepeatWrapping = 1002;
// Filters
THREE.NearestFilter = 1003;
THREE.NearestMipMapNearestFilter = 1004;
THREE.NearestMipMapLinearFilter = 1005;
THREE.LinearFilter = 1006;
THREE.LinearMipMapNearestFilter = 1007;
THREE.LinearMipMapLinearFilter = 1008;
// Data types
THREE.UnsignedByteType = 1009;
THREE.ByteType = 1010;
THREE.ShortType = 1011;
THREE.UnsignedShortType = 1012;
THREE.IntType = 1013;
THREE.UnsignedIntType = 1014;
THREE.FloatType = 1015;
THREE.HalfFloatType = 1025;
// Pixel types
//THREE.UnsignedByteType = 1009;
THREE.UnsignedShort4444Type = 1016;
THREE.UnsignedShort5551Type = 1017;
THREE.UnsignedShort565Type = 1018;
// Pixel formats
THREE.AlphaFormat = 1019;
THREE.RGBFormat = 1020;
THREE.RGBAFormat = 1021;
THREE.LuminanceFormat = 1022;
THREE.LuminanceAlphaFormat = 1023;
// THREE.RGBEFormat handled as THREE.RGBAFormat in shaders
THREE.RGBEFormat = THREE.RGBAFormat; //1024;
THREE.DepthFormat = 1026;
// DDS / ST3C Compressed texture formats
THREE.RGB_S3TC_DXT1_Format = 2001;
THREE.RGBA_S3TC_DXT1_Format = 2002;
THREE.RGBA_S3TC_DXT3_Format = 2003;
THREE.RGBA_S3TC_DXT5_Format = 2004;
// PVRTC compressed texture formats
THREE.RGB_PVRTC_4BPPV1_Format = 2100;
THREE.RGB_PVRTC_2BPPV1_Format = 2101;
THREE.RGBA_PVRTC_4BPPV1_Format = 2102;
THREE.RGBA_PVRTC_2BPPV1_Format = 2103;
// ETC compressed texture formats
THREE.RGB_ETC1_Format = 2151;
// Loop styles for AnimationAction
THREE.LoopOnce = 2200;
THREE.LoopRepeat = 2201;
THREE.LoopPingPong = 2202;
// Interpolation
THREE.InterpolateDiscrete = 2300;
THREE.InterpolateLinear = 2301;
THREE.InterpolateSmooth = 2302;
// Interpolant ending modes
THREE.ZeroCurvatureEnding = 2400;
THREE.ZeroSlopeEnding = 2401;
THREE.WrapAroundEnding = 2402;
// Triangle Draw modes
THREE.TrianglesDrawMode = 0;
THREE.TriangleStripDrawMode = 1;
THREE.TriangleFanDrawMode = 2;
// Texture Encodings
THREE.LinearEncoding = 3000; // No encoding at all.
THREE.sRGBEncoding = 3001;
THREE.GammaEncoding = 3007; // uses GAMMA_FACTOR, for backwards compatibility with WebGLRenderer.gammaInput/gammaOutput
// The following Texture Encodings are for RGB-only (no alpha) HDR light emission sources.
// These encodings should not specified as output encodings except in rare situations.
THREE.RGBEEncoding = 3002; // AKA Radiance.
THREE.LogLuvEncoding = 3003;
THREE.RGBM7Encoding = 3004;
THREE.RGBM16Encoding = 3005;
THREE.RGBDEncoding = 3006; // MaxRange is 256.
// Depth packing strategies
THREE.BasicDepthPacking = 3200; // for writing to float textures for high precision or for visualizing results in RGB buffers
THREE.RGBADepthPacking = 3201; // for packing into RGBA buffers.
// File:src/math/Color.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.Color = function ( color ) {
if ( arguments.length === 3 ) {
return this.fromArray( arguments );
}
return this.set( color );
};
THREE.Color.prototype = {
constructor: THREE.Color,
r: 1, g: 1, b: 1,
set: function ( value ) {
if ( value instanceof THREE.Color ) {
this.copy( value );
} else if ( typeof value === 'number' ) {
this.setHex( value );
} else if ( typeof value === 'string' ) {
this.setStyle( value );
}
return this;
},
setScalar: function ( scalar ) {
this.r = scalar;
this.g = scalar;
this.b = scalar;
},
setHex: function ( hex ) {
hex = Math.floor( hex );
this.r = ( hex >> 16 & 255 ) / 255;
this.g = ( hex >> 8 & 255 ) / 255;
this.b = ( hex & 255 ) / 255;
return this;
},
setRGB: function ( r, g, b ) {
this.r = r;
this.g = g;
this.b = b;
return this;
},
setHSL: function () {
function hue2rgb( p, q, t ) {
if ( t < 0 ) t += 1;
if ( t > 1 ) t -= 1;
if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t;
if ( t < 1 / 2 ) return q;
if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t );
return p;
}
return function ( h, s, l ) {
// h,s,l ranges are in 0.0 - 1.0
h = THREE.Math.euclideanModulo( h, 1 );
s = THREE.Math.clamp( s, 0, 1 );
l = THREE.Math.clamp( l, 0, 1 );
if ( s === 0 ) {
this.r = this.g = this.b = l;
} else {
var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s );
var q = ( 2 * l ) - p;
this.r = hue2rgb( q, p, h + 1 / 3 );
this.g = hue2rgb( q, p, h );
this.b = hue2rgb( q, p, h - 1 / 3 );
}
return this;
};
}(),
setStyle: function ( style ) {
function handleAlpha( string ) {
if ( string === undefined ) return;
if ( parseFloat( string ) < 1 ) {
console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' );
}
}
var m;
if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) {
// rgb / hsl
var color;
var name = m[ 1 ];
var components = m[ 2 ];
switch ( name ) {
case 'rgb':
case 'rgba':
if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// rgb(255,0,0) rgba(255,0,0,0.5)
this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255;
this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255;
this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255;
handleAlpha( color[ 5 ] );
return this;
}
if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100;
this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100;
this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100;
handleAlpha( color[ 5 ] );
return this;
}
break;
case 'hsl':
case 'hsla':
if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
var h = parseFloat( color[ 1 ] ) / 360;
var s = parseInt( color[ 2 ], 10 ) / 100;
var l = parseInt( color[ 3 ], 10 ) / 100;
handleAlpha( color[ 5 ] );
return this.setHSL( h, s, l );
}
break;
}
} else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) {
// hex color
var hex = m[ 1 ];
var size = hex.length;
if ( size === 3 ) {
// #ff0
this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255;
this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255;
this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255;
return this;
} else if ( size === 6 ) {
// #ff0000
this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255;
this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255;
this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255;
return this;
}
}
if ( style && style.length > 0 ) {
// color keywords
var hex = THREE.ColorKeywords[ style ];
if ( hex !== undefined ) {
// red
this.setHex( hex );
} else {
// unknown color
console.warn( 'THREE.Color: Unknown color ' + style );
}
}
return this;
},
clone: function () {
return new this.constructor( this.r, this.g, this.b );
},
copy: function ( color ) {
this.r = color.r;
this.g = color.g;
this.b = color.b;
return this;
},
copyGammaToLinear: function ( color, gammaFactor ) {
if ( gammaFactor === undefined ) gammaFactor = 2.0;
this.r = Math.pow( color.r, gammaFactor );
this.g = Math.pow( color.g, gammaFactor );
this.b = Math.pow( color.b, gammaFactor );
return this;
},
copyLinearToGamma: function ( color, gammaFactor ) {
if ( gammaFactor === undefined ) gammaFactor = 2.0;
var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0;
this.r = Math.pow( color.r, safeInverse );
this.g = Math.pow( color.g, safeInverse );
this.b = Math.pow( color.b, safeInverse );
return this;
},
convertGammaToLinear: function () {
var r = this.r, g = this.g, b = this.b;
this.r = r * r;
this.g = g * g;
this.b = b * b;
return this;
},
convertLinearToGamma: function () {
this.r = Math.sqrt( this.r );
this.g = Math.sqrt( this.g );
this.b = Math.sqrt( this.b );
return this;
},
getHex: function () {
return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0;
},
getHexString: function () {
return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 );
},
getHSL: function ( optionalTarget ) {
// h,s,l ranges are in 0.0 - 1.0
var hsl = optionalTarget || { h: 0, s: 0, l: 0 };
var r = this.r, g = this.g, b = this.b;
var max = Math.max( r, g, b );
var min = Math.min( r, g, b );
var hue, saturation;
var lightness = ( min + max ) / 2.0;
if ( min === max ) {
hue = 0;
saturation = 0;
} else {
var delta = max - min;
saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );
switch ( max ) {
case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break;
case g: hue = ( b - r ) / delta + 2; break;
case b: hue = ( r - g ) / delta + 4; break;
}
hue /= 6;
}
hsl.h = hue;
hsl.s = saturation;
hsl.l = lightness;
return hsl;
},
getStyle: function () {
return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')';
},
offsetHSL: function ( h, s, l ) {
var hsl = this.getHSL();
hsl.h += h; hsl.s += s; hsl.l += l;
this.setHSL( hsl.h, hsl.s, hsl.l );
return this;
},
add: function ( color ) {
this.r += color.r;
this.g += color.g;
this.b += color.b;
return this;
},
addColors: function ( color1, color2 ) {
this.r = color1.r + color2.r;
this.g = color1.g + color2.g;
this.b = color1.b + color2.b;
return this;
},
addScalar: function ( s ) {
this.r += s;
this.g += s;
this.b += s;
return this;
},
multiply: function ( color ) {
this.r *= color.r;
this.g *= color.g;
this.b *= color.b;
return this;
},
multiplyScalar: function ( s ) {
this.r *= s;
this.g *= s;
this.b *= s;
return this;
},
lerp: function ( color, alpha ) {
this.r += ( color.r - this.r ) * alpha;
this.g += ( color.g - this.g ) * alpha;
this.b += ( color.b - this.b ) * alpha;
return this;
},
equals: function ( c ) {
return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.r = array[ offset ];
this.g = array[ offset + 1 ];
this.b = array[ offset + 2 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.r;
array[ offset + 1 ] = this.g;
array[ offset + 2 ] = this.b;
return array;
}
};
THREE.ColorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF,
'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2,
'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50,
'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B,
'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B,
'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F,
'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3,
'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222,
'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700,
'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4,
'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00,
'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3,
'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA,
'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32,
'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3,
'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC,
'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD,
'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6,
'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9,
'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F,
'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE,
'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA,
'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0,
'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 };
// File:src/math/Quaternion.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
*/
THREE.Quaternion = function ( x, y, z, w ) {
this._x = x || 0;
this._y = y || 0;
this._z = z || 0;
this._w = ( w !== undefined ) ? w : 1;
};
THREE.Quaternion.prototype = {
constructor: THREE.Quaternion,
get x () {
return this._x;
},
set x ( value ) {
this._x = value;
this.onChangeCallback();
},
get y () {
return this._y;
},
set y ( value ) {
this._y = value;
this.onChangeCallback();
},
get z () {
return this._z;
},
set z ( value ) {
this._z = value;
this.onChangeCallback();
},
get w () {
return this._w;
},
set w ( value ) {
this._w = value;
this.onChangeCallback();
},
set: function ( x, y, z, w ) {
this._x = x;
this._y = y;
this._z = z;
this._w = w;
this.onChangeCallback();
return this;
},
clone: function () {
return new this.constructor( this._x, this._y, this._z, this._w );
},
copy: function ( quaternion ) {
this._x = quaternion.x;
this._y = quaternion.y;
this._z = quaternion.z;
this._w = quaternion.w;
this.onChangeCallback();
return this;
},
setFromEuler: function ( euler, update ) {
if ( euler instanceof THREE.Euler === false ) {
throw new Error( 'THREE.Quaternion: .setFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );
}
// http://www.mathworks.com/matlabcentral/fileexchange/
// 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
// content/SpinCalc.m
var c1 = Math.cos( euler._x / 2 );
var c2 = Math.cos( euler._y / 2 );
var c3 = Math.cos( euler._z / 2 );
var s1 = Math.sin( euler._x / 2 );
var s2 = Math.sin( euler._y / 2 );
var s3 = Math.sin( euler._z / 2 );
var order = euler.order;
if ( order === 'XYZ' ) {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'YXZ' ) {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
} else if ( order === 'ZXY' ) {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'ZYX' ) {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
} else if ( order === 'YZX' ) {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'XZY' ) {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
}
if ( update !== false ) this.onChangeCallback();
return this;
},
setFromAxisAngle: function ( axis, angle ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
// assumes axis is normalized
var halfAngle = angle / 2, s = Math.sin( halfAngle );
this._x = axis.x * s;
this._y = axis.y * s;
this._z = axis.z * s;
this._w = Math.cos( halfAngle );
this.onChangeCallback();
return this;
},
setFromRotationMatrix: function ( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
var te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],
trace = m11 + m22 + m33,
s;
if ( trace > 0 ) {
s = 0.5 / Math.sqrt( trace + 1.0 );
this._w = 0.25 / s;
this._x = ( m32 - m23 ) * s;
this._y = ( m13 - m31 ) * s;
this._z = ( m21 - m12 ) * s;
} else if ( m11 > m22 && m11 > m33 ) {
s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );
this._w = ( m32 - m23 ) / s;
this._x = 0.25 * s;
this._y = ( m12 + m21 ) / s;
this._z = ( m13 + m31 ) / s;
} else if ( m22 > m33 ) {
s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );
this._w = ( m13 - m31 ) / s;
this._x = ( m12 + m21 ) / s;
this._y = 0.25 * s;
this._z = ( m23 + m32 ) / s;
} else {
s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );
this._w = ( m21 - m12 ) / s;
this._x = ( m13 + m31 ) / s;
this._y = ( m23 + m32 ) / s;
this._z = 0.25 * s;
}
this.onChangeCallback();
return this;
},
setFromUnitVectors: function () {
// http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final
// assumes direction vectors vFrom and vTo are normalized
var v1, r;
var EPS = 0.000001;
return function ( vFrom, vTo ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
r = vFrom.dot( vTo ) + 1;
if ( r < EPS ) {
r = 0;
if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {
v1.set( - vFrom.y, vFrom.x, 0 );
} else {
v1.set( 0, - vFrom.z, vFrom.y );
}
} else {
v1.crossVectors( vFrom, vTo );
}
this._x = v1.x;
this._y = v1.y;
this._z = v1.z;
this._w = r;
this.normalize();
return this;
};
}(),
inverse: function () {
this.conjugate().normalize();
return this;
},
conjugate: function () {
this._x *= - 1;
this._y *= - 1;
this._z *= - 1;
this.onChangeCallback();
return this;
},
dot: function ( v ) {
return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
},
lengthSq: function () {
return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
},
length: function () {
return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );
},
normalize: function () {
var l = this.length();
if ( l === 0 ) {
this._x = 0;
this._y = 0;
this._z = 0;
this._w = 1;
} else {
l = 1 / l;
this._x = this._x * l;
this._y = this._y * l;
this._z = this._z * l;
this._w = this._w * l;
}
this.onChangeCallback();
return this;
},
multiply: function ( q, p ) {
if ( p !== undefined ) {
console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );
return this.multiplyQuaternions( q, p );
}
return this.multiplyQuaternions( this, q );
},
multiplyQuaternions: function ( a, b ) {
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
this.onChangeCallback();
return this;
},
slerp: function ( qb, t ) {
if ( t === 0 ) return this;
if ( t === 1 ) return this.copy( qb );
var x = this._x, y = this._y, z = this._z, w = this._w;
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
if ( cosHalfTheta < 0 ) {
this._w = - qb._w;
this._x = - qb._x;
this._y = - qb._y;
this._z = - qb._z;
cosHalfTheta = - cosHalfTheta;
} else {
this.copy( qb );
}
if ( cosHalfTheta >= 1.0 ) {
this._w = w;
this._x = x;
this._y = y;
this._z = z;
return this;
}
var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta );
if ( Math.abs( sinHalfTheta ) < 0.001 ) {
this._w = 0.5 * ( w + this._w );
this._x = 0.5 * ( x + this._x );
this._y = 0.5 * ( y + this._y );
this._z = 0.5 * ( z + this._z );
return this;
}
var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
this._w = ( w * ratioA + this._w * ratioB );
this._x = ( x * ratioA + this._x * ratioB );
this._y = ( y * ratioA + this._y * ratioB );
this._z = ( z * ratioA + this._z * ratioB );
this.onChangeCallback();
return this;
},
equals: function ( quaternion ) {
return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this._x = array[ offset ];
this._y = array[ offset + 1 ];
this._z = array[ offset + 2 ];
this._w = array[ offset + 3 ];
this.onChangeCallback();
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._w;
return array;
},
onChange: function ( callback ) {
this.onChangeCallback = callback;
return this;
},
onChangeCallback: function () {}
};
Object.assign( THREE.Quaternion, {
slerp: function( qa, qb, qm, t ) {
return qm.copy( qa ).slerp( qb, t );
},
slerpFlat: function(
dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {
// fuzz-free, array-based Quaternion SLERP operation
var x0 = src0[ srcOffset0 + 0 ],
y0 = src0[ srcOffset0 + 1 ],
z0 = src0[ srcOffset0 + 2 ],
w0 = src0[ srcOffset0 + 3 ],
x1 = src1[ srcOffset1 + 0 ],
y1 = src1[ srcOffset1 + 1 ],
z1 = src1[ srcOffset1 + 2 ],
w1 = src1[ srcOffset1 + 3 ];
if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {
var s = 1 - t,
cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
dir = ( cos >= 0 ? 1 : - 1 ),
sqrSin = 1 - cos * cos;
// Skip the Slerp for tiny steps to avoid numeric problems:
if ( sqrSin > Number.EPSILON ) {
var sin = Math.sqrt( sqrSin ),
len = Math.atan2( sin, cos * dir );
s = Math.sin( s * len ) / sin;
t = Math.sin( t * len ) / sin;
}
var tDir = t * dir;
x0 = x0 * s + x1 * tDir;
y0 = y0 * s + y1 * tDir;
z0 = z0 * s + z1 * tDir;
w0 = w0 * s + w1 * tDir;
// Normalize in case we just did a lerp:
if ( s === 1 - t ) {
var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );
x0 *= f;
y0 *= f;
z0 *= f;
w0 *= f;
}
}
dst[ dstOffset ] = x0;
dst[ dstOffset + 1 ] = y0;
dst[ dstOffset + 2 ] = z0;
dst[ dstOffset + 3 ] = w0;
}
} );
// File:src/math/Vector2.js
/**
* @author mrdoob / http://mrdoob.com/
* @author philogb / http://blog.thejit.org/
* @author egraether / http://egraether.com/
* @author zz85 / http://www.lab4games.net/zz85/blog
*/
THREE.Vector2 = function ( x, y ) {
this.x = x || 0;
this.y = y || 0;
};
THREE.Vector2.prototype = {
constructor: THREE.Vector2,
get width() {
return this.x;
},
set width( value ) {
this.x = value;
},
get height() {
return this.y;
},
set height( value ) {
this.y = value;
},
//
set: function ( x, y ) {
this.x = x;
this.y = y;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
return this;
},
multiply: function ( v ) {
this.x *= v.x;
this.y *= v.y;
return this;
},
multiplyScalar: function ( scalar ) {
if ( isFinite( scalar ) ) {
this.x *= scalar;
this.y *= scalar;
} else {
this.x = 0;
this.y = 0;
}
return this;
},
divide: function ( v ) {
this.x /= v.x;
this.y /= v.y;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
return this;
},
clamp: function ( min, max ) {
// This function assumes min < max, if this assumption isn't true it will not operate correctly
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
return this;
},
clampScalar: function () {
var min, max;
return function clampScalar( minVal, maxVal ) {
if ( min === undefined ) {
min = new THREE.Vector2();
max = new THREE.Vector2();
}
min.set( minVal, minVal );
max.set( maxVal, maxVal );
return this.clamp( min, max );
};
}(),
clampLength: function ( min, max ) {
var length = this.length();
this.multiplyScalar( Math.max( min, Math.min( max, length ) ) / length );
return this;
},
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y;
},
lengthSq: function () {
return this.x * this.x + this.y * this.y;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y );
},
lengthManhattan: function() {
return Math.abs( this.x ) + Math.abs( this.y );
},
normalize: function () {
return this.divideScalar( this.length() );
},
angle: function () {
// computes the angle in radians with respect to the positive x-axis
var angle = Math.atan2( this.y, this.x );
if ( angle < 0 ) angle += 2 * Math.PI;
return angle;
},
distanceTo: function ( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
},
distanceToSquared: function ( v ) {
var dx = this.x - v.x, dy = this.y - v.y;
return dx * dx + dy * dy;
},
setLength: function ( length ) {
return this.multiplyScalar( length / this.length() );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
return this;
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
return array;
},
fromAttribute: function ( attribute, index, offset ) {
if ( offset === undefined ) offset = 0;
index = index * attribute.itemSize + offset;
this.x = attribute.array[ index ];
this.y = attribute.array[ index + 1 ];
return this;
},
rotateAround: function ( center, angle ) {
var c = Math.cos( angle ), s = Math.sin( angle );
var x = this.x - center.x;
var y = this.y - center.y;
this.x = x * c - y * s + center.x;
this.y = x * s + y * c + center.y;
return this;
}
};
// File:src/math/Vector3.js
/**
* @author mrdoob / http://mrdoob.com/
* @author *kile / http://kile.stravaganza.org/
* @author philogb / http://blog.thejit.org/
* @author mikael emtinger / http://gomo.se/
* @author egraether / http://egraether.com/
* @author WestLangley / http://github.com/WestLangley
*/
THREE.Vector3 = function ( x, y, z ) {
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
};
THREE.Vector3.prototype = {
constructor: THREE.Vector3,
set: function ( x, y, z ) {
this.x = x;
this.y = y;
this.z = z;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setZ: function ( z ) {
this.z = z;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y, this.z );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
this.z += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
return this;
},
multiply: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' );
return this.multiplyVectors( v, w );
}
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
return this;
},
multiplyScalar: function ( scalar ) {
if ( isFinite( scalar ) ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
} else {
this.x = 0;
this.y = 0;
this.z = 0;
}
return this;
},
multiplyVectors: function ( a, b ) {
this.x = a.x * b.x;
this.y = a.y * b.y;
this.z = a.z * b.z;
return this;
},
applyEuler: function () {
var quaternion;
return function applyEuler( euler ) {
if ( euler instanceof THREE.Euler === false ) {
console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );
}
if ( quaternion === undefined ) quaternion = new THREE.Quaternion();
this.applyQuaternion( quaternion.setFromEuler( euler ) );
return this;
};
}(),
applyAxisAngle: function () {
var quaternion;
return function applyAxisAngle( axis, angle ) {
if ( quaternion === undefined ) quaternion = new THREE.Quaternion();
this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) );
return this;
};
}(),
applyMatrix3: function ( m ) {
var x = this.x;
var y = this.y;
var z = this.z;
var e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;
return this;
},
applyMatrix4: function ( m ) {
// input: THREE.Matrix4 affine matrix
var x = this.x, y = this.y, z = this.z;
var e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ];
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ];
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ];
return this;
},
applyProjection: function ( m ) {
// input: THREE.Matrix4 projection matrix
var x = this.x, y = this.y, z = this.z;
var e = m.elements;
var d = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); // perspective divide
this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * d;
this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * d;
this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * d;
return this;
},
applyQuaternion: function ( q ) {
var x = this.x;
var y = this.y;
var z = this.z;
var qx = q.x;
var qy = q.y;
var qz = q.z;
var qw = q.w;
// calculate quat * vector
var ix = qw * x + qy * z - qz * y;
var iy = qw * y + qz * x - qx * z;
var iz = qw * z + qx * y - qy * x;
var iw = - qx * x - qy * y - qz * z;
// calculate result * inverse quat
this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;
this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;
this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;
return this;
},
project: function () {
var matrix;
return function project( camera ) {
if ( matrix === undefined ) matrix = new THREE.Matrix4();
matrix.multiplyMatrices( camera.projectionMatrix, matrix.getInverse( camera.matrixWorld ) );
return this.applyProjection( matrix );
};
}(),
unproject: function () {
var matrix;
return function unproject( camera ) {
if ( matrix === undefined ) matrix = new THREE.Matrix4();
matrix.multiplyMatrices( camera.matrixWorld, matrix.getInverse( camera.projectionMatrix ) );
return this.applyProjection( matrix );
};
}(),
transformDirection: function ( m ) {
// input: THREE.Matrix4 affine matrix
// vector interpreted as a direction
var x = this.x, y = this.y, z = this.z;
var e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
this.normalize();
return this;
},
divide: function ( v ) {
this.x /= v.x;
this.y /= v.y;
this.z /= v.z;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
return this;
},
clamp: function ( min, max ) {
// This function assumes min < max, if this assumption isn't true it will not operate correctly
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
return this;
},
clampScalar: function () {
var min, max;
return function clampScalar( minVal, maxVal ) {
if ( min === undefined ) {
min = new THREE.Vector3();
max = new THREE.Vector3();
}
min.set( minVal, minVal, minVal );
max.set( maxVal, maxVal, maxVal );
return this.clamp( min, max );
};
}(),
clampLength: function ( min, max ) {
var length = this.length();
this.multiplyScalar( Math.max( min, Math.min( max, length ) ) / length );
return this;
},
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z;
},
lengthSq: function () {
return this.x * this.x + this.y * this.y + this.z * this.z;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );
},
lengthManhattan: function () {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );
},
normalize: function () {
return this.divideScalar( this.length() );
},
setLength: function ( length ) {
return this.multiplyScalar( length / this.length() );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
return this;
},
cross: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' );
return this.crossVectors( v, w );
}
var x = this.x, y = this.y, z = this.z;
this.x = y * v.z - z * v.y;
this.y = z * v.x - x * v.z;
this.z = x * v.y - y * v.x;
return this;
},
crossVectors: function ( a, b ) {
var ax = a.x, ay = a.y, az = a.z;
var bx = b.x, by = b.y, bz = b.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
},
projectOnVector: function () {
var v1, dot;
return function projectOnVector( vector ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
v1.copy( vector ).normalize();
dot = this.dot( v1 );
return this.copy( v1 ).multiplyScalar( dot );
};
}(),
projectOnPlane: function () {
var v1;
return function projectOnPlane( planeNormal ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
v1.copy( this ).projectOnVector( planeNormal );
return this.sub( v1 );
};
}(),
reflect: function () {
// reflect incident vector off plane orthogonal to normal
// normal is assumed to have unit length
var v1;
return function reflect( normal ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );
};
}(),
angleTo: function ( v ) {
var theta = this.dot( v ) / ( Math.sqrt( this.lengthSq() * v.lengthSq() ) );
// clamp, to handle numerical problems
return Math.acos( THREE.Math.clamp( theta, - 1, 1 ) );
},
distanceTo: function ( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
},
distanceToSquared: function ( v ) {
var dx = this.x - v.x;
var dy = this.y - v.y;
var dz = this.z - v.z;
return dx * dx + dy * dy + dz * dz;
},
setFromSpherical: function( s ) {
var sinPhiRadius = Math.sin( s.phi ) * s.radius;
this.x = sinPhiRadius * Math.sin( s.theta );
this.y = Math.cos( s.phi ) * s.radius;
this.z = sinPhiRadius * Math.cos( s.theta );
return this;
},
setFromMatrixPosition: function ( m ) {
return this.setFromMatrixColumn( m, 3 );
},
setFromMatrixScale: function ( m ) {
var sx = this.setFromMatrixColumn( m, 0 ).length();
var sy = this.setFromMatrixColumn( m, 1 ).length();
var sz = this.setFromMatrixColumn( m, 2 ).length();
this.x = sx;
this.y = sy;
this.z = sz;
return this;
},
setFromMatrixColumn: function ( m, index ) {
if ( typeof m === 'number' ) {
console.warn( 'THREE.Vector3: setFromMatrixColumn now expects ( matrix, index ).' );
m = arguments[ 1 ];
index = arguments[ 0 ];
}
return this.fromArray( m.elements, index * 4 );
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
return array;
},
fromAttribute: function ( attribute, index, offset ) {
if ( offset === undefined ) offset = 0;
index = index * attribute.itemSize + offset;
this.x = attribute.array[ index ];
this.y = attribute.array[ index + 1 ];
this.z = attribute.array[ index + 2 ];
return this;
}
};
// File:src/math/Vector4.js
/**
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author philogb / http://blog.thejit.org/
* @author mikael emtinger / http://gomo.se/
* @author egraether / http://egraether.com/
* @author WestLangley / http://github.com/WestLangley
*/
THREE.Vector4 = function ( x, y, z, w ) {
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
this.w = ( w !== undefined ) ? w : 1;
};
THREE.Vector4.prototype = {
constructor: THREE.Vector4,
set: function ( x, y, z, w ) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
this.w = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setZ: function ( z ) {
this.z = z;
return this;
},
setW: function ( w ) {
this.w = w;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
case 3: this.w = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
case 3: return this.w;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y, this.z, this.w );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
this.w = ( v.w !== undefined ) ? v.w : 1;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
this.w += v.w;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
this.z += s;
this.w += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
this.w = a.w + b.w;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
this.w += v.w * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
this.w -= v.w;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
this.w -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
this.w = a.w - b.w;
return this;
},
multiplyScalar: function ( scalar ) {
if ( isFinite( scalar ) ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
this.w *= scalar;
} else {
this.x = 0;
this.y = 0;
this.z = 0;
this.w = 0;
}
return this;
},
applyMatrix4: function ( m ) {
var x = this.x;
var y = this.y;
var z = this.z;
var w = this.w;
var e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
setAxisAngleFromQuaternion: function ( q ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
// q is assumed to be normalized
this.w = 2 * Math.acos( q.w );
var s = Math.sqrt( 1 - q.w * q.w );
if ( s < 0.0001 ) {
this.x = 1;
this.y = 0;
this.z = 0;
} else {
this.x = q.x / s;
this.y = q.y / s;
this.z = q.z / s;
}
return this;
},
setAxisAngleFromRotationMatrix: function ( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
var angle, x, y, z, // variables for result
epsilon = 0.01, // margin to allow for rounding errors
epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees
te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
( Math.abs( m13 - m31 ) < epsilon ) &&
( Math.abs( m23 - m32 ) < epsilon ) ) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonal and zero in other terms
if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
( Math.abs( m13 + m31 ) < epsilon2 ) &&
( Math.abs( m23 + m32 ) < epsilon2 ) &&
( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
// this singularity is identity matrix so angle = 0
this.set( 1, 0, 0, 0 );
return this; // zero angle, arbitrary axis
}
// otherwise this singularity is angle = 180
angle = Math.PI;
var xx = ( m11 + 1 ) / 2;
var yy = ( m22 + 1 ) / 2;
var zz = ( m33 + 1 ) / 2;
var xy = ( m12 + m21 ) / 4;
var xz = ( m13 + m31 ) / 4;
var yz = ( m23 + m32 ) / 4;
if ( ( xx > yy ) && ( xx > zz ) ) {
// m11 is the largest diagonal term
if ( xx < epsilon ) {
x = 0;
y = 0.707106781;
z = 0.707106781;
} else {
x = Math.sqrt( xx );
y = xy / x;
z = xz / x;
}
} else if ( yy > zz ) {
// m22 is the largest diagonal term
if ( yy < epsilon ) {
x = 0.707106781;
y = 0;
z = 0.707106781;
} else {
y = Math.sqrt( yy );
x = xy / y;
z = yz / y;
}
} else {
// m33 is the largest diagonal term so base result on this
if ( zz < epsilon ) {
x = 0.707106781;
y = 0.707106781;
z = 0;
} else {
z = Math.sqrt( zz );
x = xz / z;
y = yz / z;
}
}
this.set( x, y, z, angle );
return this; // return 180 deg rotation
}
// as we have reached here there are no singularities so we can handle normally
var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
( m13 - m31 ) * ( m13 - m31 ) +
( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
if ( Math.abs( s ) < 0.001 ) s = 1;
// prevent divide by zero, should not happen if matrix is orthogonal and should be
// caught by singularity test above, but I've left it in just in case
this.x = ( m32 - m23 ) / s;
this.y = ( m13 - m31 ) / s;
this.z = ( m21 - m12 ) / s;
this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
return this;
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
this.w = Math.min( this.w, v.w );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
this.w = Math.max( this.w, v.w );
return this;
},
clamp: function ( min, max ) {
// This function assumes min < max, if this assumption isn't true it will not operate correctly
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
this.w = Math.max( min.w, Math.min( max.w, this.w ) );
return this;
},
clampScalar: function () {
var min, max;
return function clampScalar( minVal, maxVal ) {
if ( min === undefined ) {
min = new THREE.Vector4();
max = new THREE.Vector4();
}
min.set( minVal, minVal, minVal, minVal );
max.set( maxVal, maxVal, maxVal, maxVal );
return this.clamp( min, max );
};
}(),
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
this.w = Math.floor( this.w );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
this.w = Math.ceil( this.w );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
this.w = Math.round( this.w );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
this.w = - this.w;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
},
lengthSq: function () {
return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
},
lengthManhattan: function () {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
},
normalize: function () {
return this.divideScalar( this.length() );
},
setLength: function ( length ) {
return this.multiplyScalar( length / this.length() );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
this.w += ( v.w - this.w ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
return this;
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
this.w = array[ offset + 3 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
array[ offset + 3 ] = this.w;
return array;
},
fromAttribute: function ( attribute, index, offset ) {
if ( offset === undefined ) offset = 0;
index = index * attribute.itemSize + offset;
this.x = attribute.array[ index ];
this.y = attribute.array[ index + 1 ];
this.z = attribute.array[ index + 2 ];
this.w = attribute.array[ index + 3 ];
return this;
}
};
// File:src/math/Euler.js
/**
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
*/
THREE.Euler = function ( x, y, z, order ) {
this._x = x || 0;
this._y = y || 0;
this._z = z || 0;
this._order = order || THREE.Euler.DefaultOrder;
};
THREE.Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ];
THREE.Euler.DefaultOrder = 'XYZ';
THREE.Euler.prototype = {
constructor: THREE.Euler,
get x () {
return this._x;
},
set x ( value ) {
this._x = value;
this.onChangeCallback();
},
get y () {
return this._y;
},
set y ( value ) {
this._y = value;
this.onChangeCallback();
},
get z () {
return this._z;
},
set z ( value ) {
this._z = value;
this.onChangeCallback();
},
get order () {
return this._order;
},
set order ( value ) {
this._order = value;
this.onChangeCallback();
},
set: function ( x, y, z, order ) {
this._x = x;
this._y = y;
this._z = z;
this._order = order || this._order;
this.onChangeCallback();
return this;
},
clone: function () {
return new this.constructor( this._x, this._y, this._z, this._order );
},
copy: function ( euler ) {
this._x = euler._x;
this._y = euler._y;
this._z = euler._z;
this._order = euler._order;
this.onChangeCallback();
return this;
},
setFromRotationMatrix: function ( m, order, update ) {
var clamp = THREE.Math.clamp;
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
var te = m.elements;
var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ];
var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ];
var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
order = order || this._order;
if ( order === 'XYZ' ) {
this._y = Math.asin( clamp( m13, - 1, 1 ) );
if ( Math.abs( m13 ) < 0.99999 ) {
this._x = Math.atan2( - m23, m33 );
this._z = Math.atan2( - m12, m11 );
} else {
this._x = Math.atan2( m32, m22 );
this._z = 0;
}
} else if ( order === 'YXZ' ) {
this._x = Math.asin( - clamp( m23, - 1, 1 ) );
if ( Math.abs( m23 ) < 0.99999 ) {
this._y = Math.atan2( m13, m33 );
this._z = Math.atan2( m21, m22 );
} else {
this._y = Math.atan2( - m31, m11 );
this._z = 0;
}
} else if ( order === 'ZXY' ) {
this._x = Math.asin( clamp( m32, - 1, 1 ) );
if ( Math.abs( m32 ) < 0.99999 ) {
this._y = Math.atan2( - m31, m33 );
this._z = Math.atan2( - m12, m22 );
} else {
this._y = 0;
this._z = Math.atan2( m21, m11 );
}
} else if ( order === 'ZYX' ) {
this._y = Math.asin( - clamp( m31, - 1, 1 ) );
if ( Math.abs( m31 ) < 0.99999 ) {
this._x = Math.atan2( m32, m33 );
this._z = Math.atan2( m21, m11 );
} else {
this._x = 0;
this._z = Math.atan2( - m12, m22 );
}
} else if ( order === 'YZX' ) {
this._z = Math.asin( clamp( m21, - 1, 1 ) );
if ( Math.abs( m21 ) < 0.99999 ) {
this._x = Math.atan2( - m23, m22 );
this._y = Math.atan2( - m31, m11 );
} else {
this._x = 0;
this._y = Math.atan2( m13, m33 );
}
} else if ( order === 'XZY' ) {
this._z = Math.asin( - clamp( m12, - 1, 1 ) );
if ( Math.abs( m12 ) < 0.99999 ) {
this._x = Math.atan2( m32, m22 );
this._y = Math.atan2( m13, m11 );
} else {
this._x = Math.atan2( - m23, m33 );
this._y = 0;
}
} else {
console.warn( 'THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order );
}
this._order = order;
if ( update !== false ) this.onChangeCallback();
return this;
},
setFromQuaternion: function () {
var matrix;
return function ( q, order, update ) {
if ( matrix === undefined ) matrix = new THREE.Matrix4();
matrix.makeRotationFromQuaternion( q );
this.setFromRotationMatrix( matrix, order, update );
return this;
};
}(),
setFromVector3: function ( v, order ) {
return this.set( v.x, v.y, v.z, order || this._order );
},
reorder: function () {
// WARNING: this discards revolution information -bhouston
var q = new THREE.Quaternion();
return function ( newOrder ) {
q.setFromEuler( this );
this.setFromQuaternion( q, newOrder );
};
}(),
equals: function ( euler ) {
return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );
},
fromArray: function ( array ) {
this._x = array[ 0 ];
this._y = array[ 1 ];
this._z = array[ 2 ];
if ( array[ 3 ] !== undefined ) this._order = array[ 3 ];
this.onChangeCallback();
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._order;
return array;
},
toVector3: function ( optionalResult ) {
if ( optionalResult ) {
return optionalResult.set( this._x, this._y, this._z );
} else {
return new THREE.Vector3( this._x, this._y, this._z );
}
},
onChange: function ( callback ) {
this.onChangeCallback = callback;
return this;
},
onChangeCallback: function () {}
};
// File:src/math/Line3.js
/**
* @author bhouston / http://clara.io
*/
THREE.Line3 = function ( start, end ) {
this.start = ( start !== undefined ) ? start : new THREE.Vector3();
this.end = ( end !== undefined ) ? end : new THREE.Vector3();
};
THREE.Line3.prototype = {
constructor: THREE.Line3,
set: function ( start, end ) {
this.start.copy( start );
this.end.copy( end );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( line ) {
this.start.copy( line.start );
this.end.copy( line.end );
return this;
},
center: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.addVectors( this.start, this.end ).multiplyScalar( 0.5 );
},
delta: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.subVectors( this.end, this.start );
},
distanceSq: function () {
return this.start.distanceToSquared( this.end );
},
distance: function () {
return this.start.distanceTo( this.end );
},
at: function ( t, optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return this.delta( result ).multiplyScalar( t ).add( this.start );
},
closestPointToPointParameter: function () {
var startP = new THREE.Vector3();
var startEnd = new THREE.Vector3();
return function ( point, clampToLine ) {
startP.subVectors( point, this.start );
startEnd.subVectors( this.end, this.start );
var startEnd2 = startEnd.dot( startEnd );
var startEnd_startP = startEnd.dot( startP );
var t = startEnd_startP / startEnd2;
if ( clampToLine ) {
t = THREE.Math.clamp( t, 0, 1 );
}
return t;
};
}(),
closestPointToPoint: function ( point, clampToLine, optionalTarget ) {
var t = this.closestPointToPointParameter( point, clampToLine );
var result = optionalTarget || new THREE.Vector3();
return this.delta( result ).multiplyScalar( t ).add( this.start );
},
applyMatrix4: function ( matrix ) {
this.start.applyMatrix4( matrix );
this.end.applyMatrix4( matrix );
return this;
},
equals: function ( line ) {
return line.start.equals( this.start ) && line.end.equals( this.end );
}
};
// File:src/math/Box2.js
/**
* @author bhouston / http://clara.io
*/
THREE.Box2 = function ( min, max ) {
this.min = ( min !== undefined ) ? min : new THREE.Vector2( + Infinity, + Infinity );
this.max = ( max !== undefined ) ? max : new THREE.Vector2( - Infinity, - Infinity );
};
THREE.Box2.prototype = {
constructor: THREE.Box2,
set: function ( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
},
setFromPoints: function ( points ) {
this.makeEmpty();
for ( var i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
},
setFromCenterAndSize: function () {
var v1 = new THREE.Vector2();
return function ( center, size ) {
var halfSize = v1.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
};
}(),
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
},
makeEmpty: function () {
this.min.x = this.min.y = + Infinity;
this.max.x = this.max.y = - Infinity;
return this;
},
isEmpty: function () {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y );
},
center: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector2();
return result.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
},
size: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector2();
return result.subVectors( this.max, this.min );
},
expandByPoint: function ( point ) {
this.min.min( point );
this.max.max( point );
return this;
},
expandByVector: function ( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
},
expandByScalar: function ( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
},
containsPoint: function ( point ) {
if ( point.x < this.min.x || point.x > this.max.x ||
point.y < this.min.y || point.y > this.max.y ) {
return false;
}
return true;
},
containsBox: function ( box ) {
if ( ( this.min.x <= box.min.x ) && ( box.max.x <= this.max.x ) &&
( this.min.y <= box.min.y ) && ( box.max.y <= this.max.y ) ) {
return true;
}
return false;
},
getParameter: function ( point, optionalTarget ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
var result = optionalTarget || new THREE.Vector2();
return result.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y )
);
},
intersectsBox: function ( box ) {
// using 6 splitting planes to rule out intersections.
if ( box.max.x < this.min.x || box.min.x > this.max.x ||
box.max.y < this.min.y || box.min.y > this.max.y ) {
return false;
}
return true;
},
clampPoint: function ( point, optionalTarget ) {
var result = optionalTarget || new THREE.Vector2();
return result.copy( point ).clamp( this.min, this.max );
},
distanceToPoint: function () {
var v1 = new THREE.Vector2();
return function ( point ) {
var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
return clampedPoint.sub( point ).length();
};
}(),
intersect: function ( box ) {
this.min.max( box.min );
this.max.min( box.max );
return this;
},
union: function ( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
},
translate: function ( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
},
equals: function ( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
};
// File:src/math/Box3.js
/**
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*/
THREE.Box3 = function ( min, max ) {
this.min = ( min !== undefined ) ? min : new THREE.Vector3( + Infinity, + Infinity, + Infinity );
this.max = ( max !== undefined ) ? max : new THREE.Vector3( - Infinity, - Infinity, - Infinity );
};
THREE.Box3.prototype = {
constructor: THREE.Box3,
set: function ( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
},
setFromArray: function ( array ) {
var minX = + Infinity;
var minY = + Infinity;
var minZ = + Infinity;
var maxX = - Infinity;
var maxY = - Infinity;
var maxZ = - Infinity;
for ( var i = 0, l = array.length; i < l; i += 3 ) {
var x = array[ i ];
var y = array[ i + 1 ];
var z = array[ i + 2 ];
if ( x < minX ) minX = x;
if ( y < minY ) minY = y;
if ( z < minZ ) minZ = z;
if ( x > maxX ) maxX = x;
if ( y > maxY ) maxY = y;
if ( z > maxZ ) maxZ = z;
}
this.min.set( minX, minY, minZ );
this.max.set( maxX, maxY, maxZ );
},
setFromPoints: function ( points ) {
this.makeEmpty();
for ( var i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
},
setFromCenterAndSize: function () {
var v1 = new THREE.Vector3();
return function ( center, size ) {
var halfSize = v1.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
};
}(),
setFromObject: function () {
// Computes the world-axis-aligned bounding box of an object (including its children),
// accounting for both the object's, and children's, world transforms
var v1 = new THREE.Vector3();
return function ( object ) {
var scope = this;
object.updateMatrixWorld( true );
this.makeEmpty();
object.traverse( function ( node ) {
var geometry = node.geometry;
if ( geometry !== undefined ) {
if ( geometry instanceof THREE.Geometry ) {
var vertices = geometry.vertices;
for ( var i = 0, il = vertices.length; i < il; i ++ ) {
v1.copy( vertices[ i ] );
v1.applyMatrix4( node.matrixWorld );
scope.expandByPoint( v1 );
}
} else if ( geometry instanceof THREE.BufferGeometry && geometry.attributes[ 'position' ] !== undefined ) {
var positions = geometry.attributes[ 'position' ].array;
for ( var i = 0, il = positions.length; i < il; i += 3 ) {
v1.fromArray( positions, i );
v1.applyMatrix4( node.matrixWorld );
scope.expandByPoint( v1 );
}
}
}
} );
return this;
};
}(),
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
},
makeEmpty: function () {
this.min.x = this.min.y = this.min.z = + Infinity;
this.max.x = this.max.y = this.max.z = - Infinity;
return this;
},
isEmpty: function () {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );
},
center: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
},
size: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.subVectors( this.max, this.min );
},
expandByPoint: function ( point ) {
this.min.min( point );
this.max.max( point );
return this;
},
expandByVector: function ( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
},
expandByScalar: function ( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
},
containsPoint: function ( point ) {
if ( point.x < this.min.x || point.x > this.max.x ||
point.y < this.min.y || point.y > this.max.y ||
point.z < this.min.z || point.z > this.max.z ) {
return false;
}
return true;
},
containsBox: function ( box ) {
if ( ( this.min.x <= box.min.x ) && ( box.max.x <= this.max.x ) &&
( this.min.y <= box.min.y ) && ( box.max.y <= this.max.y ) &&
( this.min.z <= box.min.z ) && ( box.max.z <= this.max.z ) ) {
return true;
}
return false;
},
getParameter: function ( point, optionalTarget ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
var result = optionalTarget || new THREE.Vector3();
return result.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y ),
( point.z - this.min.z ) / ( this.max.z - this.min.z )
);
},
intersectsBox: function ( box ) {
// using 6 splitting planes to rule out intersections.
if ( box.max.x < this.min.x || box.min.x > this.max.x ||
box.max.y < this.min.y || box.min.y > this.max.y ||
box.max.z < this.min.z || box.min.z > this.max.z ) {
return false;
}
return true;
},
intersectsSphere: ( function () {
var closestPoint;
return function intersectsSphere( sphere ) {
if ( closestPoint === undefined ) closestPoint = new THREE.Vector3();
// Find the point on the AABB closest to the sphere center.
this.clampPoint( sphere.center, closestPoint );
// If that point is inside the sphere, the AABB and sphere intersect.
return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );
};
} )(),
intersectsPlane: function ( plane ) {
// We compute the minimum and maximum dot product values. If those values
// are on the same side (back or front) of the plane, then there is no intersection.
var min, max;
if ( plane.normal.x > 0 ) {
min = plane.normal.x * this.min.x;
max = plane.normal.x * this.max.x;
} else {
min = plane.normal.x * this.max.x;
max = plane.normal.x * this.min.x;
}
if ( plane.normal.y > 0 ) {
min += plane.normal.y * this.min.y;
max += plane.normal.y * this.max.y;
} else {
min += plane.normal.y * this.max.y;
max += plane.normal.y * this.min.y;
}
if ( plane.normal.z > 0 ) {
min += plane.normal.z * this.min.z;
max += plane.normal.z * this.max.z;
} else {
min += plane.normal.z * this.max.z;
max += plane.normal.z * this.min.z;
}
return ( min <= plane.constant && max >= plane.constant );
},
clampPoint: function ( point, optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.copy( point ).clamp( this.min, this.max );
},
distanceToPoint: function () {
var v1 = new THREE.Vector3();
return function ( point ) {
var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
return clampedPoint.sub( point ).length();
};
}(),
getBoundingSphere: function () {
var v1 = new THREE.Vector3();
return function ( optionalTarget ) {
var result = optionalTarget || new THREE.Sphere();
result.center = this.center();
result.radius = this.size( v1 ).length() * 0.5;
return result;
};
}(),
intersect: function ( box ) {
this.min.max( box.min );
this.max.min( box.max );
// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
if( this.isEmpty() ) this.makeEmpty();
return this;
},
union: function ( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
},
applyMatrix4: function () {
var points = [
new THREE.Vector3(),
new THREE.Vector3(),
new THREE.Vector3(),
new THREE.Vector3(),
new THREE.Vector3(),
new THREE.Vector3(),
new THREE.Vector3(),
new THREE.Vector3()
];
return function ( matrix ) {
// transform of empty box is an empty box.
if( this.isEmpty() ) return this;
// NOTE: I am using a binary pattern to specify all 2^3 combinations below
points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111
this.setFromPoints( points );
return this;
};
}(),
translate: function ( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
},
equals: function ( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
};
// File:src/math/Matrix3.js
/**
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
* @author tschw
*/
THREE.Matrix3 = function () {
this.elements = new Float32Array( [
1, 0, 0,
0, 1, 0,
0, 0, 1
] );
if ( arguments.length > 0 ) {
console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' );
}
};
THREE.Matrix3.prototype = {
constructor: THREE.Matrix3,
set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {
var te = this.elements;
te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;
return this;
},
identity: function () {
this.set(
1, 0, 0,
0, 1, 0,
0, 0, 1
);
return this;
},
clone: function () {
return new this.constructor().fromArray( this.elements );
},
copy: function ( m ) {
var me = m.elements;
this.set(
me[ 0 ], me[ 3 ], me[ 6 ],
me[ 1 ], me[ 4 ], me[ 7 ],
me[ 2 ], me[ 5 ], me[ 8 ]
);
return this;
},
setFromMatrix4: function( m ) {
var me = m.elements;
this.set(
me[ 0 ], me[ 4 ], me[ 8 ],
me[ 1 ], me[ 5 ], me[ 9 ],
me[ 2 ], me[ 6 ], me[ 10 ]
);
return this;
},
applyToVector3Array: function () {
var v1;
return function ( array, offset, length ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
if ( offset === undefined ) offset = 0;
if ( length === undefined ) length = array.length;
for ( var i = 0, j = offset; i < length; i += 3, j += 3 ) {
v1.fromArray( array, j );
v1.applyMatrix3( this );
v1.toArray( array, j );
}
return array;
};
}(),
applyToBuffer: function () {
var v1;
return function applyToBuffer( buffer, offset, length ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
if ( offset === undefined ) offset = 0;
if ( length === undefined ) length = buffer.length / buffer.itemSize;
for ( var i = 0, j = offset; i < length; i ++, j ++ ) {
v1.x = buffer.getX( j );
v1.y = buffer.getY( j );
v1.z = buffer.getZ( j );
v1.applyMatrix3( this );
buffer.setXYZ( v1.x, v1.y, v1.z );
}
return buffer;
};
}(),
multiplyScalar: function ( s ) {
var te = this.elements;
te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;
return this;
},
determinant: function () {
var te = this.elements;
var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];
return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
},
getInverse: function ( matrix, throwOnDegenerate ) {
if ( matrix instanceof THREE.Matrix4 ) {
console.error( "THREE.Matrix3.getInverse no longer takes a Matrix4 argument." );
}
var me = matrix.elements,
te = this.elements,
n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ],
n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ],
n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ],
t11 = n33 * n22 - n32 * n23,
t12 = n32 * n13 - n33 * n12,
t13 = n23 * n12 - n22 * n13,
det = n11 * t11 + n21 * t12 + n31 * t13;
if ( det === 0 ) {
var msg = "THREE.Matrix3.getInverse(): can't invert matrix, determinant is 0";
if ( throwOnDegenerate || false ) {
throw new Error( msg );
} else {
console.warn( msg );
}
return this.identity();
}
te[ 0 ] = t11;
te[ 1 ] = n31 * n23 - n33 * n21;
te[ 2 ] = n32 * n21 - n31 * n22;
te[ 3 ] = t12;
te[ 4 ] = n33 * n11 - n31 * n13;
te[ 5 ] = n31 * n12 - n32 * n11;
te[ 6 ] = t13;
te[ 7 ] = n21 * n13 - n23 * n11;
te[ 8 ] = n22 * n11 - n21 * n12;
return this.multiplyScalar( 1 / det );
},
transpose: function () {
var tmp, m = this.elements;
tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;
return this;
},
flattenToArrayOffset: function ( array, offset ) {
console.warn( "THREE.Matrix3: .flattenToArrayOffset is deprecated " +
"- just use .toArray instead." );
return this.toArray( array, offset );
},
getNormalMatrix: function ( matrix4 ) {
return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose();
},
transposeIntoArray: function ( r ) {
var m = this.elements;
r[ 0 ] = m[ 0 ];
r[ 1 ] = m[ 3 ];
r[ 2 ] = m[ 6 ];
r[ 3 ] = m[ 1 ];
r[ 4 ] = m[ 4 ];
r[ 5 ] = m[ 7 ];
r[ 6 ] = m[ 2 ];
r[ 7 ] = m[ 5 ];
r[ 8 ] = m[ 8 ];
return this;
},
fromArray: function ( array ) {
this.elements.set( array );
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
var te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
return array;
}
};
// File:src/math/Matrix4.js
/**
* @author mrdoob / http://mrdoob.com/
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author philogb / http://blog.thejit.org/
* @author jordi_ros / http://plattsoft.com
* @author D1plo1d / http://github.com/D1plo1d
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author timknip / http://www.floorplanner.com/
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*/
THREE.Matrix4 = function () {
this.elements = new Float32Array( [
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
] );
if ( arguments.length > 0 ) {
console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );
}
};
THREE.Matrix4.prototype = {
constructor: THREE.Matrix4,
set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
var te = this.elements;
te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;
return this;
},
identity: function () {
this.set(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
},
clone: function () {
return new THREE.Matrix4().fromArray( this.elements );
},
copy: function ( m ) {
this.elements.set( m.elements );
return this;
},
copyPosition: function ( m ) {
var te = this.elements;
var me = m.elements;
te[ 12 ] = me[ 12 ];
te[ 13 ] = me[ 13 ];
te[ 14 ] = me[ 14 ];
return this;
},
extractBasis: function ( xAxis, yAxis, zAxis ) {
xAxis.setFromMatrixColumn( this, 0 );
yAxis.setFromMatrixColumn( this, 1 );
zAxis.setFromMatrixColumn( this, 2 );
return this;
},
makeBasis: function ( xAxis, yAxis, zAxis ) {
this.set(
xAxis.x, yAxis.x, zAxis.x, 0,
xAxis.y, yAxis.y, zAxis.y, 0,
xAxis.z, yAxis.z, zAxis.z, 0,
0, 0, 0, 1
);
return this;
},
extractRotation: function () {
var v1;
return function ( m ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
var te = this.elements;
var me = m.elements;
var scaleX = 1 / v1.setFromMatrixColumn( m, 0 ).length();
var scaleY = 1 / v1.setFromMatrixColumn( m, 1 ).length();
var scaleZ = 1 / v1.setFromMatrixColumn( m, 2 ).length();
te[ 0 ] = me[ 0 ] * scaleX;
te[ 1 ] = me[ 1 ] * scaleX;
te[ 2 ] = me[ 2 ] * scaleX;
te[ 4 ] = me[ 4 ] * scaleY;
te[ 5 ] = me[ 5 ] * scaleY;
te[ 6 ] = me[ 6 ] * scaleY;
te[ 8 ] = me[ 8 ] * scaleZ;
te[ 9 ] = me[ 9 ] * scaleZ;
te[ 10 ] = me[ 10 ] * scaleZ;
return this;
};
}(),
makeRotationFromEuler: function ( euler ) {
if ( euler instanceof THREE.Euler === false ) {
console.error( 'THREE.Matrix: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );
}
var te = this.elements;
var x = euler.x, y = euler.y, z = euler.z;
var a = Math.cos( x ), b = Math.sin( x );
var c = Math.cos( y ), d = Math.sin( y );
var e = Math.cos( z ), f = Math.sin( z );
if ( euler.order === 'XYZ' ) {
var ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = - c * f;
te[ 8 ] = d;
te[ 1 ] = af + be * d;
te[ 5 ] = ae - bf * d;
te[ 9 ] = - b * c;
te[ 2 ] = bf - ae * d;
te[ 6 ] = be + af * d;
te[ 10 ] = a * c;
} else if ( euler.order === 'YXZ' ) {
var ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce + df * b;
te[ 4 ] = de * b - cf;
te[ 8 ] = a * d;
te[ 1 ] = a * f;
te[ 5 ] = a * e;
te[ 9 ] = - b;
te[ 2 ] = cf * b - de;
te[ 6 ] = df + ce * b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZXY' ) {
var ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce - df * b;
te[ 4 ] = - a * f;
te[ 8 ] = de + cf * b;
te[ 1 ] = cf + de * b;
te[ 5 ] = a * e;
te[ 9 ] = df - ce * b;
te[ 2 ] = - a * d;
te[ 6 ] = b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZYX' ) {
var ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = be * d - af;
te[ 8 ] = ae * d + bf;
te[ 1 ] = c * f;
te[ 5 ] = bf * d + ae;
te[ 9 ] = af * d - be;
te[ 2 ] = - d;
te[ 6 ] = b * c;
te[ 10 ] = a * c;
} else if ( euler.order === 'YZX' ) {
var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = bd - ac * f;
te[ 8 ] = bc * f + ad;
te[ 1 ] = f;
te[ 5 ] = a * e;
te[ 9 ] = - b * e;
te[ 2 ] = - d * e;
te[ 6 ] = ad * f + bc;
te[ 10 ] = ac - bd * f;
} else if ( euler.order === 'XZY' ) {
var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = - f;
te[ 8 ] = d * e;
te[ 1 ] = ac * f + bd;
te[ 5 ] = a * e;
te[ 9 ] = ad * f - bc;
te[ 2 ] = bc * f - ad;
te[ 6 ] = b * e;
te[ 10 ] = bd * f + ac;
}
// last column
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0;
// bottom row
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
},
makeRotationFromQuaternion: function ( q ) {
var te = this.elements;
var x = q.x, y = q.y, z = q.z, w = q.w;
var x2 = x + x, y2 = y + y, z2 = z + z;
var xx = x * x2, xy = x * y2, xz = x * z2;
var yy = y * y2, yz = y * z2, zz = z * z2;
var wx = w * x2, wy = w * y2, wz = w * z2;
te[ 0 ] = 1 - ( yy + zz );
te[ 4 ] = xy - wz;
te[ 8 ] = xz + wy;
te[ 1 ] = xy + wz;
te[ 5 ] = 1 - ( xx + zz );
te[ 9 ] = yz - wx;
te[ 2 ] = xz - wy;
te[ 6 ] = yz + wx;
te[ 10 ] = 1 - ( xx + yy );
// last column
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0;
// bottom row
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
},
lookAt: function () {
var x, y, z;
return function ( eye, target, up ) {
if ( x === undefined ) x = new THREE.Vector3();
if ( y === undefined ) y = new THREE.Vector3();
if ( z === undefined ) z = new THREE.Vector3();
var te = this.elements;
z.subVectors( eye, target ).normalize();
if ( z.lengthSq() === 0 ) {
z.z = 1;
}
x.crossVectors( up, z ).normalize();
if ( x.lengthSq() === 0 ) {
z.x += 0.0001;
x.crossVectors( up, z ).normalize();
}
y.crossVectors( z, x );
te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x;
te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y;
te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z;
return this;
};
}(),
multiply: function ( m, n ) {
if ( n !== undefined ) {
console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
return this.multiplyMatrices( m, n );
}
return this.multiplyMatrices( this, m );
},
premultiply: function ( m ) {
return this.multiplyMatrices( m, this );
},
multiplyMatrices: function ( a, b ) {
var ae = a.elements;
var be = b.elements;
var te = this.elements;
var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];
var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
return this;
},
multiplyToArray: function ( a, b, r ) {
var te = this.elements;
this.multiplyMatrices( a, b );
r[ 0 ] = te[ 0 ]; r[ 1 ] = te[ 1 ]; r[ 2 ] = te[ 2 ]; r[ 3 ] = te[ 3 ];
r[ 4 ] = te[ 4 ]; r[ 5 ] = te[ 5 ]; r[ 6 ] = te[ 6 ]; r[ 7 ] = te[ 7 ];
r[ 8 ] = te[ 8 ]; r[ 9 ] = te[ 9 ]; r[ 10 ] = te[ 10 ]; r[ 11 ] = te[ 11 ];
r[ 12 ] = te[ 12 ]; r[ 13 ] = te[ 13 ]; r[ 14 ] = te[ 14 ]; r[ 15 ] = te[ 15 ];
return this;
},
multiplyScalar: function ( s ) {
var te = this.elements;
te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;
return this;
},
applyToVector3Array: function () {
var v1;
return function ( array, offset, length ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
if ( offset === undefined ) offset = 0;
if ( length === undefined ) length = array.length;
for ( var i = 0, j = offset; i < length; i += 3, j += 3 ) {
v1.fromArray( array, j );
v1.applyMatrix4( this );
v1.toArray( array, j );
}
return array;
};
}(),
applyToBuffer: function () {
var v1;
return function applyToBuffer( buffer, offset, length ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
if ( offset === undefined ) offset = 0;
if ( length === undefined ) length = buffer.length / buffer.itemSize;
for ( var i = 0, j = offset; i < length; i ++, j ++ ) {
v1.x = buffer.getX( j );
v1.y = buffer.getY( j );
v1.z = buffer.getZ( j );
v1.applyMatrix4( this );
buffer.setXYZ( v1.x, v1.y, v1.z );
}
return buffer;
};
}(),
determinant: function () {
var te = this.elements;
var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];
//TODO: make this more efficient
//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
return (
n41 * (
+ n14 * n23 * n32
- n13 * n24 * n32
- n14 * n22 * n33
+ n12 * n24 * n33
+ n13 * n22 * n34
- n12 * n23 * n34
) +
n42 * (
+ n11 * n23 * n34
- n11 * n24 * n33
+ n14 * n21 * n33
- n13 * n21 * n34
+ n13 * n24 * n31
- n14 * n23 * n31
) +
n43 * (
+ n11 * n24 * n32
- n11 * n22 * n34
- n14 * n21 * n32
+ n12 * n21 * n34
+ n14 * n22 * n31
- n12 * n24 * n31
) +
n44 * (
- n13 * n22 * n31
- n11 * n23 * n32
+ n11 * n22 * n33
+ n13 * n21 * n32
- n12 * n21 * n33
+ n12 * n23 * n31
)
);
},
transpose: function () {
var te = this.elements;
var tmp;
tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;
tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;
return this;
},
flattenToArrayOffset: function ( array, offset ) {
console.warn( "THREE.Matrix3: .flattenToArrayOffset is deprecated " +
"- just use .toArray instead." );
return this.toArray( array, offset );
},
getPosition: function () {
var v1;
return function () {
if ( v1 === undefined ) v1 = new THREE.Vector3();
console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' );
return v1.setFromMatrixColumn( this, 3 );
};
}(),
setPosition: function ( v ) {
var te = this.elements;
te[ 12 ] = v.x;
te[ 13 ] = v.y;
te[ 14 ] = v.z;
return this;
},
getInverse: function ( m, throwOnDegenerate ) {
// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
var te = this.elements,
me = m.elements,
n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ],
n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ],
n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ],
n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],
t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
if ( det === 0 ) {
var msg = "THREE.Matrix4.getInverse(): can't invert matrix, determinant is 0";
if ( throwOnDegenerate || false ) {
throw new Error( msg );
} else {
console.warn( msg );
}
return this.identity();
}
te[ 0 ] = t11;
te[ 1 ] = n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44;
te[ 2 ] = n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44;
te[ 3 ] = n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43;
te[ 4 ] = t12;
te[ 5 ] = n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44;
te[ 6 ] = n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44;
te[ 7 ] = n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43;
te[ 8 ] = t13;
te[ 9 ] = n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44;
te[ 10 ] = n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44;
te[ 11 ] = n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43;
te[ 12 ] = t14;
te[ 13 ] = n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34;
te[ 14 ] = n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34;
te[ 15 ] = n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33;
return this.multiplyScalar( 1 / det );
},
scale: function ( v ) {
var te = this.elements;
var x = v.x, y = v.y, z = v.z;
te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;
return this;
},
getMaxScaleOnAxis: function () {
var te = this.elements;
var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];
return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );
},
makeTranslation: function ( x, y, z ) {
this.set(
1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1
);
return this;
},
makeRotationX: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
1, 0, 0, 0,
0, c, - s, 0,
0, s, c, 0,
0, 0, 0, 1
);
return this;
},
makeRotationY: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, 0, s, 0,
0, 1, 0, 0,
- s, 0, c, 0,
0, 0, 0, 1
);
return this;
},
makeRotationZ: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, - s, 0, 0,
s, c, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
},
makeRotationAxis: function ( axis, angle ) {
// Based on http://www.gamedev.net/reference/articles/article1199.asp
var c = Math.cos( angle );
var s = Math.sin( angle );
var t = 1 - c;
var x = axis.x, y = axis.y, z = axis.z;
var tx = t * x, ty = t * y;
this.set(
tx * x + c, tx * y - s * z, tx * z + s * y, 0,
tx * y + s * z, ty * y + c, ty * z - s * x, 0,
tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
0, 0, 0, 1
);
return this;
},
makeScale: function ( x, y, z ) {
this.set(
x, 0, 0, 0,
0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1
);
return this;
},
compose: function ( position, quaternion, scale ) {
this.makeRotationFromQuaternion( quaternion );
this.scale( scale );
this.setPosition( position );
return this;
},
decompose: function () {
var vector, matrix;
return function ( position, quaternion, scale ) {
if ( vector === undefined ) vector = new THREE.Vector3();
if ( matrix === undefined ) matrix = new THREE.Matrix4();
var te = this.elements;
var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();
// if determine is negative, we need to invert one scale
var det = this.determinant();
if ( det < 0 ) {
sx = - sx;
}
position.x = te[ 12 ];
position.y = te[ 13 ];
position.z = te[ 14 ];
// scale the rotation part
matrix.elements.set( this.elements ); // at this point matrix is incomplete so we can't use .copy()
var invSX = 1 / sx;
var invSY = 1 / sy;
var invSZ = 1 / sz;
matrix.elements[ 0 ] *= invSX;
matrix.elements[ 1 ] *= invSX;
matrix.elements[ 2 ] *= invSX;
matrix.elements[ 4 ] *= invSY;
matrix.elements[ 5 ] *= invSY;
matrix.elements[ 6 ] *= invSY;
matrix.elements[ 8 ] *= invSZ;
matrix.elements[ 9 ] *= invSZ;
matrix.elements[ 10 ] *= invSZ;
quaternion.setFromRotationMatrix( matrix );
scale.x = sx;
scale.y = sy;
scale.z = sz;
return this;
};
}(),
makeFrustum: function ( left, right, bottom, top, near, far ) {
var te = this.elements;
var x = 2 * near / ( right - left );
var y = 2 * near / ( top - bottom );
var a = ( right + left ) / ( right - left );
var b = ( top + bottom ) / ( top - bottom );
var c = - ( far + near ) / ( far - near );
var d = - 2 * far * near / ( far - near );
te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0;
te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0;
return this;
},
makePerspective: function ( fov, aspect, near, far ) {
var ymax = near * Math.tan( THREE.Math.DEG2RAD * fov * 0.5 );
var ymin = - ymax;
var xmin = ymin * aspect;
var xmax = ymax * aspect;
return this.makeFrustum( xmin, xmax, ymin, ymax, near, far );
},
makeOrthographic: function ( left, right, top, bottom, near, far ) {
var te = this.elements;
var w = 1.0 / ( right - left );
var h = 1.0 / ( top - bottom );
var p = 1.0 / ( far - near );
var x = ( right + left ) * w;
var y = ( top + bottom ) * h;
var z = ( far + near ) * p;
te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x;
te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1;
return this;
},
equals: function ( matrix ) {
var te = this.elements;
var me = matrix.elements;
for ( var i = 0; i < 16; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
},
fromArray: function ( array ) {
this.elements.set( array );
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
var te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
array[ offset + 9 ] = te[ 9 ];
array[ offset + 10 ] = te[ 10 ];
array[ offset + 11 ] = te[ 11 ];
array[ offset + 12 ] = te[ 12 ];
array[ offset + 13 ] = te[ 13 ];
array[ offset + 14 ] = te[ 14 ];
array[ offset + 15 ] = te[ 15 ];
return array;
}
};
// File:src/math/Ray.js
/**
* @author bhouston / http://clara.io
*/
THREE.Ray = function ( origin, direction ) {
this.origin = ( origin !== undefined ) ? origin : new THREE.Vector3();
this.direction = ( direction !== undefined ) ? direction : new THREE.Vector3();
};
THREE.Ray.prototype = {
constructor: THREE.Ray,
set: function ( origin, direction ) {
this.origin.copy( origin );
this.direction.copy( direction );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( ray ) {
this.origin.copy( ray.origin );
this.direction.copy( ray.direction );
return this;
},
at: function ( t, optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.copy( this.direction ).multiplyScalar( t ).add( this.origin );
},
lookAt: function ( v ) {
this.direction.copy( v ).sub( this.origin ).normalize();
},
recast: function () {
var v1 = new THREE.Vector3();
return function ( t ) {
this.origin.copy( this.at( t, v1 ) );
return this;
};
}(),
closestPointToPoint: function ( point, optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
result.subVectors( point, this.origin );
var directionDistance = result.dot( this.direction );
if ( directionDistance < 0 ) {
return result.copy( this.origin );
}
return result.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
},
distanceToPoint: function ( point ) {
return Math.sqrt( this.distanceSqToPoint( point ) );
},
distanceSqToPoint: function () {
var v1 = new THREE.Vector3();
return function ( point ) {
var directionDistance = v1.subVectors( point, this.origin ).dot( this.direction );
// point behind the ray
if ( directionDistance < 0 ) {
return this.origin.distanceToSquared( point );
}
v1.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
return v1.distanceToSquared( point );
};
}(),
distanceSqToSegment: function () {
var segCenter = new THREE.Vector3();
var segDir = new THREE.Vector3();
var diff = new THREE.Vector3();
return function ( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {
// from http://www.geometrictools.com/LibMathematics/Distance/Wm5DistRay3Segment3.cpp
// It returns the min distance between the ray and the segment
// defined by v0 and v1
// It can also set two optional targets :
// - The closest point on the ray
// - The closest point on the segment
segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
segDir.copy( v1 ).sub( v0 ).normalize();
diff.copy( this.origin ).sub( segCenter );
var segExtent = v0.distanceTo( v1 ) * 0.5;
var a01 = - this.direction.dot( segDir );
var b0 = diff.dot( this.direction );
var b1 = - diff.dot( segDir );
var c = diff.lengthSq();
var det = Math.abs( 1 - a01 * a01 );
var s0, s1, sqrDist, extDet;
if ( det > 0 ) {
// The ray and segment are not parallel.
s0 = a01 * b1 - b0;
s1 = a01 * b0 - b1;
extDet = segExtent * det;
if ( s0 >= 0 ) {
if ( s1 >= - extDet ) {
if ( s1 <= extDet ) {
// region 0
// Minimum at interior points of ray and segment.
var invDet = 1 / det;
s0 *= invDet;
s1 *= invDet;
sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;
} else {
// region 1
s1 = segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
// region 5
s1 = - segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
if ( s1 <= - extDet ) {
// region 4
s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
} else if ( s1 <= extDet ) {
// region 3
s0 = 0;
s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = s1 * ( s1 + 2 * b1 ) + c;
} else {
// region 2
s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
}
} else {
// Ray and segment are parallel.
s1 = ( a01 > 0 ) ? - segExtent : segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
if ( optionalPointOnRay ) {
optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin );
}
if ( optionalPointOnSegment ) {
optionalPointOnSegment.copy( segDir ).multiplyScalar( s1 ).add( segCenter );
}
return sqrDist;
};
}(),
intersectSphere: function () {
var v1 = new THREE.Vector3();
return function ( sphere, optionalTarget ) {
v1.subVectors( sphere.center, this.origin );
var tca = v1.dot( this.direction );
var d2 = v1.dot( v1 ) - tca * tca;
var radius2 = sphere.radius * sphere.radius;
if ( d2 > radius2 ) return null;
var thc = Math.sqrt( radius2 - d2 );
// t0 = first intersect point - entrance on front of sphere
var t0 = tca - thc;
// t1 = second intersect point - exit point on back of sphere
var t1 = tca + thc;
// test to see if both t0 and t1 are behind the ray - if so, return null
if ( t0 < 0 && t1 < 0 ) return null;
// test to see if t0 is behind the ray:
// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
// in order to always return an intersect point that is in front of the ray.
if ( t0 < 0 ) return this.at( t1, optionalTarget );
// else t0 is in front of the ray, so return the first collision point scaled by t0
return this.at( t0, optionalTarget );
};
}(),
intersectsSphere: function ( sphere ) {
return this.distanceToPoint( sphere.center ) <= sphere.radius;
},
distanceToPlane: function ( plane ) {
var denominator = plane.normal.dot( this.direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( plane.distanceToPoint( this.origin ) === 0 ) {
return 0;
}
// Null is preferable to undefined since undefined means.... it is undefined
return null;
}
var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;
// Return if the ray never intersects the plane
return t >= 0 ? t : null;
},
intersectPlane: function ( plane, optionalTarget ) {
var t = this.distanceToPlane( plane );
if ( t === null ) {
return null;
}
return this.at( t, optionalTarget );
},
intersectsPlane: function ( plane ) {
// check if the ray lies on the plane first
var distToPoint = plane.distanceToPoint( this.origin );
if ( distToPoint === 0 ) {
return true;
}
var denominator = plane.normal.dot( this.direction );
if ( denominator * distToPoint < 0 ) {
return true;
}
// ray origin is behind the plane (and is pointing behind it)
return false;
},
intersectBox: function ( box, optionalTarget ) {
var tmin, tmax, tymin, tymax, tzmin, tzmax;
var invdirx = 1 / this.direction.x,
invdiry = 1 / this.direction.y,
invdirz = 1 / this.direction.z;
var origin = this.origin;
if ( invdirx >= 0 ) {
tmin = ( box.min.x - origin.x ) * invdirx;
tmax = ( box.max.x - origin.x ) * invdirx;
} else {
tmin = ( box.max.x - origin.x ) * invdirx;
tmax = ( box.min.x - origin.x ) * invdirx;
}
if ( invdiry >= 0 ) {
tymin = ( box.min.y - origin.y ) * invdiry;
tymax = ( box.max.y - origin.y ) * invdiry;
} else {
tymin = ( box.max.y - origin.y ) * invdiry;
tymax = ( box.min.y - origin.y ) * invdiry;
}
if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null;
// These lines also handle the case where tmin or tmax is NaN
// (result of 0 * Infinity). x !== x returns true if x is NaN
if ( tymin > tmin || tmin !== tmin ) tmin = tymin;
if ( tymax < tmax || tmax !== tmax ) tmax = tymax;
if ( invdirz >= 0 ) {
tzmin = ( box.min.z - origin.z ) * invdirz;
tzmax = ( box.max.z - origin.z ) * invdirz;
} else {
tzmin = ( box.max.z - origin.z ) * invdirz;
tzmax = ( box.min.z - origin.z ) * invdirz;
}
if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null;
if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin;
if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax;
//return point closest to the ray (positive side)
if ( tmax < 0 ) return null;
return this.at( tmin >= 0 ? tmin : tmax, optionalTarget );
},
intersectsBox: ( function () {
var v = new THREE.Vector3();
return function ( box ) {
return this.intersectBox( box, v ) !== null;
};
} )(),
intersectTriangle: function () {
// Compute the offset origin, edges, and normal.
var diff = new THREE.Vector3();
var edge1 = new THREE.Vector3();
var edge2 = new THREE.Vector3();
var normal = new THREE.Vector3();
return function ( a, b, c, backfaceCulling, optionalTarget ) {
// from http://www.geometrictools.com/LibMathematics/Intersection/Wm5IntrRay3Triangle3.cpp
edge1.subVectors( b, a );
edge2.subVectors( c, a );
normal.crossVectors( edge1, edge2 );
// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
var DdN = this.direction.dot( normal );
var sign;
if ( DdN > 0 ) {
if ( backfaceCulling ) return null;
sign = 1;
} else if ( DdN < 0 ) {
sign = - 1;
DdN = - DdN;
} else {
return null;
}
diff.subVectors( this.origin, a );
var DdQxE2 = sign * this.direction.dot( edge2.crossVectors( diff, edge2 ) );
// b1 < 0, no intersection
if ( DdQxE2 < 0 ) {
return null;
}
var DdE1xQ = sign * this.direction.dot( edge1.cross( diff ) );
// b2 < 0, no intersection
if ( DdE1xQ < 0 ) {
return null;
}
// b1+b2 > 1, no intersection
if ( DdQxE2 + DdE1xQ > DdN ) {
return null;
}
// Line intersects triangle, check if ray does.
var QdN = - sign * diff.dot( normal );
// t < 0, no intersection
if ( QdN < 0 ) {
return null;
}
// Ray intersects triangle.
return this.at( QdN / DdN, optionalTarget );
};
}(),
applyMatrix4: function ( matrix4 ) {
this.direction.add( this.origin ).applyMatrix4( matrix4 );
this.origin.applyMatrix4( matrix4 );
this.direction.sub( this.origin );
this.direction.normalize();
return this;
},
equals: function ( ray ) {
return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );
}
};
// File:src/math/Sphere.js
/**
* @author bhouston / http://clara.io
* @author mrdoob / http://mrdoob.com/
*/
THREE.Sphere = function ( center, radius ) {
this.center = ( center !== undefined ) ? center : new THREE.Vector3();
this.radius = ( radius !== undefined ) ? radius : 0;
};
THREE.Sphere.prototype = {
constructor: THREE.Sphere,
set: function ( center, radius ) {
this.center.copy( center );
this.radius = radius;
return this;
},
setFromPoints: function () {
var box = new THREE.Box3();
return function ( points, optionalCenter ) {
var center = this.center;
if ( optionalCenter !== undefined ) {
center.copy( optionalCenter );
} else {
box.setFromPoints( points ).center( center );
}
var maxRadiusSq = 0;
for ( var i = 0, il = points.length; i < il; i ++ ) {
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );
}
this.radius = Math.sqrt( maxRadiusSq );
return this;
};
}(),
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( sphere ) {
this.center.copy( sphere.center );
this.radius = sphere.radius;
return this;
},
empty: function () {
return ( this.radius <= 0 );
},
containsPoint: function ( point ) {
return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );
},
distanceToPoint: function ( point ) {
return ( point.distanceTo( this.center ) - this.radius );
},
intersectsSphere: function ( sphere ) {
var radiusSum = this.radius + sphere.radius;
return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );
},
intersectsBox: function ( box ) {
return box.intersectsSphere( this );
},
intersectsPlane: function ( plane ) {
// We use the following equation to compute the signed distance from
// the center of the sphere to the plane.
//
// distance = q * n - d
//
// If this distance is greater than the radius of the sphere,
// then there is no intersection.
return Math.abs( this.center.dot( plane.normal ) - plane.constant ) <= this.radius;
},
clampPoint: function ( point, optionalTarget ) {
var deltaLengthSq = this.center.distanceToSquared( point );
var result = optionalTarget || new THREE.Vector3();
result.copy( point );
if ( deltaLengthSq > ( this.radius * this.radius ) ) {
result.sub( this.center ).normalize();
result.multiplyScalar( this.radius ).add( this.center );
}
return result;
},
getBoundingBox: function ( optionalTarget ) {
var box = optionalTarget || new THREE.Box3();
box.set( this.center, this.center );
box.expandByScalar( this.radius );
return box;
},
applyMatrix4: function ( matrix ) {
this.center.applyMatrix4( matrix );
this.radius = this.radius * matrix.getMaxScaleOnAxis();
return this;
},
translate: function ( offset ) {
this.center.add( offset );
return this;
},
equals: function ( sphere ) {
return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );
}
};
// File:src/math/Frustum.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author bhouston / http://clara.io
*/
THREE.Frustum = function ( p0, p1, p2, p3, p4, p5 ) {
this.planes = [
( p0 !== undefined ) ? p0 : new THREE.Plane(),
( p1 !== undefined ) ? p1 : new THREE.Plane(),
( p2 !== undefined ) ? p2 : new THREE.Plane(),
( p3 !== undefined ) ? p3 : new THREE.Plane(),
( p4 !== undefined ) ? p4 : new THREE.Plane(),
( p5 !== undefined ) ? p5 : new THREE.Plane()
];
};
THREE.Frustum.prototype = {
constructor: THREE.Frustum,
set: function ( p0, p1, p2, p3, p4, p5 ) {
var planes = this.planes;
planes[ 0 ].copy( p0 );
planes[ 1 ].copy( p1 );
planes[ 2 ].copy( p2 );
planes[ 3 ].copy( p3 );
planes[ 4 ].copy( p4 );
planes[ 5 ].copy( p5 );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( frustum ) {
var planes = this.planes;
for ( var i = 0; i < 6; i ++ ) {
planes[ i ].copy( frustum.planes[ i ] );
}
return this;
},
setFromMatrix: function ( m ) {
var planes = this.planes;
var me = m.elements;
var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];
var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];
var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];
var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];
planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();
planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();
planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();
planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();
planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();
planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();
return this;
},
intersectsObject: function () {
var sphere = new THREE.Sphere();
return function ( object ) {
var geometry = object.geometry;
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere );
sphere.applyMatrix4( object.matrixWorld );
return this.intersectsSphere( sphere );
};
}(),
intersectsSphere: function ( sphere ) {
var planes = this.planes;
var center = sphere.center;
var negRadius = - sphere.radius;
for ( var i = 0; i < 6; i ++ ) {
var distance = planes[ i ].distanceToPoint( center );
if ( distance < negRadius ) {
return false;
}
}
return true;
},
intersectsBox: function () {
var p1 = new THREE.Vector3(),
p2 = new THREE.Vector3();
return function ( box ) {
var planes = this.planes;
for ( var i = 0; i < 6 ; i ++ ) {
var plane = planes[ i ];
p1.x = plane.normal.x > 0 ? box.min.x : box.max.x;
p2.x = plane.normal.x > 0 ? box.max.x : box.min.x;
p1.y = plane.normal.y > 0 ? box.min.y : box.max.y;
p2.y = plane.normal.y > 0 ? box.max.y : box.min.y;
p1.z = plane.normal.z > 0 ? box.min.z : box.max.z;
p2.z = plane.normal.z > 0 ? box.max.z : box.min.z;
var d1 = plane.distanceToPoint( p1 );
var d2 = plane.distanceToPoint( p2 );
// if both outside plane, no intersection
if ( d1 < 0 && d2 < 0 ) {
return false;
}
}
return true;
};
}(),
containsPoint: function ( point ) {
var planes = this.planes;
for ( var i = 0; i < 6; i ++ ) {
if ( planes[ i ].distanceToPoint( point ) < 0 ) {
return false;
}
}
return true;
}
};
// File:src/math/Plane.js
/**
* @author bhouston / http://clara.io
*/
THREE.Plane = function ( normal, constant ) {
this.normal = ( normal !== undefined ) ? normal : new THREE.Vector3( 1, 0, 0 );
this.constant = ( constant !== undefined ) ? constant : 0;
};
THREE.Plane.prototype = {
constructor: THREE.Plane,
set: function ( normal, constant ) {
this.normal.copy( normal );
this.constant = constant;
return this;
},
setComponents: function ( x, y, z, w ) {
this.normal.set( x, y, z );
this.constant = w;
return this;
},
setFromNormalAndCoplanarPoint: function ( normal, point ) {
this.normal.copy( normal );
this.constant = - point.dot( this.normal ); // must be this.normal, not normal, as this.normal is normalized
return this;
},
setFromCoplanarPoints: function () {
var v1 = new THREE.Vector3();
var v2 = new THREE.Vector3();
return function ( a, b, c ) {
var normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize();
// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
this.setFromNormalAndCoplanarPoint( normal, a );
return this;
};
}(),
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( plane ) {
this.normal.copy( plane.normal );
this.constant = plane.constant;
return this;
},
normalize: function () {
// Note: will lead to a divide by zero if the plane is invalid.
var inverseNormalLength = 1.0 / this.normal.length();
this.normal.multiplyScalar( inverseNormalLength );
this.constant *= inverseNormalLength;
return this;
},
negate: function () {
this.constant *= - 1;
this.normal.negate();
return this;
},
distanceToPoint: function ( point ) {
return this.normal.dot( point ) + this.constant;
},
distanceToSphere: function ( sphere ) {
return this.distanceToPoint( sphere.center ) - sphere.radius;
},
projectPoint: function ( point, optionalTarget ) {
return this.orthoPoint( point, optionalTarget ).sub( point ).negate();
},
orthoPoint: function ( point, optionalTarget ) {
var perpendicularMagnitude = this.distanceToPoint( point );
var result = optionalTarget || new THREE.Vector3();
return result.copy( this.normal ).multiplyScalar( perpendicularMagnitude );
},
intersectLine: function () {
var v1 = new THREE.Vector3();
return function ( line, optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
var direction = line.delta( v1 );
var denominator = this.normal.dot( direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( this.distanceToPoint( line.start ) === 0 ) {
return result.copy( line.start );
}
// Unsure if this is the correct method to handle this case.
return undefined;
}
var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;
if ( t < 0 || t > 1 ) {
return undefined;
}
return result.copy( direction ).multiplyScalar( t ).add( line.start );
};
}(),
intersectsLine: function ( line ) {
// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
var startSign = this.distanceToPoint( line.start );
var endSign = this.distanceToPoint( line.end );
return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );
},
intersectsBox: function ( box ) {
return box.intersectsPlane( this );
},
intersectsSphere: function ( sphere ) {
return sphere.intersectsPlane( this );
},
coplanarPoint: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.copy( this.normal ).multiplyScalar( - this.constant );
},
applyMatrix4: function () {
var v1 = new THREE.Vector3();
var m1 = new THREE.Matrix3();
return function ( matrix, optionalNormalMatrix ) {
var referencePoint = this.coplanarPoint( v1 ).applyMatrix4( matrix );
// transform normal based on theory here:
// http://www.songho.ca/opengl/gl_normaltransform.html
var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix );
var normal = this.normal.applyMatrix3( normalMatrix ).normalize();
// recalculate constant (like in setFromNormalAndCoplanarPoint)
this.constant = - referencePoint.dot( normal );
return this;
};
}(),
translate: function ( offset ) {
this.constant = this.constant - offset.dot( this.normal );
return this;
},
equals: function ( plane ) {
return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );
}
};
// File:src/math/Spherical.js
/**
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*
* Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
*
* The poles (phi) are at the positive and negative y axis.
* The equator starts at positive z.
*/
THREE.Spherical = function ( radius, phi, theta ) {
this.radius = ( radius !== undefined ) ? radius : 1.0;
this.phi = ( phi !== undefined ) ? phi : 0; // up / down towards top and bottom pole
this.theta = ( theta !== undefined ) ? theta : 0; // around the equator of the sphere
return this;
};
THREE.Spherical.prototype = {
constructor: THREE.Spherical,
set: function ( radius, phi, theta ) {
this.radius = radius;
this.phi = phi;
this.theta = theta;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( other ) {
this.radius.copy( other.radius );
this.phi.copy( other.phi );
this.theta.copy( other.theta );
return this;
},
// restrict phi to be betwee EPS and PI-EPS
makeSafe: function() {
var EPS = 0.000001;
this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) );
},
setFromVector3: function( vec3 ) {
this.radius = vec3.length();
if ( this.radius === 0 ) {
this.theta = 0;
this.phi = 0;
} else {
this.theta = Math.atan2( vec3.x, vec3.z ); // equator angle around y-up axis
this.phi = Math.acos( THREE.Math.clamp( vec3.y / this.radius, - 1, 1 ) ); // polar angle
}
return this;
},
};
// File:src/math/Math.js
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
THREE.Math = {
DEG2RAD: Math.PI / 180,
RAD2DEG: 180 / Math.PI,
generateUUID: function () {
// http://www.broofa.com/Tools/Math.uuid.htm
var chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'.split( '' );
var uuid = new Array( 36 );
var rnd = 0, r;
return function () {
for ( var i = 0; i < 36; i ++ ) {
if ( i === 8 || i === 13 || i === 18 || i === 23 ) {
uuid[ i ] = '-';
} else if ( i === 14 ) {
uuid[ i ] = '4';
} else {
if ( rnd <= 0x02 ) rnd = 0x2000000 + ( Math.random() * 0x1000000 ) | 0;
r = rnd & 0xf;
rnd = rnd >> 4;
uuid[ i ] = chars[ ( i === 19 ) ? ( r & 0x3 ) | 0x8 : r ];
}
}
return uuid.join( '' );
};
}(),
clamp: function ( value, min, max ) {
return Math.max( min, Math.min( max, value ) );
},
// compute euclidian modulo of m % n
// https://en.wikipedia.org/wiki/Modulo_operation
euclideanModulo: function ( n, m ) {
return ( ( n % m ) + m ) % m;
},
// Linear mapping from range <a1, a2> to range <b1, b2>
mapLinear: function ( x, a1, a2, b1, b2 ) {
return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );
},
// http://en.wikipedia.org/wiki/Smoothstep
smoothstep: function ( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * ( 3 - 2 * x );
},
smootherstep: function ( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * x * ( x * ( x * 6 - 15 ) + 10 );
},
random16: function () {
console.warn( 'THREE.Math.random16() has been deprecated. Use Math.random() instead.' );
return Math.random();
},
// Random integer from <low, high> interval
randInt: function ( low, high ) {
return low + Math.floor( Math.random() * ( high - low + 1 ) );
},
// Random float from <low, high> interval
randFloat: function ( low, high ) {
return low + Math.random() * ( high - low );
},
// Random float from <-range/2, range/2> interval
randFloatSpread: function ( range ) {
return range * ( 0.5 - Math.random() );
},
degToRad: function ( degrees ) {
return degrees * THREE.Math.DEG2RAD;
},
radToDeg: function ( radians ) {
return radians * THREE.Math.RAD2DEG;
},
isPowerOfTwo: function ( value ) {
return ( value & ( value - 1 ) ) === 0 && value !== 0;
},
nearestPowerOfTwo: function ( value ) {
return Math.pow( 2, Math.round( Math.log( value ) / Math.LN2 ) );
},
nextPowerOfTwo: function ( value ) {
value --;
value |= value >> 1;
value |= value >> 2;
value |= value >> 4;
value |= value >> 8;
value |= value >> 16;
value ++;
return value;
}
};
// File:src/math/Spline.js
/**
* Spline from Tween.js, slightly optimized (and trashed)
* http://sole.github.com/tween.js/examples/05_spline.html
*
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Spline = function ( points ) {
this.points = points;
var c = [], v3 = { x: 0, y: 0, z: 0 },
point, intPoint, weight, w2, w3,
pa, pb, pc, pd;
this.initFromArray = function ( a ) {
this.points = [];
for ( var i = 0; i < a.length; i ++ ) {
this.points[ i ] = { x: a[ i ][ 0 ], y: a[ i ][ 1 ], z: a[ i ][ 2 ] };
}
};
this.getPoint = function ( k ) {
point = ( this.points.length - 1 ) * k;
intPoint = Math.floor( point );
weight = point - intPoint;
c[ 0 ] = intPoint === 0 ? intPoint : intPoint - 1;
c[ 1 ] = intPoint;
c[ 2 ] = intPoint > this.points.length - 2 ? this.points.length - 1 : intPoint + 1;
c[ 3 ] = intPoint > this.points.length - 3 ? this.points.length - 1 : intPoint + 2;
pa = this.points[ c[ 0 ] ];
pb = this.points[ c[ 1 ] ];
pc = this.points[ c[ 2 ] ];
pd = this.points[ c[ 3 ] ];
w2 = weight * weight;
w3 = weight * w2;
v3.x = interpolate( pa.x, pb.x, pc.x, pd.x, weight, w2, w3 );
v3.y = interpolate( pa.y, pb.y, pc.y, pd.y, weight, w2, w3 );
v3.z = interpolate( pa.z, pb.z, pc.z, pd.z, weight, w2, w3 );
return v3;
};
this.getControlPointsArray = function () {
var i, p, l = this.points.length,
coords = [];
for ( i = 0; i < l; i ++ ) {
p = this.points[ i ];
coords[ i ] = [ p.x, p.y, p.z ];
}
return coords;
};
// approximate length by summing linear segments
this.getLength = function ( nSubDivisions ) {
var i, index, nSamples, position,
point = 0, intPoint = 0, oldIntPoint = 0,
oldPosition = new THREE.Vector3(),
tmpVec = new THREE.Vector3(),
chunkLengths = [],
totalLength = 0;
// first point has 0 length
chunkLengths[ 0 ] = 0;
if ( ! nSubDivisions ) nSubDivisions = 100;
nSamples = this.points.length * nSubDivisions;
oldPosition.copy( this.points[ 0 ] );
for ( i = 1; i < nSamples; i ++ ) {
index = i / nSamples;
position = this.getPoint( index );
tmpVec.copy( position );
totalLength += tmpVec.distanceTo( oldPosition );
oldPosition.copy( position );
point = ( this.points.length - 1 ) * index;
intPoint = Math.floor( point );
if ( intPoint !== oldIntPoint ) {
chunkLengths[ intPoint ] = totalLength;
oldIntPoint = intPoint;
}
}
// last point ends with total length
chunkLengths[ chunkLengths.length ] = totalLength;
return { chunks: chunkLengths, total: totalLength };
};
this.reparametrizeByArcLength = function ( samplingCoef ) {
var i, j,
index, indexCurrent, indexNext,
realDistance,
sampling, position,
newpoints = [],
tmpVec = new THREE.Vector3(),
sl = this.getLength();
newpoints.push( tmpVec.copy( this.points[ 0 ] ).clone() );
for ( i = 1; i < this.points.length; i ++ ) {
//tmpVec.copy( this.points[ i - 1 ] );
//linearDistance = tmpVec.distanceTo( this.points[ i ] );
realDistance = sl.chunks[ i ] - sl.chunks[ i - 1 ];
sampling = Math.ceil( samplingCoef * realDistance / sl.total );
indexCurrent = ( i - 1 ) / ( this.points.length - 1 );
indexNext = i / ( this.points.length - 1 );
for ( j = 1; j < sampling - 1; j ++ ) {
index = indexCurrent + j * ( 1 / sampling ) * ( indexNext - indexCurrent );
position = this.getPoint( index );
newpoints.push( tmpVec.copy( position ).clone() );
}
newpoints.push( tmpVec.copy( this.points[ i ] ).clone() );
}
this.points = newpoints;
};
// Catmull-Rom
function interpolate( p0, p1, p2, p3, t, t2, t3 ) {
var v0 = ( p2 - p0 ) * 0.5,
v1 = ( p3 - p1 ) * 0.5;
return ( 2 * ( p1 - p2 ) + v0 + v1 ) * t3 + ( - 3 * ( p1 - p2 ) - 2 * v0 - v1 ) * t2 + v0 * t + p1;
}
};
// File:src/math/Triangle.js
/**
* @author bhouston / http://clara.io
* @author mrdoob / http://mrdoob.com/
*/
THREE.Triangle = function ( a, b, c ) {
this.a = ( a !== undefined ) ? a : new THREE.Vector3();
this.b = ( b !== undefined ) ? b : new THREE.Vector3();
this.c = ( c !== undefined ) ? c : new THREE.Vector3();
};
THREE.Triangle.normal = function () {
var v0 = new THREE.Vector3();
return function ( a, b, c, optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
result.subVectors( c, b );
v0.subVectors( a, b );
result.cross( v0 );
var resultLengthSq = result.lengthSq();
if ( resultLengthSq > 0 ) {
return result.multiplyScalar( 1 / Math.sqrt( resultLengthSq ) );
}
return result.set( 0, 0, 0 );
};
}();
// static/instance method to calculate barycentric coordinates
// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
THREE.Triangle.barycoordFromPoint = function () {
var v0 = new THREE.Vector3();
var v1 = new THREE.Vector3();
var v2 = new THREE.Vector3();
return function ( point, a, b, c, optionalTarget ) {
v0.subVectors( c, a );
v1.subVectors( b, a );
v2.subVectors( point, a );
var dot00 = v0.dot( v0 );
var dot01 = v0.dot( v1 );
var dot02 = v0.dot( v2 );
var dot11 = v1.dot( v1 );
var dot12 = v1.dot( v2 );
var denom = ( dot00 * dot11 - dot01 * dot01 );
var result = optionalTarget || new THREE.Vector3();
// collinear or singular triangle
if ( denom === 0 ) {
// arbitrary location outside of triangle?
// not sure if this is the best idea, maybe should be returning undefined
return result.set( - 2, - 1, - 1 );
}
var invDenom = 1 / denom;
var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;
// barycentric coordinates must always sum to 1
return result.set( 1 - u - v, v, u );
};
}();
THREE.Triangle.containsPoint = function () {
var v1 = new THREE.Vector3();
return function ( point, a, b, c ) {
var result = THREE.Triangle.barycoordFromPoint( point, a, b, c, v1 );
return ( result.x >= 0 ) && ( result.y >= 0 ) && ( ( result.x + result.y ) <= 1 );
};
}();
THREE.Triangle.prototype = {
constructor: THREE.Triangle,
set: function ( a, b, c ) {
this.a.copy( a );
this.b.copy( b );
this.c.copy( c );
return this;
},
setFromPointsAndIndices: function ( points, i0, i1, i2 ) {
this.a.copy( points[ i0 ] );
this.b.copy( points[ i1 ] );
this.c.copy( points[ i2 ] );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( triangle ) {
this.a.copy( triangle.a );
this.b.copy( triangle.b );
this.c.copy( triangle.c );
return this;
},
area: function () {
var v0 = new THREE.Vector3();
var v1 = new THREE.Vector3();
return function () {
v0.subVectors( this.c, this.b );
v1.subVectors( this.a, this.b );
return v0.cross( v1 ).length() * 0.5;
};
}(),
midpoint: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );
},
normal: function ( optionalTarget ) {
return THREE.Triangle.normal( this.a, this.b, this.c, optionalTarget );
},
plane: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Plane();
return result.setFromCoplanarPoints( this.a, this.b, this.c );
},
barycoordFromPoint: function ( point, optionalTarget ) {
return THREE.Triangle.barycoordFromPoint( point, this.a, this.b, this.c, optionalTarget );
},
containsPoint: function ( point ) {
return THREE.Triangle.containsPoint( point, this.a, this.b, this.c );
},
closestPointToPoint: function () {
var plane, edgeList, projectedPoint, closestPoint;
return function closestPointToPoint( point, optionalTarget ) {
if ( plane === undefined ) {
plane = new THREE.Plane();
edgeList = [ new THREE.Line3(), new THREE.Line3(), new THREE.Line3() ];
projectedPoint = new THREE.Vector3();
closestPoint = new THREE.Vector3();
}
var result = optionalTarget || new THREE.Vector3();
var minDistance = Infinity;
// project the point onto the plane of the triangle
plane.setFromCoplanarPoints( this.a, this.b, this.c );
plane.projectPoint( point, projectedPoint );
// check if the projection lies within the triangle
if( this.containsPoint( projectedPoint ) === true ) {
// if so, this is the closest point
result.copy( projectedPoint );
} else {
// if not, the point falls outside the triangle. the result is the closest point to the triangle's edges or vertices
edgeList[ 0 ].set( this.a, this.b );
edgeList[ 1 ].set( this.b, this.c );
edgeList[ 2 ].set( this.c, this.a );
for( var i = 0; i < edgeList.length; i ++ ) {
edgeList[ i ].closestPointToPoint( projectedPoint, true, closestPoint );
var distance = projectedPoint.distanceToSquared( closestPoint );
if( distance < minDistance ) {
minDistance = distance;
result.copy( closestPoint );
}
}
}
return result;
};
}(),
equals: function ( triangle ) {
return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );
}
};
// File:src/math/Interpolant.js
/**
* Abstract base class of interpolants over parametric samples.
*
* The parameter domain is one dimensional, typically the time or a path
* along a curve defined by the data.
*
* The sample values can have any dimensionality and derived classes may
* apply special interpretations to the data.
*
* This class provides the interval seek in a Template Method, deferring
* the actual interpolation to derived classes.
*
* Time complexity is O(1) for linear access crossing at most two points
* and O(log N) for random access, where N is the number of positions.
*
* References:
*
* http://www.oodesign.com/template-method-pattern.html
*
* @author tschw
*/
THREE.Interpolant = function(
parameterPositions, sampleValues, sampleSize, resultBuffer ) {
this.parameterPositions = parameterPositions;
this._cachedIndex = 0;
this.resultBuffer = resultBuffer !== undefined ?
resultBuffer : new sampleValues.constructor( sampleSize );
this.sampleValues = sampleValues;
this.valueSize = sampleSize;
};
THREE.Interpolant.prototype = {
constructor: THREE.Interpolant,
evaluate: function( t ) {
var pp = this.parameterPositions,
i1 = this._cachedIndex,
t1 = pp[ i1 ],
t0 = pp[ i1 - 1 ];
validate_interval: {
seek: {
var right;
linear_scan: {
//- See http://jsperf.com/comparison-to-undefined/3
//- slower code:
//-
//- if ( t >= t1 || t1 === undefined ) {
forward_scan: if ( ! ( t < t1 ) ) {
for ( var giveUpAt = i1 + 2; ;) {
if ( t1 === undefined ) {
if ( t < t0 ) break forward_scan;
// after end
i1 = pp.length;
this._cachedIndex = i1;
return this.afterEnd_( i1 - 1, t, t0 );
}
if ( i1 === giveUpAt ) break; // this loop
t0 = t1;
t1 = pp[ ++ i1 ];
if ( t < t1 ) {
// we have arrived at the sought interval
break seek;
}
}
// prepare binary search on the right side of the index
right = pp.length;
break linear_scan;
}
//- slower code:
//- if ( t < t0 || t0 === undefined ) {
if ( ! ( t >= t0 ) ) {
// looping?
var t1global = pp[ 1 ];
if ( t < t1global ) {
i1 = 2; // + 1, using the scan for the details
t0 = t1global;
}
// linear reverse scan
for ( var giveUpAt = i1 - 2; ;) {
if ( t0 === undefined ) {
// before start
this._cachedIndex = 0;
return this.beforeStart_( 0, t, t1 );
}
if ( i1 === giveUpAt ) break; // this loop
t1 = t0;
t0 = pp[ -- i1 - 1 ];
if ( t >= t0 ) {
// we have arrived at the sought interval
break seek;
}
}
// prepare binary search on the left side of the index
right = i1;
i1 = 0;
break linear_scan;
}
// the interval is valid
break validate_interval;
} // linear scan
// binary search
while ( i1 < right ) {
var mid = ( i1 + right ) >>> 1;
if ( t < pp[ mid ] ) {
right = mid;
} else {
i1 = mid + 1;
}
}
t1 = pp[ i1 ];
t0 = pp[ i1 - 1 ];
// check boundary cases, again
if ( t0 === undefined ) {
this._cachedIndex = 0;
return this.beforeStart_( 0, t, t1 );
}
if ( t1 === undefined ) {
i1 = pp.length;
this._cachedIndex = i1;
return this.afterEnd_( i1 - 1, t0, t );
}
} // seek
this._cachedIndex = i1;
this.intervalChanged_( i1, t0, t1 );
} // validate_interval
return this.interpolate_( i1, t0, t, t1 );
},
settings: null, // optional, subclass-specific settings structure
// Note: The indirection allows central control of many interpolants.
// --- Protected interface
DefaultSettings_: {},
getSettings_: function() {
return this.settings || this.DefaultSettings_;
},
copySampleValue_: function( index ) {
// copies a sample value to the result buffer
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset = index * stride;
for ( var i = 0; i !== stride; ++ i ) {
result[ i ] = values[ offset + i ];
}
return result;
},
// Template methods for derived classes:
interpolate_: function( i1, t0, t, t1 ) {
throw new Error( "call to abstract method" );
// implementations shall return this.resultBuffer
},
intervalChanged_: function( i1, t0, t1 ) {
// empty
}
};
Object.assign( THREE.Interpolant.prototype, {
beforeStart_: //( 0, t, t0 ), returns this.resultBuffer
THREE.Interpolant.prototype.copySampleValue_,
afterEnd_: //( N-1, tN-1, t ), returns this.resultBuffer
THREE.Interpolant.prototype.copySampleValue_
} );
// File:src/math/interpolants/CubicInterpolant.js
/**
* Fast and simple cubic spline interpolant.
*
* It was derived from a Hermitian construction setting the first derivative
* at each sample position to the linear slope between neighboring positions
* over their parameter interval.
*
* @author tschw
*/
THREE.CubicInterpolant = function(
parameterPositions, sampleValues, sampleSize, resultBuffer ) {
THREE.Interpolant.call(
this, parameterPositions, sampleValues, sampleSize, resultBuffer );
this._weightPrev = -0;
this._offsetPrev = -0;
this._weightNext = -0;
this._offsetNext = -0;
};
THREE.CubicInterpolant.prototype =
Object.assign( Object.create( THREE.Interpolant.prototype ), {
constructor: THREE.CubicInterpolant,
DefaultSettings_: {
endingStart: THREE.ZeroCurvatureEnding,
endingEnd: THREE.ZeroCurvatureEnding
},
intervalChanged_: function( i1, t0, t1 ) {
var pp = this.parameterPositions,
iPrev = i1 - 2,
iNext = i1 + 1,
tPrev = pp[ iPrev ],
tNext = pp[ iNext ];
if ( tPrev === undefined ) {
switch ( this.getSettings_().endingStart ) {
case THREE.ZeroSlopeEnding:
// f'(t0) = 0
iPrev = i1;
tPrev = 2 * t0 - t1;
break;
case THREE.WrapAroundEnding:
// use the other end of the curve
iPrev = pp.length - 2;
tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ];
break;
default: // ZeroCurvatureEnding
// f''(t0) = 0 a.k.a. Natural Spline
iPrev = i1;
tPrev = t1;
}
}
if ( tNext === undefined ) {
switch ( this.getSettings_().endingEnd ) {
case THREE.ZeroSlopeEnding:
// f'(tN) = 0
iNext = i1;
tNext = 2 * t1 - t0;
break;
case THREE.WrapAroundEnding:
// use the other end of the curve
iNext = 1;
tNext = t1 + pp[ 1 ] - pp[ 0 ];
break;
default: // ZeroCurvatureEnding
// f''(tN) = 0, a.k.a. Natural Spline
iNext = i1 - 1;
tNext = t0;
}
}
var halfDt = ( t1 - t0 ) * 0.5,
stride = this.valueSize;
this._weightPrev = halfDt / ( t0 - tPrev );
this._weightNext = halfDt / ( tNext - t1 );
this._offsetPrev = iPrev * stride;
this._offsetNext = iNext * stride;
},
interpolate_: function( i1, t0, t, t1 ) {
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
o1 = i1 * stride, o0 = o1 - stride,
oP = this._offsetPrev, oN = this._offsetNext,
wP = this._weightPrev, wN = this._weightNext,
p = ( t - t0 ) / ( t1 - t0 ),
pp = p * p,
ppp = pp * p;
// evaluate polynomials
var sP = - wP * ppp + 2 * wP * pp - wP * p;
var s0 = ( 1 + wP ) * ppp + (-1.5 - 2 * wP ) * pp + ( -0.5 + wP ) * p + 1;
var s1 = (-1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p;
var sN = wN * ppp - wN * pp;
// combine data linearly
for ( var i = 0; i !== stride; ++ i ) {
result[ i ] =
sP * values[ oP + i ] +
s0 * values[ o0 + i ] +
s1 * values[ o1 + i ] +
sN * values[ oN + i ];
}
return result;
}
} );
// File:src/math/interpolants/DiscreteInterpolant.js
/**
*
* Interpolant that evaluates to the sample value at the position preceeding
* the parameter.
*
* @author tschw
*/
THREE.DiscreteInterpolant = function(
parameterPositions, sampleValues, sampleSize, resultBuffer ) {
THREE.Interpolant.call(
this, parameterPositions, sampleValues, sampleSize, resultBuffer );
};
THREE.DiscreteInterpolant.prototype =
Object.assign( Object.create( THREE.Interpolant.prototype ), {
constructor: THREE.DiscreteInterpolant,
interpolate_: function( i1, t0, t, t1 ) {
return this.copySampleValue_( i1 - 1 );
}
} );
// File:src/math/interpolants/LinearInterpolant.js
/**
* @author tschw
*/
THREE.LinearInterpolant = function(
parameterPositions, sampleValues, sampleSize, resultBuffer ) {
THREE.Interpolant.call(
this, parameterPositions, sampleValues, sampleSize, resultBuffer );
};
THREE.LinearInterpolant.prototype =
Object.assign( Object.create( THREE.Interpolant.prototype ), {
constructor: THREE.LinearInterpolant,
interpolate_: function( i1, t0, t, t1 ) {
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset1 = i1 * stride,
offset0 = offset1 - stride,
weight1 = ( t - t0 ) / ( t1 - t0 ),
weight0 = 1 - weight1;
for ( var i = 0; i !== stride; ++ i ) {
result[ i ] =
values[ offset0 + i ] * weight0 +
values[ offset1 + i ] * weight1;
}
return result;
}
} );
// File:src/math/interpolants/QuaternionLinearInterpolant.js
/**
* Spherical linear unit quaternion interpolant.
*
* @author tschw
*/
THREE.QuaternionLinearInterpolant = function(
parameterPositions, sampleValues, sampleSize, resultBuffer ) {
THREE.Interpolant.call(
this, parameterPositions, sampleValues, sampleSize, resultBuffer );
};
THREE.QuaternionLinearInterpolant.prototype =
Object.assign( Object.create( THREE.Interpolant.prototype ), {
constructor: THREE.QuaternionLinearInterpolant,
interpolate_: function( i1, t0, t, t1 ) {
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset = i1 * stride,
alpha = ( t - t0 ) / ( t1 - t0 );
for ( var end = offset + stride; offset !== end; offset += 4 ) {
THREE.Quaternion.slerpFlat( result, 0,
values, offset - stride, values, offset, alpha );
}
return result;
}
} );
// File:src/core/Clock.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.Clock = function ( autoStart ) {
this.autoStart = ( autoStart !== undefined ) ? autoStart : true;
this.startTime = 0;
this.oldTime = 0;
this.elapsedTime = 0;
this.running = false;
};
THREE.Clock.prototype = {
constructor: THREE.Clock,
start: function () {
this.startTime = ( performance || Date ).now();
this.oldTime = this.startTime;
this.running = true;
},
stop: function () {
this.getElapsedTime();
this.running = false;
},
getElapsedTime: function () {
this.getDelta();
return this.elapsedTime;
},
getDelta: function () {
var diff = 0;
if ( this.autoStart && ! this.running ) {
this.start();
}
if ( this.running ) {
var newTime = ( performance || Date ).now();
diff = ( newTime - this.oldTime ) / 1000;
this.oldTime = newTime;
this.elapsedTime += diff;
}
return diff;
}
};
// File:src/core/EventDispatcher.js
/**
* https://github.com/mrdoob/eventdispatcher.js/
*/
THREE.EventDispatcher = function () {};
THREE.EventDispatcher.prototype = {
constructor: THREE.EventDispatcher,
apply: function ( object ) {
object.addEventListener = THREE.EventDispatcher.prototype.addEventListener;
object.hasEventListener = THREE.EventDispatcher.prototype.hasEventListener;
object.removeEventListener = THREE.EventDispatcher.prototype.removeEventListener;
object.dispatchEvent = THREE.EventDispatcher.prototype.dispatchEvent;
},
addEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) this._listeners = {};
var listeners = this._listeners;
if ( listeners[ type ] === undefined ) {
listeners[ type ] = [];
}
if ( listeners[ type ].indexOf( listener ) === - 1 ) {
listeners[ type ].push( listener );
}
},
hasEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) return false;
var listeners = this._listeners;
if ( listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1 ) {
return true;
}
return false;
},
removeEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) return;
var listeners = this._listeners;
var listenerArray = listeners[ type ];
if ( listenerArray !== undefined ) {
var index = listenerArray.indexOf( listener );
if ( index !== - 1 ) {
listenerArray.splice( index, 1 );
}
}
},
dispatchEvent: function ( event ) {
if ( this._listeners === undefined ) return;
var listeners = this._listeners;
var listenerArray = listeners[ event.type ];
if ( listenerArray !== undefined ) {
event.target = this;
var array = [];
var length = listenerArray.length;
for ( var i = 0; i < length; i ++ ) {
array[ i ] = listenerArray[ i ];
}
for ( var i = 0; i < length; i ++ ) {
array[ i ].call( this, event );
}
}
}
};
// File:src/core/Layers.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.Layers = function () {
this.mask = 1;
};
THREE.Layers.prototype = {
constructor: THREE.Layers,
set: function ( channel ) {
this.mask = 1 << channel;
},
enable: function ( channel ) {
this.mask |= 1 << channel;
},
toggle: function ( channel ) {
this.mask ^= 1 << channel;
},
disable: function ( channel ) {
this.mask &= ~ ( 1 << channel );
},
test: function ( layers ) {
return ( this.mask & layers.mask ) !== 0;
}
};
// File:src/core/Raycaster.js
/**
* @author mrdoob / http://mrdoob.com/
* @author bhouston / http://clara.io/
* @author stephomi / http://stephaneginier.com/
*/
( function ( THREE ) {
THREE.Raycaster = function ( origin, direction, near, far ) {
this.ray = new THREE.Ray( origin, direction );
// direction is assumed to be normalized (for accurate distance calculations)
this.near = near || 0;
this.far = far || Infinity;
this.params = {
Mesh: {},
Line: {},
LOD: {},
Points: { threshold: 1 },
Sprite: {}
};
Object.defineProperties( this.params, {
PointCloud: {
get: function () {
console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' );
return this.Points;
}
}
} );
};
function ascSort( a, b ) {
return a.distance - b.distance;
}
function intersectObject( object, raycaster, intersects, recursive ) {
if ( object.visible === false ) return;
object.raycast( raycaster, intersects );
if ( recursive === true ) {
var children = object.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
intersectObject( children[ i ], raycaster, intersects, true );
}
}
}
//
THREE.Raycaster.prototype = {
constructor: THREE.Raycaster,
linePrecision: 1,
set: function ( origin, direction ) {
// direction is assumed to be normalized (for accurate distance calculations)
this.ray.set( origin, direction );
},
setFromCamera: function ( coords, camera ) {
if ( camera instanceof THREE.PerspectiveCamera ) {
this.ray.origin.setFromMatrixPosition( camera.matrixWorld );
this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize();
} else if ( camera instanceof THREE.OrthographicCamera ) {
this.ray.origin.set( coords.x, coords.y, - 1 ).unproject( camera );
this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld );
} else {
console.error( 'THREE.Raycaster: Unsupported camera type.' );
}
},
intersectObject: function ( object, recursive ) {
var intersects = [];
intersectObject( object, this, intersects, recursive );
intersects.sort( ascSort );
return intersects;
},
intersectObjects: function ( objects, recursive ) {
var intersects = [];
if ( Array.isArray( objects ) === false ) {
console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' );
return intersects;
}
for ( var i = 0, l = objects.length; i < l; i ++ ) {
intersectObject( objects[ i ], this, intersects, recursive );
}
intersects.sort( ascSort );
return intersects;
}
};
}( THREE ) );
// File:src/core/Object3D.js
/**
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author elephantatwork / www.elephantatwork.ch
*/
THREE.Object3D = function () {
Object.defineProperty( this, 'id', { value: THREE.Object3DIdCount ++ } );
this.uuid = THREE.Math.generateUUID();
this.name = '';
this.type = 'Object3D';
this.parent = null;
this.children = [];
this.up = THREE.Object3D.DefaultUp.clone();
var position = new THREE.Vector3();
var rotation = new THREE.Euler();
var quaternion = new THREE.Quaternion();
var scale = new THREE.Vector3( 1, 1, 1 );
function onRotationChange() {
quaternion.setFromEuler( rotation, false );
}
function onQuaternionChange() {
rotation.setFromQuaternion( quaternion, undefined, false );
}
rotation.onChange( onRotationChange );
quaternion.onChange( onQuaternionChange );
Object.defineProperties( this, {
position: {
enumerable: true,
value: position
},
rotation: {
enumerable: true,
value: rotation
},
quaternion: {
enumerable: true,
value: quaternion
},
scale: {
enumerable: true,
value: scale
},
modelViewMatrix: {
value: new THREE.Matrix4()
},
normalMatrix: {
value: new THREE.Matrix3()
}
} );
this.rotationAutoUpdate = true;
this.matrix = new THREE.Matrix4();
this.matrixWorld = new THREE.Matrix4();
this.matrixAutoUpdate = THREE.Object3D.DefaultMatrixAutoUpdate;
this.matrixWorldNeedsUpdate = false;
this.layers = new THREE.Layers();
this.visible = true;
this.castShadow = false;
this.receiveShadow = false;
this.frustumCulled = true;
this.renderOrder = 0;
this.userData = {};
};
THREE.Object3D.DefaultUp = new THREE.Vector3( 0, 1, 0 );
THREE.Object3D.DefaultMatrixAutoUpdate = true;
THREE.Object3D.prototype = {
constructor: THREE.Object3D,
applyMatrix: function ( matrix ) {
this.matrix.multiplyMatrices( matrix, this.matrix );
this.matrix.decompose( this.position, this.quaternion, this.scale );
},
setRotationFromAxisAngle: function ( axis, angle ) {
// assumes axis is normalized
this.quaternion.setFromAxisAngle( axis, angle );
},
setRotationFromEuler: function ( euler ) {
this.quaternion.setFromEuler( euler, true );
},
setRotationFromMatrix: function ( m ) {
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
this.quaternion.setFromRotationMatrix( m );
},
setRotationFromQuaternion: function ( q ) {
// assumes q is normalized
this.quaternion.copy( q );
},
rotateOnAxis: function () {
// rotate object on axis in object space
// axis is assumed to be normalized
var q1 = new THREE.Quaternion();
return function ( axis, angle ) {
q1.setFromAxisAngle( axis, angle );
this.quaternion.multiply( q1 );
return this;
};
}(),
rotateX: function () {
var v1 = new THREE.Vector3( 1, 0, 0 );
return function ( angle ) {
return this.rotateOnAxis( v1, angle );
};
}(),
rotateY: function () {
var v1 = new THREE.Vector3( 0, 1, 0 );
return function ( angle ) {
return this.rotateOnAxis( v1, angle );
};
}(),
rotateZ: function () {
var v1 = new THREE.Vector3( 0, 0, 1 );
return function ( angle ) {
return this.rotateOnAxis( v1, angle );
};
}(),
translateOnAxis: function () {
// translate object by distance along axis in object space
// axis is assumed to be normalized
var v1 = new THREE.Vector3();
return function ( axis, distance ) {
v1.copy( axis ).applyQuaternion( this.quaternion );
this.position.add( v1.multiplyScalar( distance ) );
return this;
};
}(),
translateX: function () {
var v1 = new THREE.Vector3( 1, 0, 0 );
return function ( distance ) {
return this.translateOnAxis( v1, distance );
};
}(),
translateY: function () {
var v1 = new THREE.Vector3( 0, 1, 0 );
return function ( distance ) {
return this.translateOnAxis( v1, distance );
};
}(),
translateZ: function () {
var v1 = new THREE.Vector3( 0, 0, 1 );
return function ( distance ) {
return this.translateOnAxis( v1, distance );
};
}(),
localToWorld: function ( vector ) {
return vector.applyMatrix4( this.matrixWorld );
},
worldToLocal: function () {
var m1 = new THREE.Matrix4();
return function ( vector ) {
return vector.applyMatrix4( m1.getInverse( this.matrixWorld ) );
};
}(),
lookAt: function () {
// This routine does not support objects with rotated and/or translated parent(s)
var m1 = new THREE.Matrix4();
return function ( vector ) {
m1.lookAt( vector, this.position, this.up );
this.quaternion.setFromRotationMatrix( m1 );
};
}(),
add: function ( object ) {
if ( arguments.length > 1 ) {
for ( var i = 0; i < arguments.length; i ++ ) {
this.add( arguments[ i ] );
}
return this;
}
if ( object === this ) {
console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object );
return this;
}
if ( object instanceof THREE.Object3D ) {
if ( object.parent !== null ) {
object.parent.remove( object );
}
object.parent = this;
object.dispatchEvent( { type: 'added' } );
this.children.push( object );
} else {
console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object );
}
return this;
},
remove: function ( object ) {
if ( arguments.length > 1 ) {
for ( var i = 0; i < arguments.length; i ++ ) {
this.remove( arguments[ i ] );
}
}
var index = this.children.indexOf( object );
if ( index !== - 1 ) {
object.parent = null;
object.dispatchEvent( { type: 'removed' } );
this.children.splice( index, 1 );
}
},
getObjectById: function ( id ) {
return this.getObjectByProperty( 'id', id );
},
getObjectByName: function ( name ) {
return this.getObjectByProperty( 'name', name );
},
getObjectByProperty: function ( name, value ) {
if ( this[ name ] === value ) return this;
for ( var i = 0, l = this.children.length; i < l; i ++ ) {
var child = this.children[ i ];
var object = child.getObjectByProperty( name, value );
if ( object !== undefined ) {
return object;
}
}
return undefined;
},
getWorldPosition: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
this.updateMatrixWorld( true );
return result.setFromMatrixPosition( this.matrixWorld );
},
getWorldQuaternion: function () {
var position = new THREE.Vector3();
var scale = new THREE.Vector3();
return function ( optionalTarget ) {
var result = optionalTarget || new THREE.Quaternion();
this.updateMatrixWorld( true );
this.matrixWorld.decompose( position, result, scale );
return result;
};
}(),
getWorldRotation: function () {
var quaternion = new THREE.Quaternion();
return function ( optionalTarget ) {
var result = optionalTarget || new THREE.Euler();
this.getWorldQuaternion( quaternion );
return result.setFromQuaternion( quaternion, this.rotation.order, false );
};
}(),
getWorldScale: function () {
var position = new THREE.Vector3();
var quaternion = new THREE.Quaternion();
return function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
this.updateMatrixWorld( true );
this.matrixWorld.decompose( position, quaternion, result );
return result;
};
}(),
getWorldDirection: function () {
var quaternion = new THREE.Quaternion();
return function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
this.getWorldQuaternion( quaternion );
return result.set( 0, 0, 1 ).applyQuaternion( quaternion );
};
}(),
raycast: function () {},
traverse: function ( callback ) {
callback( this );
var children = this.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverse( callback );
}
},
traverseVisible: function ( callback ) {
if ( this.visible === false ) return;
callback( this );
var children = this.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverseVisible( callback );
}
},
traverseAncestors: function ( callback ) {
var parent = this.parent;
if ( parent !== null ) {
callback( parent );
parent.traverseAncestors( callback );
}
},
updateMatrix: function () {
this.matrix.compose( this.position, this.quaternion, this.scale );
this.matrixWorldNeedsUpdate = true;
},
updateMatrixWorld: function ( force ) {
if ( this.matrixAutoUpdate === true ) this.updateMatrix();
if ( this.matrixWorldNeedsUpdate === true || force === true ) {
if ( this.parent === null ) {
this.matrixWorld.copy( this.matrix );
} else {
this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
}
this.matrixWorldNeedsUpdate = false;
force = true;
}
// update children
for ( var i = 0, l = this.children.length; i < l; i ++ ) {
this.children[ i ].updateMatrixWorld( force );
}
},
toJSON: function ( meta ) {
// meta is '' when called from JSON.stringify
var isRootObject = ( meta === undefined || meta === '' );
var output = {};
// meta is a hash used to collect geometries, materials.
// not providing it implies that this is the root object
// being serialized.
if ( isRootObject ) {
// initialize meta obj
meta = {
geometries: {},
materials: {},
textures: {},
images: {}
};
output.metadata = {
version: 4.4,
type: 'Object',
generator: 'Object3D.toJSON'
};
}
// standard Object3D serialization
var object = {};
object.uuid = this.uuid;
object.type = this.type;
if ( this.name !== '' ) object.name = this.name;
if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData;
if ( this.castShadow === true ) object.castShadow = true;
if ( this.receiveShadow === true ) object.receiveShadow = true;
if ( this.visible === false ) object.visible = false;
object.matrix = this.matrix.toArray();
//
if ( this.geometry !== undefined ) {
if ( meta.geometries[ this.geometry.uuid ] === undefined ) {
meta.geometries[ this.geometry.uuid ] = this.geometry.toJSON( meta );
}
object.geometry = this.geometry.uuid;
}
if ( this.material !== undefined ) {
if ( meta.materials[ this.material.uuid ] === undefined ) {
meta.materials[ this.material.uuid ] = this.material.toJSON( meta );
}
object.material = this.material.uuid;
}
//
if ( this.children.length > 0 ) {
object.children = [];
for ( var i = 0; i < this.children.length; i ++ ) {
object.children.push( this.children[ i ].toJSON( meta ).object );
}
}
if ( isRootObject ) {
var geometries = extractFromCache( meta.geometries );
var materials = extractFromCache( meta.materials );
var textures = extractFromCache( meta.textures );
var images = extractFromCache( meta.images );
if ( geometries.length > 0 ) output.geometries = geometries;
if ( materials.length > 0 ) output.materials = materials;
if ( textures.length > 0 ) output.textures = textures;
if ( images.length > 0 ) output.images = images;
}
output.object = object;
return output;
// extract data from the cache hash
// remove metadata on each item
// and return as array
function extractFromCache ( cache ) {
var values = [];
for ( var key in cache ) {
var data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
},
clone: function ( recursive ) {
return new this.constructor().copy( this, recursive );
},
copy: function ( source, recursive ) {
if ( recursive === undefined ) recursive = true;
this.name = source.name;
this.up.copy( source.up );
this.position.copy( source.position );
this.quaternion.copy( source.quaternion );
this.scale.copy( source.scale );
this.rotationAutoUpdate = source.rotationAutoUpdate;
this.matrix.copy( source.matrix );
this.matrixWorld.copy( source.matrixWorld );
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
this.visible = source.visible;
this.castShadow = source.castShadow;
this.receiveShadow = source.receiveShadow;
this.frustumCulled = source.frustumCulled;
this.renderOrder = source.renderOrder;
this.userData = JSON.parse( JSON.stringify( source.userData ) );
if ( recursive === true ) {
for ( var i = 0; i < source.children.length; i ++ ) {
var child = source.children[ i ];
this.add( child.clone() );
}
}
return this;
}
};
THREE.EventDispatcher.prototype.apply( THREE.Object3D.prototype );
THREE.Object3DIdCount = 0;
// File:src/core/Face3.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Face3 = function ( a, b, c, normal, color, materialIndex ) {
this.a = a;
this.b = b;
this.c = c;
this.normal = normal instanceof THREE.Vector3 ? normal : new THREE.Vector3();
this.vertexNormals = Array.isArray( normal ) ? normal : [];
this.color = color instanceof THREE.Color ? color : new THREE.Color();
this.vertexColors = Array.isArray( color ) ? color : [];
this.materialIndex = materialIndex !== undefined ? materialIndex : 0;
};
THREE.Face3.prototype = {
constructor: THREE.Face3,
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.a = source.a;
this.b = source.b;
this.c = source.c;
this.normal.copy( source.normal );
this.color.copy( source.color );
this.materialIndex = source.materialIndex;
for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) {
this.vertexNormals[ i ] = source.vertexNormals[ i ].clone();
}
for ( var i = 0, il = source.vertexColors.length; i < il; i ++ ) {
this.vertexColors[ i ] = source.vertexColors[ i ].clone();
}
return this;
}
};
// File:src/core/BufferAttribute.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.BufferAttribute = function ( array, itemSize, normalized ) {
this.uuid = THREE.Math.generateUUID();
this.array = array;
this.itemSize = itemSize;
this.dynamic = false;
this.updateRange = { offset: 0, count: - 1 };
this.version = 0;
this.normalized = normalized === true;
};
THREE.BufferAttribute.prototype = {
constructor: THREE.BufferAttribute,
get count() {
return this.array.length / this.itemSize;
},
set needsUpdate( value ) {
if ( value === true ) this.version ++;
},
setDynamic: function ( value ) {
this.dynamic = value;
return this;
},
copy: function ( source ) {
this.array = new source.array.constructor( source.array );
this.itemSize = source.itemSize;
this.dynamic = source.dynamic;
return this;
},
copyAt: function ( index1, attribute, index2 ) {
index1 *= this.itemSize;
index2 *= attribute.itemSize;
for ( var i = 0, l = this.itemSize; i < l; i ++ ) {
this.array[ index1 + i ] = attribute.array[ index2 + i ];
}
return this;
},
copyArray: function ( array ) {
this.array.set( array );
return this;
},
copyColorsArray: function ( colors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = colors.length; i < l; i ++ ) {
var color = colors[ i ];
if ( color === undefined ) {
console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i );
color = new THREE.Color();
}
array[ offset ++ ] = color.r;
array[ offset ++ ] = color.g;
array[ offset ++ ] = color.b;
}
return this;
},
copyIndicesArray: function ( indices ) {
var array = this.array, offset = 0;
for ( var i = 0, l = indices.length; i < l; i ++ ) {
var index = indices[ i ];
array[ offset ++ ] = index.a;
array[ offset ++ ] = index.b;
array[ offset ++ ] = index.c;
}
return this;
},
copyVector2sArray: function ( vectors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = vectors.length; i < l; i ++ ) {
var vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i );
vector = new THREE.Vector2();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
}
return this;
},
copyVector3sArray: function ( vectors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = vectors.length; i < l; i ++ ) {
var vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i );
vector = new THREE.Vector3();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
array[ offset ++ ] = vector.z;
}
return this;
},
copyVector4sArray: function ( vectors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = vectors.length; i < l; i ++ ) {
var vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i );
vector = new THREE.Vector4();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
array[ offset ++ ] = vector.z;
array[ offset ++ ] = vector.w;
}
return this;
},
set: function ( value, offset ) {
if ( offset === undefined ) offset = 0;
this.array.set( value, offset );
return this;
},
getX: function ( index ) {
return this.array[ index * this.itemSize ];
},
setX: function ( index, x ) {
this.array[ index * this.itemSize ] = x;
return this;
},
getY: function ( index ) {
return this.array[ index * this.itemSize + 1 ];
},
setY: function ( index, y ) {
this.array[ index * this.itemSize + 1 ] = y;
return this;
},
getZ: function ( index ) {
return this.array[ index * this.itemSize + 2 ];
},
setZ: function ( index, z ) {
this.array[ index * this.itemSize + 2 ] = z;
return this;
},
getW: function ( index ) {
return this.array[ index * this.itemSize + 3 ];
},
setW: function ( index, w ) {
this.array[ index * this.itemSize + 3 ] = w;
return this;
},
setXY: function ( index, x, y ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
return this;
},
setXYZ: function ( index, x, y, z ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
return this;
},
setXYZW: function ( index, x, y, z, w ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
this.array[ index + 3 ] = w;
return this;
},
clone: function () {
return new this.constructor().copy( this );
}
};
//
THREE.Int8Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Int8Array( array ), itemSize );
};
THREE.Uint8Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Uint8Array( array ), itemSize );
};
THREE.Uint8ClampedAttribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Uint8ClampedArray( array ), itemSize );
};
THREE.Int16Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Int16Array( array ), itemSize );
};
THREE.Uint16Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Uint16Array( array ), itemSize );
};
THREE.Int32Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Int32Array( array ), itemSize );
};
THREE.Uint32Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Uint32Array( array ), itemSize );
};
THREE.Float32Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Float32Array( array ), itemSize );
};
THREE.Float64Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Float64Array( array ), itemSize );
};
// Deprecated
THREE.DynamicBufferAttribute = function ( array, itemSize ) {
console.warn( 'THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setDynamic( true ) instead.' );
return new THREE.BufferAttribute( array, itemSize ).setDynamic( true );
};
// File:src/core/InstancedBufferAttribute.js
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
THREE.InstancedBufferAttribute = function ( array, itemSize, meshPerAttribute ) {
THREE.BufferAttribute.call( this, array, itemSize );
this.meshPerAttribute = meshPerAttribute || 1;
};
THREE.InstancedBufferAttribute.prototype = Object.create( THREE.BufferAttribute.prototype );
THREE.InstancedBufferAttribute.prototype.constructor = THREE.InstancedBufferAttribute;
THREE.InstancedBufferAttribute.prototype.copy = function ( source ) {
THREE.BufferAttribute.prototype.copy.call( this, source );
this.meshPerAttribute = source.meshPerAttribute;
return this;
};
// File:src/core/InterleavedBuffer.js
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
THREE.InterleavedBuffer = function ( array, stride ) {
this.uuid = THREE.Math.generateUUID();
this.array = array;
this.stride = stride;
this.dynamic = false;
this.updateRange = { offset: 0, count: - 1 };
this.version = 0;
};
THREE.InterleavedBuffer.prototype = {
constructor: THREE.InterleavedBuffer,
get length () {
return this.array.length;
},
get count () {
return this.array.length / this.stride;
},
set needsUpdate( value ) {
if ( value === true ) this.version ++;
},
setDynamic: function ( value ) {
this.dynamic = value;
return this;
},
copy: function ( source ) {
this.array = new source.array.constructor( source.array );
this.stride = source.stride;
this.dynamic = source.dynamic;
return this;
},
copyAt: function ( index1, attribute, index2 ) {
index1 *= this.stride;
index2 *= attribute.stride;
for ( var i = 0, l = this.stride; i < l; i ++ ) {
this.array[ index1 + i ] = attribute.array[ index2 + i ];
}
return this;
},
set: function ( value, offset ) {
if ( offset === undefined ) offset = 0;
this.array.set( value, offset );
return this;
},
clone: function () {
return new this.constructor().copy( this );
}
};
// File:src/core/InstancedInterleavedBuffer.js
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
THREE.InstancedInterleavedBuffer = function ( array, stride, meshPerAttribute ) {
THREE.InterleavedBuffer.call( this, array, stride );
this.meshPerAttribute = meshPerAttribute || 1;
};
THREE.InstancedInterleavedBuffer.prototype = Object.create( THREE.InterleavedBuffer.prototype );
THREE.InstancedInterleavedBuffer.prototype.constructor = THREE.InstancedInterleavedBuffer;
THREE.InstancedInterleavedBuffer.prototype.copy = function ( source ) {
THREE.InterleavedBuffer.prototype.copy.call( this, source );
this.meshPerAttribute = source.meshPerAttribute;
return this;
};
// File:src/core/InterleavedBufferAttribute.js
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
THREE.InterleavedBufferAttribute = function ( interleavedBuffer, itemSize, offset ) {
this.uuid = THREE.Math.generateUUID();
this.data = interleavedBuffer;
this.itemSize = itemSize;
this.offset = offset;
};
THREE.InterleavedBufferAttribute.prototype = {
constructor: THREE.InterleavedBufferAttribute,
get length() {
console.warn( 'THREE.BufferAttribute: .length has been deprecated. Please use .count.' );
return this.array.length;
},
get count() {
return this.data.count;
},
setX: function ( index, x ) {
this.data.array[ index * this.data.stride + this.offset ] = x;
return this;
},
setY: function ( index, y ) {
this.data.array[ index * this.data.stride + this.offset + 1 ] = y;
return this;
},
setZ: function ( index, z ) {
this.data.array[ index * this.data.stride + this.offset + 2 ] = z;
return this;
},
setW: function ( index, w ) {
this.data.array[ index * this.data.stride + this.offset + 3 ] = w;
return this;
},
getX: function ( index ) {
return this.data.array[ index * this.data.stride + this.offset ];
},
getY: function ( index ) {
return this.data.array[ index * this.data.stride + this.offset + 1 ];
},
getZ: function ( index ) {
return this.data.array[ index * this.data.stride + this.offset + 2 ];
},
getW: function ( index ) {
return this.data.array[ index * this.data.stride + this.offset + 3 ];
},
setXY: function ( index, x, y ) {
index = index * this.data.stride + this.offset;
this.data.array[ index + 0 ] = x;
this.data.array[ index + 1 ] = y;
return this;
},
setXYZ: function ( index, x, y, z ) {
index = index * this.data.stride + this.offset;
this.data.array[ index + 0 ] = x;
this.data.array[ index + 1 ] = y;
this.data.array[ index + 2 ] = z;
return this;
},
setXYZW: function ( index, x, y, z, w ) {
index = index * this.data.stride + this.offset;
this.data.array[ index + 0 ] = x;
this.data.array[ index + 1 ] = y;
this.data.array[ index + 2 ] = z;
this.data.array[ index + 3 ] = w;
return this;
}
};
// File:src/core/Geometry.js
/**
* @author mrdoob / http://mrdoob.com/
* @author kile / http://kile.stravaganza.org/
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author bhouston / http://clara.io
*/
THREE.Geometry = function () {
Object.defineProperty( this, 'id', { value: THREE.GeometryIdCount ++ } );
this.uuid = THREE.Math.generateUUID();
this.name = '';
this.type = 'Geometry';
this.vertices = [];
this.colors = [];
this.faces = [];
this.faceVertexUvs = [ [] ];
this.morphTargets = [];
this.morphNormals = [];
this.skinWeights = [];
this.skinIndices = [];
this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null;
// update flags
this.verticesNeedUpdate = false;
this.elementsNeedUpdate = false;
this.uvsNeedUpdate = false;
this.normalsNeedUpdate = false;
this.colorsNeedUpdate = false;
this.lineDistancesNeedUpdate = false;
this.groupsNeedUpdate = false;
};
THREE.Geometry.prototype = {
constructor: THREE.Geometry,
applyMatrix: function ( matrix ) {
var normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix );
for ( var i = 0, il = this.vertices.length; i < il; i ++ ) {
var vertex = this.vertices[ i ];
vertex.applyMatrix4( matrix );
}
for ( var i = 0, il = this.faces.length; i < il; i ++ ) {
var face = this.faces[ i ];
face.normal.applyMatrix3( normalMatrix ).normalize();
for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {
face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize();
}
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
this.verticesNeedUpdate = true;
this.normalsNeedUpdate = true;
return this;
},
rotateX: function () {
// rotate geometry around world x-axis
var m1;
return function rotateX( angle ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeRotationX( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateY: function () {
// rotate geometry around world y-axis
var m1;
return function rotateY( angle ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeRotationY( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateZ: function () {
// rotate geometry around world z-axis
var m1;
return function rotateZ( angle ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeRotationZ( angle );
this.applyMatrix( m1 );
return this;
};
}(),
translate: function () {
// translate geometry
var m1;
return function translate( x, y, z ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeTranslation( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
scale: function () {
// scale geometry
var m1;
return function scale( x, y, z ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeScale( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
lookAt: function () {
var obj;
return function lookAt( vector ) {
if ( obj === undefined ) obj = new THREE.Object3D();
obj.lookAt( vector );
obj.updateMatrix();
this.applyMatrix( obj.matrix );
};
}(),
fromBufferGeometry: function ( geometry ) {
var scope = this;
var indices = geometry.index !== null ? geometry.index.array : undefined;
var attributes = geometry.attributes;
var positions = attributes.position.array;
var normals = attributes.normal !== undefined ? attributes.normal.array : undefined;
var colors = attributes.color !== undefined ? attributes.color.array : undefined;
var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined;
var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined;
if ( uvs2 !== undefined ) this.faceVertexUvs[ 1 ] = [];
var tempNormals = [];
var tempUVs = [];
var tempUVs2 = [];
for ( var i = 0, j = 0; i < positions.length; i += 3, j += 2 ) {
scope.vertices.push( new THREE.Vector3( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ) );
if ( normals !== undefined ) {
tempNormals.push( new THREE.Vector3( normals[ i ], normals[ i + 1 ], normals[ i + 2 ] ) );
}
if ( colors !== undefined ) {
scope.colors.push( new THREE.Color( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ) );
}
if ( uvs !== undefined ) {
tempUVs.push( new THREE.Vector2( uvs[ j ], uvs[ j + 1 ] ) );
}
if ( uvs2 !== undefined ) {
tempUVs2.push( new THREE.Vector2( uvs2[ j ], uvs2[ j + 1 ] ) );
}
}
function addFace( a, b, c, materialIndex ) {
var vertexNormals = normals !== undefined ? [ tempNormals[ a ].clone(), tempNormals[ b ].clone(), tempNormals[ c ].clone() ] : [];
var vertexColors = colors !== undefined ? [ scope.colors[ a ].clone(), scope.colors[ b ].clone(), scope.colors[ c ].clone() ] : [];
var face = new THREE.Face3( a, b, c, vertexNormals, vertexColors, materialIndex );
scope.faces.push( face );
if ( uvs !== undefined ) {
scope.faceVertexUvs[ 0 ].push( [ tempUVs[ a ].clone(), tempUVs[ b ].clone(), tempUVs[ c ].clone() ] );
}
if ( uvs2 !== undefined ) {
scope.faceVertexUvs[ 1 ].push( [ tempUVs2[ a ].clone(), tempUVs2[ b ].clone(), tempUVs2[ c ].clone() ] );
}
}
if ( indices !== undefined ) {
var groups = geometry.groups;
if ( groups.length > 0 ) {
for ( var i = 0; i < groups.length; i ++ ) {
var group = groups[ i ];
var start = group.start;
var count = group.count;
for ( var j = start, jl = start + count; j < jl; j += 3 ) {
addFace( indices[ j ], indices[ j + 1 ], indices[ j + 2 ], group.materialIndex );
}
}
} else {
for ( var i = 0; i < indices.length; i += 3 ) {
addFace( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] );
}
}
} else {
for ( var i = 0; i < positions.length / 3; i += 3 ) {
addFace( i, i + 1, i + 2 );
}
}
this.computeFaceNormals();
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
return this;
},
center: function () {
this.computeBoundingBox();
var offset = this.boundingBox.center().negate();
this.translate( offset.x, offset.y, offset.z );
return offset;
},
normalize: function () {
this.computeBoundingSphere();
var center = this.boundingSphere.center;
var radius = this.boundingSphere.radius;
var s = radius === 0 ? 1 : 1.0 / radius;
var matrix = new THREE.Matrix4();
matrix.set(
s, 0, 0, - s * center.x,
0, s, 0, - s * center.y,
0, 0, s, - s * center.z,
0, 0, 0, 1
);
this.applyMatrix( matrix );
return this;
},
computeFaceNormals: function () {
var cb = new THREE.Vector3(), ab = new THREE.Vector3();
for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) {
var face = this.faces[ f ];
var vA = this.vertices[ face.a ];
var vB = this.vertices[ face.b ];
var vC = this.vertices[ face.c ];
cb.subVectors( vC, vB );
ab.subVectors( vA, vB );
cb.cross( ab );
cb.normalize();
face.normal.copy( cb );
}
},
computeVertexNormals: function ( areaWeighted ) {
if ( areaWeighted === undefined ) areaWeighted = true;
var v, vl, f, fl, face, vertices;
vertices = new Array( this.vertices.length );
for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ] = new THREE.Vector3();
}
if ( areaWeighted ) {
// vertex normals weighted by triangle areas
// http://www.iquilezles.org/www/articles/normals/normals.htm
var vA, vB, vC;
var cb = new THREE.Vector3(), ab = new THREE.Vector3();
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
vA = this.vertices[ face.a ];
vB = this.vertices[ face.b ];
vC = this.vertices[ face.c ];
cb.subVectors( vC, vB );
ab.subVectors( vA, vB );
cb.cross( ab );
vertices[ face.a ].add( cb );
vertices[ face.b ].add( cb );
vertices[ face.c ].add( cb );
}
} else {
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
vertices[ face.a ].add( face.normal );
vertices[ face.b ].add( face.normal );
vertices[ face.c ].add( face.normal );
}
}
for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ].normalize();
}
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
var vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
vertexNormals[ 0 ].copy( vertices[ face.a ] );
vertexNormals[ 1 ].copy( vertices[ face.b ] );
vertexNormals[ 2 ].copy( vertices[ face.c ] );
} else {
vertexNormals[ 0 ] = vertices[ face.a ].clone();
vertexNormals[ 1 ] = vertices[ face.b ].clone();
vertexNormals[ 2 ] = vertices[ face.c ].clone();
}
}
if ( this.faces.length > 0 ) {
this.normalsNeedUpdate = true;
}
},
computeMorphNormals: function () {
var i, il, f, fl, face;
// save original normals
// - create temp variables on first access
// otherwise just copy (for faster repeated calls)
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
if ( ! face.__originalFaceNormal ) {
face.__originalFaceNormal = face.normal.clone();
} else {
face.__originalFaceNormal.copy( face.normal );
}
if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = [];
for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) {
if ( ! face.__originalVertexNormals[ i ] ) {
face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone();
} else {
face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] );
}
}
}
// use temp geometry to compute face and vertex normals for each morph
var tmpGeo = new THREE.Geometry();
tmpGeo.faces = this.faces;
for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) {
// create on first access
if ( ! this.morphNormals[ i ] ) {
this.morphNormals[ i ] = {};
this.morphNormals[ i ].faceNormals = [];
this.morphNormals[ i ].vertexNormals = [];
var dstNormalsFace = this.morphNormals[ i ].faceNormals;
var dstNormalsVertex = this.morphNormals[ i ].vertexNormals;
var faceNormal, vertexNormals;
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
faceNormal = new THREE.Vector3();
vertexNormals = { a: new THREE.Vector3(), b: new THREE.Vector3(), c: new THREE.Vector3() };
dstNormalsFace.push( faceNormal );
dstNormalsVertex.push( vertexNormals );
}
}
var morphNormals = this.morphNormals[ i ];
// set vertices to morph target
tmpGeo.vertices = this.morphTargets[ i ].vertices;
// compute morph normals
tmpGeo.computeFaceNormals();
tmpGeo.computeVertexNormals();
// store morph normals
var faceNormal, vertexNormals;
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
faceNormal = morphNormals.faceNormals[ f ];
vertexNormals = morphNormals.vertexNormals[ f ];
faceNormal.copy( face.normal );
vertexNormals.a.copy( face.vertexNormals[ 0 ] );
vertexNormals.b.copy( face.vertexNormals[ 1 ] );
vertexNormals.c.copy( face.vertexNormals[ 2 ] );
}
}
// restore original normals
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
face.normal = face.__originalFaceNormal;
face.vertexNormals = face.__originalVertexNormals;
}
},
computeTangents: function () {
console.warn( 'THREE.Geometry: .computeTangents() has been removed.' );
},
computeLineDistances: function () {
var d = 0;
var vertices = this.vertices;
for ( var i = 0, il = vertices.length; i < il; i ++ ) {
if ( i > 0 ) {
d += vertices[ i ].distanceTo( vertices[ i - 1 ] );
}
this.lineDistances[ i ] = d;
}
},
computeBoundingBox: function () {
if ( this.boundingBox === null ) {
this.boundingBox = new THREE.Box3();
}
this.boundingBox.setFromPoints( this.vertices );
},
computeBoundingSphere: function () {
if ( this.boundingSphere === null ) {
this.boundingSphere = new THREE.Sphere();
}
this.boundingSphere.setFromPoints( this.vertices );
},
merge: function ( geometry, matrix, materialIndexOffset ) {
if ( geometry instanceof THREE.Geometry === false ) {
console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry );
return;
}
var normalMatrix,
vertexOffset = this.vertices.length,
vertices1 = this.vertices,
vertices2 = geometry.vertices,
faces1 = this.faces,
faces2 = geometry.faces,
uvs1 = this.faceVertexUvs[ 0 ],
uvs2 = geometry.faceVertexUvs[ 0 ];
if ( materialIndexOffset === undefined ) materialIndexOffset = 0;
if ( matrix !== undefined ) {
normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix );
}
// vertices
for ( var i = 0, il = vertices2.length; i < il; i ++ ) {
var vertex = vertices2[ i ];
var vertexCopy = vertex.clone();
if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix );
vertices1.push( vertexCopy );
}
// faces
for ( i = 0, il = faces2.length; i < il; i ++ ) {
var face = faces2[ i ], faceCopy, normal, color,
faceVertexNormals = face.vertexNormals,
faceVertexColors = face.vertexColors;
faceCopy = new THREE.Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset );
faceCopy.normal.copy( face.normal );
if ( normalMatrix !== undefined ) {
faceCopy.normal.applyMatrix3( normalMatrix ).normalize();
}
for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) {
normal = faceVertexNormals[ j ].clone();
if ( normalMatrix !== undefined ) {
normal.applyMatrix3( normalMatrix ).normalize();
}
faceCopy.vertexNormals.push( normal );
}
faceCopy.color.copy( face.color );
for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) {
color = faceVertexColors[ j ];
faceCopy.vertexColors.push( color.clone() );
}
faceCopy.materialIndex = face.materialIndex + materialIndexOffset;
faces1.push( faceCopy );
}
// uvs
for ( i = 0, il = uvs2.length; i < il; i ++ ) {
var uv = uvs2[ i ], uvCopy = [];
if ( uv === undefined ) {
continue;
}
for ( var j = 0, jl = uv.length; j < jl; j ++ ) {
uvCopy.push( uv[ j ].clone() );
}
uvs1.push( uvCopy );
}
},
mergeMesh: function ( mesh ) {
if ( mesh instanceof THREE.Mesh === false ) {
console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh );
return;
}
mesh.matrixAutoUpdate && mesh.updateMatrix();
this.merge( mesh.geometry, mesh.matrix );
},
/*
* Checks for duplicate vertices with hashmap.
* Duplicated vertices are removed
* and faces' vertices are updated.
*/
mergeVertices: function () {
var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique)
var unique = [], changes = [];
var v, key;
var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001
var precision = Math.pow( 10, precisionPoints );
var i, il, face;
var indices, j, jl;
for ( i = 0, il = this.vertices.length; i < il; i ++ ) {
v = this.vertices[ i ];
key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision );
if ( verticesMap[ key ] === undefined ) {
verticesMap[ key ] = i;
unique.push( this.vertices[ i ] );
changes[ i ] = unique.length - 1;
} else {
//console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]);
changes[ i ] = changes[ verticesMap[ key ] ];
}
}
// if faces are completely degenerate after merging vertices, we
// have to remove them from the geometry.
var faceIndicesToRemove = [];
for ( i = 0, il = this.faces.length; i < il; i ++ ) {
face = this.faces[ i ];
face.a = changes[ face.a ];
face.b = changes[ face.b ];
face.c = changes[ face.c ];
indices = [ face.a, face.b, face.c ];
var dupIndex = - 1;
// if any duplicate vertices are found in a Face3
// we have to remove the face as nothing can be saved
for ( var n = 0; n < 3; n ++ ) {
if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) {
dupIndex = n;
faceIndicesToRemove.push( i );
break;
}
}
}
for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) {
var idx = faceIndicesToRemove[ i ];
this.faces.splice( idx, 1 );
for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) {
this.faceVertexUvs[ j ].splice( idx, 1 );
}
}
// Use unique set of vertices
var diff = this.vertices.length - unique.length;
this.vertices = unique;
return diff;
},
sortFacesByMaterialIndex: function () {
var faces = this.faces;
var length = faces.length;
// tag faces
for ( var i = 0; i < length; i ++ ) {
faces[ i ]._id = i;
}
// sort faces
function materialIndexSort( a, b ) {
return a.materialIndex - b.materialIndex;
}
faces.sort( materialIndexSort );
// sort uvs
var uvs1 = this.faceVertexUvs[ 0 ];
var uvs2 = this.faceVertexUvs[ 1 ];
var newUvs1, newUvs2;
if ( uvs1 && uvs1.length === length ) newUvs1 = [];
if ( uvs2 && uvs2.length === length ) newUvs2 = [];
for ( var i = 0; i < length; i ++ ) {
var id = faces[ i ]._id;
if ( newUvs1 ) newUvs1.push( uvs1[ id ] );
if ( newUvs2 ) newUvs2.push( uvs2[ id ] );
}
if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1;
if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2;
},
toJSON: function () {
var data = {
metadata: {
version: 4.4,
type: 'Geometry',
generator: 'Geometry.toJSON'
}
};
// standard Geometry serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.parameters !== undefined ) {
var parameters = this.parameters;
for ( var key in parameters ) {
if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
}
return data;
}
var vertices = [];
for ( var i = 0; i < this.vertices.length; i ++ ) {
var vertex = this.vertices[ i ];
vertices.push( vertex.x, vertex.y, vertex.z );
}
var faces = [];
var normals = [];
var normalsHash = {};
var colors = [];
var colorsHash = {};
var uvs = [];
var uvsHash = {};
for ( var i = 0; i < this.faces.length; i ++ ) {
var face = this.faces[ i ];
var hasMaterial = true;
var hasFaceUv = false; // deprecated
var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined;
var hasFaceNormal = face.normal.length() > 0;
var hasFaceVertexNormal = face.vertexNormals.length > 0;
var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1;
var hasFaceVertexColor = face.vertexColors.length > 0;
var faceType = 0;
faceType = setBit( faceType, 0, 0 ); // isQuad
faceType = setBit( faceType, 1, hasMaterial );
faceType = setBit( faceType, 2, hasFaceUv );
faceType = setBit( faceType, 3, hasFaceVertexUv );
faceType = setBit( faceType, 4, hasFaceNormal );
faceType = setBit( faceType, 5, hasFaceVertexNormal );
faceType = setBit( faceType, 6, hasFaceColor );
faceType = setBit( faceType, 7, hasFaceVertexColor );
faces.push( faceType );
faces.push( face.a, face.b, face.c );
faces.push( face.materialIndex );
if ( hasFaceVertexUv ) {
var faceVertexUvs = this.faceVertexUvs[ 0 ][ i ];
faces.push(
getUvIndex( faceVertexUvs[ 0 ] ),
getUvIndex( faceVertexUvs[ 1 ] ),
getUvIndex( faceVertexUvs[ 2 ] )
);
}
if ( hasFaceNormal ) {
faces.push( getNormalIndex( face.normal ) );
}
if ( hasFaceVertexNormal ) {
var vertexNormals = face.vertexNormals;
faces.push(
getNormalIndex( vertexNormals[ 0 ] ),
getNormalIndex( vertexNormals[ 1 ] ),
getNormalIndex( vertexNormals[ 2 ] )
);
}
if ( hasFaceColor ) {
faces.push( getColorIndex( face.color ) );
}
if ( hasFaceVertexColor ) {
var vertexColors = face.vertexColors;
faces.push(
getColorIndex( vertexColors[ 0 ] ),
getColorIndex( vertexColors[ 1 ] ),
getColorIndex( vertexColors[ 2 ] )
);
}
}
function setBit( value, position, enabled ) {
return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) );
}
function getNormalIndex( normal ) {
var hash = normal.x.toString() + normal.y.toString() + normal.z.toString();
if ( normalsHash[ hash ] !== undefined ) {
return normalsHash[ hash ];
}
normalsHash[ hash ] = normals.length / 3;
normals.push( normal.x, normal.y, normal.z );
return normalsHash[ hash ];
}
function getColorIndex( color ) {
var hash = color.r.toString() + color.g.toString() + color.b.toString();
if ( colorsHash[ hash ] !== undefined ) {
return colorsHash[ hash ];
}
colorsHash[ hash ] = colors.length;
colors.push( color.getHex() );
return colorsHash[ hash ];
}
function getUvIndex( uv ) {
var hash = uv.x.toString() + uv.y.toString();
if ( uvsHash[ hash ] !== undefined ) {
return uvsHash[ hash ];
}
uvsHash[ hash ] = uvs.length / 2;
uvs.push( uv.x, uv.y );
return uvsHash[ hash ];
}
data.data = {};
data.data.vertices = vertices;
data.data.normals = normals;
if ( colors.length > 0 ) data.data.colors = colors;
if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility
data.data.faces = faces;
return data;
},
clone: function () {
/*
// Handle primitives
var parameters = this.parameters;
if ( parameters !== undefined ) {
var values = [];
for ( var key in parameters ) {
values.push( parameters[ key ] );
}
var geometry = Object.create( this.constructor.prototype );
this.constructor.apply( geometry, values );
return geometry;
}
return new this.constructor().copy( this );
*/
return new THREE.Geometry().copy( this );
},
copy: function ( source ) {
this.vertices = [];
this.faces = [];
this.faceVertexUvs = [ [] ];
var vertices = source.vertices;
for ( var i = 0, il = vertices.length; i < il; i ++ ) {
this.vertices.push( vertices[ i ].clone() );
}
var faces = source.faces;
for ( var i = 0, il = faces.length; i < il; i ++ ) {
this.faces.push( faces[ i ].clone() );
}
for ( var i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) {
var faceVertexUvs = source.faceVertexUvs[ i ];
if ( this.faceVertexUvs[ i ] === undefined ) {
this.faceVertexUvs[ i ] = [];
}
for ( var j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) {
var uvs = faceVertexUvs[ j ], uvsCopy = [];
for ( var k = 0, kl = uvs.length; k < kl; k ++ ) {
var uv = uvs[ k ];
uvsCopy.push( uv.clone() );
}
this.faceVertexUvs[ i ].push( uvsCopy );
}
}
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
};
THREE.EventDispatcher.prototype.apply( THREE.Geometry.prototype );
THREE.GeometryIdCount = 0;
// File:src/core/DirectGeometry.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.DirectGeometry = function () {
Object.defineProperty( this, 'id', { value: THREE.GeometryIdCount ++ } );
this.uuid = THREE.Math.generateUUID();
this.name = '';
this.type = 'DirectGeometry';
this.indices = [];
this.vertices = [];
this.normals = [];
this.colors = [];
this.uvs = [];
this.uvs2 = [];
this.groups = [];
this.morphTargets = {};
this.skinWeights = [];
this.skinIndices = [];
// this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null;
// update flags
this.verticesNeedUpdate = false;
this.normalsNeedUpdate = false;
this.colorsNeedUpdate = false;
this.uvsNeedUpdate = false;
this.groupsNeedUpdate = false;
};
THREE.DirectGeometry.prototype = {
constructor: THREE.DirectGeometry,
computeBoundingBox: THREE.Geometry.prototype.computeBoundingBox,
computeBoundingSphere: THREE.Geometry.prototype.computeBoundingSphere,
computeFaceNormals: function () {
console.warn( 'THREE.DirectGeometry: computeFaceNormals() is not a method of this type of geometry.' );
},
computeVertexNormals: function () {
console.warn( 'THREE.DirectGeometry: computeVertexNormals() is not a method of this type of geometry.' );
},
computeGroups: function ( geometry ) {
var group;
var groups = [];
var materialIndex;
var faces = geometry.faces;
for ( var i = 0; i < faces.length; i ++ ) {
var face = faces[ i ];
// materials
if ( face.materialIndex !== materialIndex ) {
materialIndex = face.materialIndex;
if ( group !== undefined ) {
group.count = ( i * 3 ) - group.start;
groups.push( group );
}
group = {
start: i * 3,
materialIndex: materialIndex
};
}
}
if ( group !== undefined ) {
group.count = ( i * 3 ) - group.start;
groups.push( group );
}
this.groups = groups;
},
fromGeometry: function ( geometry ) {
var faces = geometry.faces;
var vertices = geometry.vertices;
var faceVertexUvs = geometry.faceVertexUvs;
var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0;
var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0;
// morphs
var morphTargets = geometry.morphTargets;
var morphTargetsLength = morphTargets.length;
var morphTargetsPosition;
if ( morphTargetsLength > 0 ) {
morphTargetsPosition = [];
for ( var i = 0; i < morphTargetsLength; i ++ ) {
morphTargetsPosition[ i ] = [];
}
this.morphTargets.position = morphTargetsPosition;
}
var morphNormals = geometry.morphNormals;
var morphNormalsLength = morphNormals.length;
var morphTargetsNormal;
if ( morphNormalsLength > 0 ) {
morphTargetsNormal = [];
for ( var i = 0; i < morphNormalsLength; i ++ ) {
morphTargetsNormal[ i ] = [];
}
this.morphTargets.normal = morphTargetsNormal;
}
// skins
var skinIndices = geometry.skinIndices;
var skinWeights = geometry.skinWeights;
var hasSkinIndices = skinIndices.length === vertices.length;
var hasSkinWeights = skinWeights.length === vertices.length;
//
for ( var i = 0; i < faces.length; i ++ ) {
var face = faces[ i ];
this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] );
var vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] );
} else {
var normal = face.normal;
this.normals.push( normal, normal, normal );
}
var vertexColors = face.vertexColors;
if ( vertexColors.length === 3 ) {
this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] );
} else {
var color = face.color;
this.colors.push( color, color, color );
}
if ( hasFaceVertexUv === true ) {
var vertexUvs = faceVertexUvs[ 0 ][ i ];
if ( vertexUvs !== undefined ) {
this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
} else {
console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i );
this.uvs.push( new THREE.Vector2(), new THREE.Vector2(), new THREE.Vector2() );
}
}
if ( hasFaceVertexUv2 === true ) {
var vertexUvs = faceVertexUvs[ 1 ][ i ];
if ( vertexUvs !== undefined ) {
this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
} else {
console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i );
this.uvs2.push( new THREE.Vector2(), new THREE.Vector2(), new THREE.Vector2() );
}
}
// morphs
for ( var j = 0; j < morphTargetsLength; j ++ ) {
var morphTarget = morphTargets[ j ].vertices;
morphTargetsPosition[ j ].push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] );
}
for ( var j = 0; j < morphNormalsLength; j ++ ) {
var morphNormal = morphNormals[ j ].vertexNormals[ i ];
morphTargetsNormal[ j ].push( morphNormal.a, morphNormal.b, morphNormal.c );
}
// skins
if ( hasSkinIndices ) {
this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] );
}
if ( hasSkinWeights ) {
this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] );
}
}
this.computeGroups( geometry );
this.verticesNeedUpdate = geometry.verticesNeedUpdate;
this.normalsNeedUpdate = geometry.normalsNeedUpdate;
this.colorsNeedUpdate = geometry.colorsNeedUpdate;
this.uvsNeedUpdate = geometry.uvsNeedUpdate;
this.groupsNeedUpdate = geometry.groupsNeedUpdate;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
};
THREE.EventDispatcher.prototype.apply( THREE.DirectGeometry.prototype );
// File:src/core/BufferGeometry.js
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
THREE.BufferGeometry = function () {
Object.defineProperty( this, 'id', { value: THREE.GeometryIdCount ++ } );
this.uuid = THREE.Math.generateUUID();
this.name = '';
this.type = 'BufferGeometry';
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
this.drawRange = { start: 0, count: Infinity };
};
THREE.BufferGeometry.prototype = {
constructor: THREE.BufferGeometry,
getIndex: function () {
return this.index;
},
setIndex: function ( index ) {
this.index = index;
},
addAttribute: function ( name, attribute ) {
if ( attribute instanceof THREE.BufferAttribute === false && attribute instanceof THREE.InterleavedBufferAttribute === false ) {
console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' );
this.addAttribute( name, new THREE.BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) );
return;
}
if ( name === 'index' ) {
console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' );
this.setIndex( attribute );
return;
}
this.attributes[ name ] = attribute;
return this;
},
getAttribute: function ( name ) {
return this.attributes[ name ];
},
removeAttribute: function ( name ) {
delete this.attributes[ name ];
return this;
},
addGroup: function ( start, count, materialIndex ) {
this.groups.push( {
start: start,
count: count,
materialIndex: materialIndex !== undefined ? materialIndex : 0
} );
},
clearGroups: function () {
this.groups = [];
},
setDrawRange: function ( start, count ) {
this.drawRange.start = start;
this.drawRange.count = count;
},
applyMatrix: function ( matrix ) {
var position = this.attributes.position;
if ( position !== undefined ) {
matrix.applyToVector3Array( position.array );
position.needsUpdate = true;
}
var normal = this.attributes.normal;
if ( normal !== undefined ) {
var normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix );
normalMatrix.applyToVector3Array( normal.array );
normal.needsUpdate = true;
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
return this;
},
rotateX: function () {
// rotate geometry around world x-axis
var m1;
return function rotateX( angle ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeRotationX( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateY: function () {
// rotate geometry around world y-axis
var m1;
return function rotateY( angle ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeRotationY( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateZ: function () {
// rotate geometry around world z-axis
var m1;
return function rotateZ( angle ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeRotationZ( angle );
this.applyMatrix( m1 );
return this;
};
}(),
translate: function () {
// translate geometry
var m1;
return function translate( x, y, z ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeTranslation( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
scale: function () {
// scale geometry
var m1;
return function scale( x, y, z ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeScale( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
lookAt: function () {
var obj;
return function lookAt( vector ) {
if ( obj === undefined ) obj = new THREE.Object3D();
obj.lookAt( vector );
obj.updateMatrix();
this.applyMatrix( obj.matrix );
};
}(),
center: function () {
this.computeBoundingBox();
var offset = this.boundingBox.center().negate();
this.translate( offset.x, offset.y, offset.z );
return offset;
},
setFromObject: function ( object ) {
// console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this );
var geometry = object.geometry;
if ( object instanceof THREE.Points || object instanceof THREE.Line ) {
var positions = new THREE.Float32Attribute( geometry.vertices.length * 3, 3 );
var colors = new THREE.Float32Attribute( geometry.colors.length * 3, 3 );
this.addAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) );
this.addAttribute( 'color', colors.copyColorsArray( geometry.colors ) );
if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) {
var lineDistances = new THREE.Float32Attribute( geometry.lineDistances.length, 1 );
this.addAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) );
}
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
} else if ( object instanceof THREE.Mesh ) {
if ( geometry instanceof THREE.Geometry ) {
this.fromGeometry( geometry );
}
}
return this;
},
updateFromObject: function ( object ) {
var geometry = object.geometry;
if ( object instanceof THREE.Mesh ) {
var direct = geometry.__directGeometry;
if ( direct === undefined ) {
return this.fromGeometry( geometry );
}
direct.verticesNeedUpdate = geometry.verticesNeedUpdate;
direct.normalsNeedUpdate = geometry.normalsNeedUpdate;
direct.colorsNeedUpdate = geometry.colorsNeedUpdate;
direct.uvsNeedUpdate = geometry.uvsNeedUpdate;
direct.groupsNeedUpdate = geometry.groupsNeedUpdate;
geometry.verticesNeedUpdate = false;
geometry.normalsNeedUpdate = false;
geometry.colorsNeedUpdate = false;
geometry.uvsNeedUpdate = false;
geometry.groupsNeedUpdate = false;
geometry = direct;
}
if ( geometry.verticesNeedUpdate === true ) {
var attribute = this.attributes.position;
if ( attribute !== undefined ) {
attribute.copyVector3sArray( geometry.vertices );
attribute.needsUpdate = true;
}
geometry.verticesNeedUpdate = false;
}
if ( geometry.normalsNeedUpdate === true ) {
var attribute = this.attributes.normal;
if ( attribute !== undefined ) {
attribute.copyVector3sArray( geometry.normals );
attribute.needsUpdate = true;
}
geometry.normalsNeedUpdate = false;
}
if ( geometry.colorsNeedUpdate === true ) {
var attribute = this.attributes.color;
if ( attribute !== undefined ) {
attribute.copyColorsArray( geometry.colors );
attribute.needsUpdate = true;
}
geometry.colorsNeedUpdate = false;
}
if ( geometry.uvsNeedUpdate ) {
var attribute = this.attributes.uv;
if ( attribute !== undefined ) {
attribute.copyVector2sArray( geometry.uvs );
attribute.needsUpdate = true;
}
geometry.uvsNeedUpdate = false;
}
if ( geometry.lineDistancesNeedUpdate ) {
var attribute = this.attributes.lineDistance;
if ( attribute !== undefined ) {
attribute.copyArray( geometry.lineDistances );
attribute.needsUpdate = true;
}
geometry.lineDistancesNeedUpdate = false;
}
if ( geometry.groupsNeedUpdate ) {
geometry.computeGroups( object.geometry );
this.groups = geometry.groups;
geometry.groupsNeedUpdate = false;
}
return this;
},
fromGeometry: function ( geometry ) {
geometry.__directGeometry = new THREE.DirectGeometry().fromGeometry( geometry );
return this.fromDirectGeometry( geometry.__directGeometry );
},
fromDirectGeometry: function ( geometry ) {
var positions = new Float32Array( geometry.vertices.length * 3 );
this.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) );
if ( geometry.normals.length > 0 ) {
var normals = new Float32Array( geometry.normals.length * 3 );
this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) );
}
if ( geometry.colors.length > 0 ) {
var colors = new Float32Array( geometry.colors.length * 3 );
this.addAttribute( 'color', new THREE.BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) );
}
if ( geometry.uvs.length > 0 ) {
var uvs = new Float32Array( geometry.uvs.length * 2 );
this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) );
}
if ( geometry.uvs2.length > 0 ) {
var uvs2 = new Float32Array( geometry.uvs2.length * 2 );
this.addAttribute( 'uv2', new THREE.BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) );
}
if ( geometry.indices.length > 0 ) {
var TypeArray = geometry.vertices.length > 65535 ? Uint32Array : Uint16Array;
var indices = new TypeArray( geometry.indices.length * 3 );
this.setIndex( new THREE.BufferAttribute( indices, 1 ).copyIndicesArray( geometry.indices ) );
}
// groups
this.groups = geometry.groups;
// morphs
for ( var name in geometry.morphTargets ) {
var array = [];
var morphTargets = geometry.morphTargets[ name ];
for ( var i = 0, l = morphTargets.length; i < l; i ++ ) {
var morphTarget = morphTargets[ i ];
var attribute = new THREE.Float32Attribute( morphTarget.length * 3, 3 );
array.push( attribute.copyVector3sArray( morphTarget ) );
}
this.morphAttributes[ name ] = array;
}
// skinning
if ( geometry.skinIndices.length > 0 ) {
var skinIndices = new THREE.Float32Attribute( geometry.skinIndices.length * 4, 4 );
this.addAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) );
}
if ( geometry.skinWeights.length > 0 ) {
var skinWeights = new THREE.Float32Attribute( geometry.skinWeights.length * 4, 4 );
this.addAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) );
}
//
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
return this;
},
computeBoundingBox: function () {
if ( this.boundingBox === null ) {
this.boundingBox = new THREE.Box3();
}
var positions = this.attributes.position.array;
if ( positions !== undefined ) {
this.boundingBox.setFromArray( positions );
} else {
this.boundingBox.makeEmpty();
}
if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );
}
},
computeBoundingSphere: function () {
var box = new THREE.Box3();
var vector = new THREE.Vector3();
return function () {
if ( this.boundingSphere === null ) {
this.boundingSphere = new THREE.Sphere();
}
var positions = this.attributes.position.array;
if ( positions ) {
var center = this.boundingSphere.center;
box.setFromArray( positions );
box.center( center );
// hoping to find a boundingSphere with a radius smaller than the
// boundingSphere of the boundingBox: sqrt(3) smaller in the best case
var maxRadiusSq = 0;
for ( var i = 0, il = positions.length; i < il; i += 3 ) {
vector.fromArray( positions, i );
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( vector ) );
}
this.boundingSphere.radius = Math.sqrt( maxRadiusSq );
if ( isNaN( this.boundingSphere.radius ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );
}
}
};
}(),
computeFaceNormals: function () {
// backwards compatibility
},
computeVertexNormals: function () {
var index = this.index;
var attributes = this.attributes;
var groups = this.groups;
if ( attributes.position ) {
var positions = attributes.position.array;
if ( attributes.normal === undefined ) {
this.addAttribute( 'normal', new THREE.BufferAttribute( new Float32Array( positions.length ), 3 ) );
} else {
// reset existing normals to zero
var array = attributes.normal.array;
for ( var i = 0, il = array.length; i < il; i ++ ) {
array[ i ] = 0;
}
}
var normals = attributes.normal.array;
var vA, vB, vC,
pA = new THREE.Vector3(),
pB = new THREE.Vector3(),
pC = new THREE.Vector3(),
cb = new THREE.Vector3(),
ab = new THREE.Vector3();
// indexed elements
if ( index ) {
var indices = index.array;
if ( groups.length === 0 ) {
this.addGroup( 0, indices.length );
}
for ( var j = 0, jl = groups.length; j < jl; ++ j ) {
var group = groups[ j ];
var start = group.start;
var count = group.count;
for ( var i = start, il = start + count; i < il; i += 3 ) {
vA = indices[ i + 0 ] * 3;
vB = indices[ i + 1 ] * 3;
vC = indices[ i + 2 ] * 3;
pA.fromArray( positions, vA );
pB.fromArray( positions, vB );
pC.fromArray( positions, vC );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
normals[ vA ] += cb.x;
normals[ vA + 1 ] += cb.y;
normals[ vA + 2 ] += cb.z;
normals[ vB ] += cb.x;
normals[ vB + 1 ] += cb.y;
normals[ vB + 2 ] += cb.z;
normals[ vC ] += cb.x;
normals[ vC + 1 ] += cb.y;
normals[ vC + 2 ] += cb.z;
}
}
} else {
// non-indexed elements (unconnected triangle soup)
for ( var i = 0, il = positions.length; i < il; i += 9 ) {
pA.fromArray( positions, i );
pB.fromArray( positions, i + 3 );
pC.fromArray( positions, i + 6 );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
normals[ i ] = cb.x;
normals[ i + 1 ] = cb.y;
normals[ i + 2 ] = cb.z;
normals[ i + 3 ] = cb.x;
normals[ i + 4 ] = cb.y;
normals[ i + 5 ] = cb.z;
normals[ i + 6 ] = cb.x;
normals[ i + 7 ] = cb.y;
normals[ i + 8 ] = cb.z;
}
}
this.normalizeNormals();
attributes.normal.needsUpdate = true;
}
},
merge: function ( geometry, offset ) {
if ( geometry instanceof THREE.BufferGeometry === false ) {
console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry );
return;
}
if ( offset === undefined ) offset = 0;
var attributes = this.attributes;
for ( var key in attributes ) {
if ( geometry.attributes[ key ] === undefined ) continue;
var attribute1 = attributes[ key ];
var attributeArray1 = attribute1.array;
var attribute2 = geometry.attributes[ key ];
var attributeArray2 = attribute2.array;
var attributeSize = attribute2.itemSize;
for ( var i = 0, j = attributeSize * offset; i < attributeArray2.length; i ++, j ++ ) {
attributeArray1[ j ] = attributeArray2[ i ];
}
}
return this;
},
normalizeNormals: function () {
var normals = this.attributes.normal.array;
var x, y, z, n;
for ( var i = 0, il = normals.length; i < il; i += 3 ) {
x = normals[ i ];
y = normals[ i + 1 ];
z = normals[ i + 2 ];
n = 1.0 / Math.sqrt( x * x + y * y + z * z );
normals[ i ] *= n;
normals[ i + 1 ] *= n;
normals[ i + 2 ] *= n;
}
},
toNonIndexed: function () {
if ( this.index === null ) {
console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' );
return this;
}
var geometry2 = new THREE.BufferGeometry();
var indices = this.index.array;
var attributes = this.attributes;
for ( var name in attributes ) {
var attribute = attributes[ name ];
var array = attribute.array;
var itemSize = attribute.itemSize;
var array2 = new array.constructor( indices.length * itemSize );
var index = 0, index2 = 0;
for ( var i = 0, l = indices.length; i < l; i ++ ) {
index = indices[ i ] * itemSize;
for ( var j = 0; j < itemSize; j ++ ) {
array2[ index2 ++ ] = array[ index ++ ];
}
}
geometry2.addAttribute( name, new THREE.BufferAttribute( array2, itemSize ) );
}
return geometry2;
},
toJSON: function () {
var data = {
metadata: {
version: 4.4,
type: 'BufferGeometry',
generator: 'BufferGeometry.toJSON'
}
};
// standard BufferGeometry serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.parameters !== undefined ) {
var parameters = this.parameters;
for ( var key in parameters ) {
if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
}
return data;
}
data.data = { attributes: {} };
var index = this.index;
if ( index !== null ) {
var array = Array.prototype.slice.call( index.array );
data.data.index = {
type: index.array.constructor.name,
array: array
};
}
var attributes = this.attributes;
for ( var key in attributes ) {
var attribute = attributes[ key ];
var array = Array.prototype.slice.call( attribute.array );
data.data.attributes[ key ] = {
itemSize: attribute.itemSize,
type: attribute.array.constructor.name,
array: array,
normalized: attribute.normalized
};
}
var groups = this.groups;
if ( groups.length > 0 ) {
data.data.groups = JSON.parse( JSON.stringify( groups ) );
}
var boundingSphere = this.boundingSphere;
if ( boundingSphere !== null ) {
data.data.boundingSphere = {
center: boundingSphere.center.toArray(),
radius: boundingSphere.radius
};
}
return data;
},
clone: function () {
/*
// Handle primitives
var parameters = this.parameters;
if ( parameters !== undefined ) {
var values = [];
for ( var key in parameters ) {
values.push( parameters[ key ] );
}
var geometry = Object.create( this.constructor.prototype );
this.constructor.apply( geometry, values );
return geometry;
}
return new this.constructor().copy( this );
*/
return new THREE.BufferGeometry().copy( this );
},
copy: function ( source ) {
var index = source.index;
if ( index !== null ) {
this.setIndex( index.clone() );
}
var attributes = source.attributes;
for ( var name in attributes ) {
var attribute = attributes[ name ];
this.addAttribute( name, attribute.clone() );
}
var groups = source.groups;
for ( var i = 0, l = groups.length; i < l; i ++ ) {
var group = groups[ i ];
this.addGroup( group.start, group.count, group.materialIndex );
}
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
};
THREE.EventDispatcher.prototype.apply( THREE.BufferGeometry.prototype );
THREE.BufferGeometry.MaxIndex = 65535;
// File:src/core/InstancedBufferGeometry.js
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
THREE.InstancedBufferGeometry = function () {
THREE.BufferGeometry.call( this );
this.type = 'InstancedBufferGeometry';
this.maxInstancedCount = undefined;
};
THREE.InstancedBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.InstancedBufferGeometry.prototype.constructor = THREE.InstancedBufferGeometry;
THREE.InstancedBufferGeometry.prototype.addGroup = function ( start, count, instances ) {
this.groups.push( {
start: start,
count: count,
instances: instances
} );
};
THREE.InstancedBufferGeometry.prototype.copy = function ( source ) {
var index = source.index;
if ( index !== null ) {
this.setIndex( index.clone() );
}
var attributes = source.attributes;
for ( var name in attributes ) {
var attribute = attributes[ name ];
this.addAttribute( name, attribute.clone() );
}
var groups = source.groups;
for ( var i = 0, l = groups.length; i < l; i ++ ) {
var group = groups[ i ];
this.addGroup( group.start, group.count, group.instances );
}
return this;
};
THREE.EventDispatcher.prototype.apply( THREE.InstancedBufferGeometry.prototype );
// File:src/core/Uniform.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.Uniform = function ( value ) {
if ( typeof value === 'string' ) {
console.warn( 'THREE.Uniform: Type parameter is no longer needed.' );
value = arguments[ 1 ];
}
this.value = value;
this.dynamic = false;
};
THREE.Uniform.prototype = {
constructor: THREE.Uniform,
onUpdate: function ( callback ) {
this.dynamic = true;
this.onUpdateCallback = callback;
return this;
}
};
// File:src/animation/AnimationClip.js
/**
*
* Reusable set of Tracks that represent an animation.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
*/
THREE.AnimationClip = function ( name, duration, tracks ) {
this.name = name || THREE.Math.generateUUID();
this.tracks = tracks;
this.duration = ( duration !== undefined ) ? duration : -1;
// this means it should figure out its duration by scanning the tracks
if ( this.duration < 0 ) {
this.resetDuration();
}
// maybe only do these on demand, as doing them here could potentially slow down loading
// but leaving these here during development as this ensures a lot of testing of these functions
this.trim();
this.optimize();
};
THREE.AnimationClip.prototype = {
constructor: THREE.AnimationClip,
resetDuration: function() {
var tracks = this.tracks,
duration = 0;
for ( var i = 0, n = tracks.length; i !== n; ++ i ) {
var track = this.tracks[ i ];
duration = Math.max(
duration, track.times[ track.times.length - 1 ] );
}
this.duration = duration;
},
trim: function() {
for ( var i = 0; i < this.tracks.length; i ++ ) {
this.tracks[ i ].trim( 0, this.duration );
}
return this;
},
optimize: function() {
for ( var i = 0; i < this.tracks.length; i ++ ) {
this.tracks[ i ].optimize();
}
return this;
}
};
// Static methods:
Object.assign( THREE.AnimationClip, {
parse: function( json ) {
var tracks = [],
jsonTracks = json.tracks,
frameTime = 1.0 / ( json.fps || 1.0 );
for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) {
tracks.push( THREE.KeyframeTrack.parse( jsonTracks[ i ] ).scale( frameTime ) );
}
return new THREE.AnimationClip( json.name, json.duration, tracks );
},
toJSON: function( clip ) {
var tracks = [],
clipTracks = clip.tracks;
var json = {
'name': clip.name,
'duration': clip.duration,
'tracks': tracks
};
for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) {
tracks.push( THREE.KeyframeTrack.toJSON( clipTracks[ i ] ) );
}
return json;
},
CreateFromMorphTargetSequence: function( name, morphTargetSequence, fps, noLoop ) {
var numMorphTargets = morphTargetSequence.length;
var tracks = [];
for ( var i = 0; i < numMorphTargets; i ++ ) {
var times = [];
var values = [];
times.push(
( i + numMorphTargets - 1 ) % numMorphTargets,
i,
( i + 1 ) % numMorphTargets );
values.push( 0, 1, 0 );
var order = THREE.AnimationUtils.getKeyframeOrder( times );
times = THREE.AnimationUtils.sortedArray( times, 1, order );
values = THREE.AnimationUtils.sortedArray( values, 1, order );
// if there is a key at the first frame, duplicate it as the
// last frame as well for perfect loop.
if ( ! noLoop && times[ 0 ] === 0 ) {
times.push( numMorphTargets );
values.push( values[ 0 ] );
}
tracks.push(
new THREE.NumberKeyframeTrack(
'.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']',
times, values
).scale( 1.0 / fps ) );
}
return new THREE.AnimationClip( name, -1, tracks );
},
findByName: function( clipArray, name ) {
for ( var i = 0; i < clipArray.length; i ++ ) {
if ( clipArray[ i ].name === name ) {
return clipArray[ i ];
}
}
return null;
},
CreateClipsFromMorphTargetSequences: function( morphTargets, fps, noLoop ) {
var animationToMorphTargets = {};
// tested with https://regex101.com/ on trick sequences
// such flamingo_flyA_003, flamingo_run1_003, crdeath0059
var pattern = /^([\w-]*?)([\d]+)$/;
// sort morph target names into animation groups based
// patterns like Walk_001, Walk_002, Run_001, Run_002
for ( var i = 0, il = morphTargets.length; i < il; i ++ ) {
var morphTarget = morphTargets[ i ];
var parts = morphTarget.name.match( pattern );
if ( parts && parts.length > 1 ) {
var name = parts[ 1 ];
var animationMorphTargets = animationToMorphTargets[ name ];
if ( ! animationMorphTargets ) {
animationToMorphTargets[ name ] = animationMorphTargets = [];
}
animationMorphTargets.push( morphTarget );
}
}
var clips = [];
for ( var name in animationToMorphTargets ) {
clips.push( THREE.AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) );
}
return clips;
},
// parse the animation.hierarchy format
parseAnimation: function( animation, bones, nodeName ) {
if ( ! animation ) {
console.error( " no animation in JSONLoader data" );
return null;
}
var addNonemptyTrack = function(
trackType, trackName, animationKeys, propertyName, destTracks ) {
// only return track if there are actually keys.
if ( animationKeys.length !== 0 ) {
var times = [];
var values = [];
THREE.AnimationUtils.flattenJSON(
animationKeys, times, values, propertyName );
// empty keys are filtered out, so check again
if ( times.length !== 0 ) {
destTracks.push( new trackType( trackName, times, values ) );
}
}
};
var tracks = [];
var clipName = animation.name || 'default';
// automatic length determination in AnimationClip.
var duration = animation.length || -1;
var fps = animation.fps || 30;
var hierarchyTracks = animation.hierarchy || [];
for ( var h = 0; h < hierarchyTracks.length; h ++ ) {
var animationKeys = hierarchyTracks[ h ].keys;
// skip empty tracks
if ( ! animationKeys || animationKeys.length == 0 ) continue;
// process morph targets in a way exactly compatible
// with AnimationHandler.init( animation )
if ( animationKeys[0].morphTargets ) {
// figure out all morph targets used in this track
var morphTargetNames = {};
for ( var k = 0; k < animationKeys.length; k ++ ) {
if ( animationKeys[k].morphTargets ) {
for ( var m = 0; m < animationKeys[k].morphTargets.length; m ++ ) {
morphTargetNames[ animationKeys[k].morphTargets[m] ] = -1;
}
}
}
// create a track for each morph target with all zero
// morphTargetInfluences except for the keys in which
// the morphTarget is named.
for ( var morphTargetName in morphTargetNames ) {
var times = [];
var values = [];
for ( var m = 0;
m !== animationKeys[k].morphTargets.length; ++ m ) {
var animationKey = animationKeys[k];
times.push( animationKey.time );
values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 )
}
tracks.push( new THREE.NumberKeyframeTrack(
'.morphTargetInfluence[' + morphTargetName + ']', times, values ) );
}
duration = morphTargetNames.length * ( fps || 1.0 );
} else {
// ...assume skeletal animation
var boneName = '.bones[' + bones[ h ].name + ']';
addNonemptyTrack(
THREE.VectorKeyframeTrack, boneName + '.position',
animationKeys, 'pos', tracks );
addNonemptyTrack(
THREE.QuaternionKeyframeTrack, boneName + '.quaternion',
animationKeys, 'rot', tracks );
addNonemptyTrack(
THREE.VectorKeyframeTrack, boneName + '.scale',
animationKeys, 'scl', tracks );
}
}
if ( tracks.length === 0 ) {
return null;
}
var clip = new THREE.AnimationClip( clipName, duration, tracks );
return clip;
}
} );
// File:src/animation/AnimationMixer.js
/**
*
* Player for AnimationClips.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.AnimationMixer = function( root ) {
this._root = root;
this._initMemoryManager();
this._accuIndex = 0;
this.time = 0;
this.timeScale = 1.0;
};
THREE.AnimationMixer.prototype = {
constructor: THREE.AnimationMixer,
// return an action for a clip optionally using a custom root target
// object (this method allocates a lot of dynamic memory in case a
// previously unknown clip/root combination is specified)
clipAction: function( clip, optionalRoot ) {
var root = optionalRoot || this._root,
rootUuid = root.uuid,
clipName = ( typeof clip === 'string' ) ? clip : clip.name,
clipObject = ( clip !== clipName ) ? clip : null,
actionsForClip = this._actionsByClip[ clipName ],
prototypeAction;
if ( actionsForClip !== undefined ) {
var existingAction =
actionsForClip.actionByRoot[ rootUuid ];
if ( existingAction !== undefined ) {
return existingAction;
}
// we know the clip, so we don't have to parse all
// the bindings again but can just copy
prototypeAction = actionsForClip.knownActions[ 0 ];
// also, take the clip from the prototype action
clipObject = prototypeAction._clip;
if ( clip !== clipName && clip !== clipObject ) {
throw new Error(
"Different clips with the same name detected!" );
}
}
// clip must be known when specified via string
if ( clipObject === null ) return null;
// allocate all resources required to run it
var newAction = new THREE.
AnimationMixer._Action( this, clipObject, optionalRoot );
this._bindAction( newAction, prototypeAction );
// and make the action known to the memory manager
this._addInactiveAction( newAction, clipName, rootUuid );
return newAction;
},
// get an existing action
existingAction: function( clip, optionalRoot ) {
var root = optionalRoot || this._root,
rootUuid = root.uuid,
clipName = ( typeof clip === 'string' ) ? clip : clip.name,
actionsForClip = this._actionsByClip[ clipName ];
if ( actionsForClip !== undefined ) {
return actionsForClip.actionByRoot[ rootUuid ] || null;
}
return null;
},
// deactivates all previously scheduled actions
stopAllAction: function() {
var actions = this._actions,
nActions = this._nActiveActions,
bindings = this._bindings,
nBindings = this._nActiveBindings;
this._nActiveActions = 0;
this._nActiveBindings = 0;
for ( var i = 0; i !== nActions; ++ i ) {
actions[ i ].reset();
}
for ( var i = 0; i !== nBindings; ++ i ) {
bindings[ i ].useCount = 0;
}
return this;
},
// advance the time and update apply the animation
update: function( deltaTime ) {
deltaTime *= this.timeScale;
var actions = this._actions,
nActions = this._nActiveActions,
time = this.time += deltaTime,
timeDirection = Math.sign( deltaTime ),
accuIndex = this._accuIndex ^= 1;
// run active actions
for ( var i = 0; i !== nActions; ++ i ) {
var action = actions[ i ];
if ( action.enabled ) {
action._update( time, deltaTime, timeDirection, accuIndex );
}
}
// update scene graph
var bindings = this._bindings,
nBindings = this._nActiveBindings;
for ( var i = 0; i !== nBindings; ++ i ) {
bindings[ i ].apply( accuIndex );
}
return this;
},
// return this mixer's root target object
getRoot: function() {
return this._root;
},
// free all resources specific to a particular clip
uncacheClip: function( clip ) {
var actions = this._actions,
clipName = clip.name,
actionsByClip = this._actionsByClip,
actionsForClip = actionsByClip[ clipName ];
if ( actionsForClip !== undefined ) {
// note: just calling _removeInactiveAction would mess up the
// iteration state and also require updating the state we can
// just throw away
var actionsToRemove = actionsForClip.knownActions;
for ( var i = 0, n = actionsToRemove.length; i !== n; ++ i ) {
var action = actionsToRemove[ i ];
this._deactivateAction( action );
var cacheIndex = action._cacheIndex,
lastInactiveAction = actions[ actions.length - 1 ];
action._cacheIndex = null;
action._byClipCacheIndex = null;
lastInactiveAction._cacheIndex = cacheIndex;
actions[ cacheIndex ] = lastInactiveAction;
actions.pop();
this._removeInactiveBindingsForAction( action );
}
delete actionsByClip[ clipName ];
}
},
// free all resources specific to a particular root target object
uncacheRoot: function( root ) {
var rootUuid = root.uuid,
actionsByClip = this._actionsByClip;
for ( var clipName in actionsByClip ) {
var actionByRoot = actionsByClip[ clipName ].actionByRoot,
action = actionByRoot[ rootUuid ];
if ( action !== undefined ) {
this._deactivateAction( action );
this._removeInactiveAction( action );
}
}
var bindingsByRoot = this._bindingsByRootAndName,
bindingByName = bindingsByRoot[ rootUuid ];
if ( bindingByName !== undefined ) {
for ( var trackName in bindingByName ) {
var binding = bindingByName[ trackName ];
binding.restoreOriginalState();
this._removeInactiveBinding( binding );
}
}
},
// remove a targeted clip from the cache
uncacheAction: function( clip, optionalRoot ) {
var action = this.existingAction( clip, optionalRoot );
if ( action !== null ) {
this._deactivateAction( action );
this._removeInactiveAction( action );
}
}
};
THREE.EventDispatcher.prototype.apply( THREE.AnimationMixer.prototype );
THREE.AnimationMixer._Action =
function( mixer, clip, localRoot ) {
this._mixer = mixer;
this._clip = clip;
this._localRoot = localRoot || null;
var tracks = clip.tracks,
nTracks = tracks.length,
interpolants = new Array( nTracks );
var interpolantSettings = {
endingStart: THREE.ZeroCurvatureEnding,
endingEnd: THREE.ZeroCurvatureEnding
};
for ( var i = 0; i !== nTracks; ++ i ) {
var interpolant = tracks[ i ].createInterpolant( null );
interpolants[ i ] = interpolant;
interpolant.settings = interpolantSettings
}
this._interpolantSettings = interpolantSettings;
this._interpolants = interpolants; // bound by the mixer
// inside: PropertyMixer (managed by the mixer)
this._propertyBindings = new Array( nTracks );
this._cacheIndex = null; // for the memory manager
this._byClipCacheIndex = null; // for the memory manager
this._timeScaleInterpolant = null;
this._weightInterpolant = null;
this.loop = THREE.LoopRepeat;
this._loopCount = -1;
// global mixer time when the action is to be started
// it's set back to 'null' upon start of the action
this._startTime = null;
// scaled local time of the action
// gets clamped or wrapped to 0..clip.duration according to loop
this.time = 0;
this.timeScale = 1;
this._effectiveTimeScale = 1;
this.weight = 1;
this._effectiveWeight = 1;
this.repetitions = Infinity; // no. of repetitions when looping
this.paused = false; // false -> zero effective time scale
this.enabled = true; // true -> zero effective weight
this.clampWhenFinished = false; // keep feeding the last frame?
this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate
this.zeroSlopeAtEnd = true; // clips for start, loop and end
};
THREE.AnimationMixer._Action.prototype = {
constructor: THREE.AnimationMixer._Action,
// State & Scheduling
play: function() {
this._mixer._activateAction( this );
return this;
},
stop: function() {
this._mixer._deactivateAction( this );
return this.reset();
},
reset: function() {
this.paused = false;
this.enabled = true;
this.time = 0; // restart clip
this._loopCount = -1; // forget previous loops
this._startTime = null; // forget scheduling
return this.stopFading().stopWarping();
},
isRunning: function() {
var start = this._startTime;
return this.enabled && ! this.paused && this.timeScale !== 0 &&
this._startTime === null && this._mixer._isActiveAction( this )
},
// return true when play has been called
isScheduled: function() {
return this._mixer._isActiveAction( this );
},
startAt: function( time ) {
this._startTime = time;
return this;
},
setLoop: function( mode, repetitions ) {
this.loop = mode;
this.repetitions = repetitions;
return this;
},
// Weight
// set the weight stopping any scheduled fading
// although .enabled = false yields an effective weight of zero, this
// method does *not* change .enabled, because it would be confusing
setEffectiveWeight: function( weight ) {
this.weight = weight;
// note: same logic as when updated at runtime
this._effectiveWeight = this.enabled ? weight : 0;
return this.stopFading();
},
// return the weight considering fading and .enabled
getEffectiveWeight: function() {
return this._effectiveWeight;
},
fadeIn: function( duration ) {
return this._scheduleFading( duration, 0, 1 );
},
fadeOut: function( duration ) {
return this._scheduleFading( duration, 1, 0 );
},
crossFadeFrom: function( fadeOutAction, duration, warp ) {
var mixer = this._mixer;
fadeOutAction.fadeOut( duration );
this.fadeIn( duration );
if( warp ) {
var fadeInDuration = this._clip.duration,
fadeOutDuration = fadeOutAction._clip.duration,
startEndRatio = fadeOutDuration / fadeInDuration,
endStartRatio = fadeInDuration / fadeOutDuration;
fadeOutAction.warp( 1.0, startEndRatio, duration );
this.warp( endStartRatio, 1.0, duration );
}
return this;
},
crossFadeTo: function( fadeInAction, duration, warp ) {
return fadeInAction.crossFadeFrom( this, duration, warp );
},
stopFading: function() {
var weightInterpolant = this._weightInterpolant;
if ( weightInterpolant !== null ) {
this._weightInterpolant = null;
this._mixer._takeBackControlInterpolant( weightInterpolant );
}
return this;
},
// Time Scale Control
// set the weight stopping any scheduled warping
// although .paused = true yields an effective time scale of zero, this
// method does *not* change .paused, because it would be confusing
setEffectiveTimeScale: function( timeScale ) {
this.timeScale = timeScale;
this._effectiveTimeScale = this.paused ? 0 :timeScale;
return this.stopWarping();
},
// return the time scale considering warping and .paused
getEffectiveTimeScale: function() {
return this._effectiveTimeScale;
},
setDuration: function( duration ) {
this.timeScale = this._clip.duration / duration;
return this.stopWarping();
},
syncWith: function( action ) {
this.time = action.time;
this.timeScale = action.timeScale;
return this.stopWarping();
},
halt: function( duration ) {
return this.warp( this._currentTimeScale, 0, duration );
},
warp: function( startTimeScale, endTimeScale, duration ) {
var mixer = this._mixer, now = mixer.time,
interpolant = this._timeScaleInterpolant,
timeScale = this.timeScale;
if ( interpolant === null ) {
interpolant = mixer._lendControlInterpolant(),
this._timeScaleInterpolant = interpolant;
}
var times = interpolant.parameterPositions,
values = interpolant.sampleValues;
times[ 0 ] = now;
times[ 1 ] = now + duration;
values[ 0 ] = startTimeScale / timeScale;
values[ 1 ] = endTimeScale / timeScale;
return this;
},
stopWarping: function() {
var timeScaleInterpolant = this._timeScaleInterpolant;
if ( timeScaleInterpolant !== null ) {
this._timeScaleInterpolant = null;
this._mixer._takeBackControlInterpolant( timeScaleInterpolant );
}
return this;
},
// Object Accessors
getMixer: function() {
return this._mixer;
},
getClip: function() {
return this._clip;
},
getRoot: function() {
return this._localRoot || this._mixer._root;
},
// Interna
_update: function( time, deltaTime, timeDirection, accuIndex ) {
// called by the mixer
var startTime = this._startTime;
if ( startTime !== null ) {
// check for scheduled start of action
var timeRunning = ( time - startTime ) * timeDirection;
if ( timeRunning < 0 || timeDirection === 0 ) {
return; // yet to come / don't decide when delta = 0
}
// start
this._startTime = null; // unschedule
deltaTime = timeDirection * timeRunning;
}
// apply time scale and advance time
deltaTime *= this._updateTimeScale( time );
var clipTime = this._updateTime( deltaTime );
// note: _updateTime may disable the action resulting in
// an effective weight of 0
var weight = this._updateWeight( time );
if ( weight > 0 ) {
var interpolants = this._interpolants;
var propertyMixers = this._propertyBindings;
for ( var j = 0, m = interpolants.length; j !== m; ++ j ) {
interpolants[ j ].evaluate( clipTime );
propertyMixers[ j ].accumulate( accuIndex, weight );
}
}
},
_updateWeight: function( time ) {
var weight = 0;
if ( this.enabled ) {
weight = this.weight;
var interpolant = this._weightInterpolant;
if ( interpolant !== null ) {
var interpolantValue = interpolant.evaluate( time )[ 0 ];
weight *= interpolantValue;
if ( time > interpolant.parameterPositions[ 1 ] ) {
this.stopFading();
if ( interpolantValue === 0 ) {
// faded out, disable
this.enabled = false;
}
}
}
}
this._effectiveWeight = weight;
return weight;
},
_updateTimeScale: function( time ) {
var timeScale = 0;
if ( ! this.paused ) {
timeScale = this.timeScale;
var interpolant = this._timeScaleInterpolant;
if ( interpolant !== null ) {
var interpolantValue = interpolant.evaluate( time )[ 0 ];
timeScale *= interpolantValue;
if ( time > interpolant.parameterPositions[ 1 ] ) {
this.stopWarping();
if ( timeScale === 0 ) {
// motion has halted, pause
this.pause = true;
} else {
// warp done - apply final time scale
this.timeScale = timeScale;
}
}
}
}
this._effectiveTimeScale = timeScale;
return timeScale;
},
_updateTime: function( deltaTime ) {
var time = this.time + deltaTime;
if ( deltaTime === 0 ) return time;
var duration = this._clip.duration,
loop = this.loop,
loopCount = this._loopCount,
pingPong = false;
switch ( loop ) {
case THREE.LoopOnce:
if ( loopCount === -1 ) {
// just started
this.loopCount = 0;
this._setEndings( true, true, false );
}
if ( time >= duration ) {
time = duration;
} else if ( time < 0 ) {
time = 0;
} else break;
// reached the end
if ( this.clampWhenFinished ) this.pause = true;
else this.enabled = false;
this._mixer.dispatchEvent( {
type: 'finished', action: this,
direction: deltaTime < 0 ? -1 : 1
} );
break;
case THREE.LoopPingPong:
pingPong = true;
case THREE.LoopRepeat:
if ( loopCount === -1 ) {
// just started
if ( deltaTime > 0 ) {
loopCount = 0;
this._setEndings(
true, this.repetitions === 0, pingPong );
} else {
// when looping in reverse direction, the initial
// transition through zero counts as a repetition,
// so leave loopCount at -1
this._setEndings(
this.repetitions === 0, true, pingPong );
}
}
if ( time >= duration || time < 0 ) {
// wrap around
var loopDelta = Math.floor( time / duration ); // signed
time -= duration * loopDelta;
loopCount += Math.abs( loopDelta );
var pending = this.repetitions - loopCount;
if ( pending < 0 ) {
// stop (switch state, clamp time, fire event)
if ( this.clampWhenFinished ) this.paused = true;
else this.enabled = false;
time = deltaTime > 0 ? duration : 0;
this._mixer.dispatchEvent( {
type: 'finished', action: this,
direction: deltaTime > 0 ? 1 : -1
} );
break;
} else if ( pending === 0 ) {
// transition to last round
var atStart = deltaTime < 0;
this._setEndings( atStart, ! atStart, pingPong );
} else {
this._setEndings( false, false, pingPong );
}
this._loopCount = loopCount;
this._mixer.dispatchEvent( {
type: 'loop', action: this, loopDelta: loopDelta
} );
}
if ( loop === THREE.LoopPingPong && ( loopCount & 1 ) === 1 ) {
// invert time for the "pong round"
this.time = time;
return duration - time;
}
break;
}
this.time = time;
return time;
},
_setEndings: function( atStart, atEnd, pingPong ) {
var settings = this._interpolantSettings;
if ( pingPong ) {
settings.endingStart = THREE.ZeroSlopeEnding;
settings.endingEnd = THREE.ZeroSlopeEnding;
} else {
// assuming for LoopOnce atStart == atEnd == true
if ( atStart ) {
settings.endingStart = this.zeroSlopeAtStart ?
THREE.ZeroSlopeEnding : THREE.ZeroCurvatureEnding;
} else {
settings.endingStart = THREE.WrapAroundEnding;
}
if ( atEnd ) {
settings.endingEnd = this.zeroSlopeAtEnd ?
THREE.ZeroSlopeEnding : THREE.ZeroCurvatureEnding;
} else {
settings.endingEnd = THREE.WrapAroundEnding;
}
}
},
_scheduleFading: function( duration, weightNow, weightThen ) {
var mixer = this._mixer, now = mixer.time,
interpolant = this._weightInterpolant;
if ( interpolant === null ) {
interpolant = mixer._lendControlInterpolant(),
this._weightInterpolant = interpolant;
}
var times = interpolant.parameterPositions,
values = interpolant.sampleValues;
times[ 0 ] = now; values[ 0 ] = weightNow;
times[ 1 ] = now + duration; values[ 1 ] = weightThen;
return this;
}
};
// Implementation details:
Object.assign( THREE.AnimationMixer.prototype, {
_bindAction: function( action, prototypeAction ) {
var root = action._localRoot || this._root,
tracks = action._clip.tracks,
nTracks = tracks.length,
bindings = action._propertyBindings,
interpolants = action._interpolants,
rootUuid = root.uuid,
bindingsByRoot = this._bindingsByRootAndName,
bindingsByName = bindingsByRoot[ rootUuid ];
if ( bindingsByName === undefined ) {
bindingsByName = {};
bindingsByRoot[ rootUuid ] = bindingsByName;
}
for ( var i = 0; i !== nTracks; ++ i ) {
var track = tracks[ i ],
trackName = track.name,
binding = bindingsByName[ trackName ];
if ( binding !== undefined ) {
bindings[ i ] = binding;
} else {
binding = bindings[ i ];
if ( binding !== undefined ) {
// existing binding, make sure the cache knows
if ( binding._cacheIndex === null ) {
++ binding.referenceCount;
this._addInactiveBinding( binding, rootUuid, trackName );
}
continue;
}
var path = prototypeAction && prototypeAction.
_propertyBindings[ i ].binding.parsedPath;
binding = new THREE.PropertyMixer(
THREE.PropertyBinding.create( root, trackName, path ),
track.ValueTypeName, track.getValueSize() );
++ binding.referenceCount;
this._addInactiveBinding( binding, rootUuid, trackName );
bindings[ i ] = binding;
}
interpolants[ i ].resultBuffer = binding.buffer;
}
},
_activateAction: function( action ) {
if ( ! this._isActiveAction( action ) ) {
if ( action._cacheIndex === null ) {
// this action has been forgotten by the cache, but the user
// appears to be still using it -> rebind
var rootUuid = ( action._localRoot || this._root ).uuid,
clipName = action._clip.name,
actionsForClip = this._actionsByClip[ clipName ];
this._bindAction( action,
actionsForClip && actionsForClip.knownActions[ 0 ] );
this._addInactiveAction( action, clipName, rootUuid );
}
var bindings = action._propertyBindings;
// increment reference counts / sort out state
for ( var i = 0, n = bindings.length; i !== n; ++ i ) {
var binding = bindings[ i ];
if ( binding.useCount ++ === 0 ) {
this._lendBinding( binding );
binding.saveOriginalState();
}
}
this._lendAction( action );
}
},
_deactivateAction: function( action ) {
if ( this._isActiveAction( action ) ) {
var bindings = action._propertyBindings;
// decrement reference counts / sort out state
for ( var i = 0, n = bindings.length; i !== n; ++ i ) {
var binding = bindings[ i ];
if ( -- binding.useCount === 0 ) {
binding.restoreOriginalState();
this._takeBackBinding( binding );
}
}
this._takeBackAction( action );
}
},
// Memory manager
_initMemoryManager: function() {
this._actions = []; // 'nActiveActions' followed by inactive ones
this._nActiveActions = 0;
this._actionsByClip = {};
// inside:
// {
// knownActions: Array< _Action > - used as prototypes
// actionByRoot: _Action - lookup
// }
this._bindings = []; // 'nActiveBindings' followed by inactive ones
this._nActiveBindings = 0;
this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >
this._controlInterpolants = []; // same game as above
this._nActiveControlInterpolants = 0;
var scope = this;
this.stats = {
actions: {
get total() { return scope._actions.length; },
get inUse() { return scope._nActiveActions; }
},
bindings: {
get total() { return scope._bindings.length; },
get inUse() { return scope._nActiveBindings; }
},
controlInterpolants: {
get total() { return scope._controlInterpolants.length; },
get inUse() { return scope._nActiveControlInterpolants; }
}
};
},
// Memory management for _Action objects
_isActiveAction: function( action ) {
var index = action._cacheIndex;
return index !== null && index < this._nActiveActions;
},
_addInactiveAction: function( action, clipName, rootUuid ) {
var actions = this._actions,
actionsByClip = this._actionsByClip,
actionsForClip = actionsByClip[ clipName ];
if ( actionsForClip === undefined ) {
actionsForClip = {
knownActions: [ action ],
actionByRoot: {}
};
action._byClipCacheIndex = 0;
actionsByClip[ clipName ] = actionsForClip;
} else {
var knownActions = actionsForClip.knownActions;
action._byClipCacheIndex = knownActions.length;
knownActions.push( action );
}
action._cacheIndex = actions.length;
actions.push( action );
actionsForClip.actionByRoot[ rootUuid ] = action;
},
_removeInactiveAction: function( action ) {
var actions = this._actions,
lastInactiveAction = actions[ actions.length - 1 ],
cacheIndex = action._cacheIndex;
lastInactiveAction._cacheIndex = cacheIndex;
actions[ cacheIndex ] = lastInactiveAction;
actions.pop();
action._cacheIndex = null;
var clipName = action._clip.name,
actionsByClip = this._actionsByClip,
actionsForClip = actionsByClip[ clipName ],
knownActionsForClip = actionsForClip.knownActions,
lastKnownAction =
knownActionsForClip[ knownActionsForClip.length - 1 ],
byClipCacheIndex = action._byClipCacheIndex;
lastKnownAction._byClipCacheIndex = byClipCacheIndex;
knownActionsForClip[ byClipCacheIndex ] = lastKnownAction;
knownActionsForClip.pop();
action._byClipCacheIndex = null;
var actionByRoot = actionsForClip.actionByRoot,
rootUuid = ( actions._localRoot || this._root ).uuid;
delete actionByRoot[ rootUuid ];
if ( knownActionsForClip.length === 0 ) {
delete actionsByClip[ clipName ];
}
this._removeInactiveBindingsForAction( action );
},
_removeInactiveBindingsForAction: function( action ) {
var bindings = action._propertyBindings;
for ( var i = 0, n = bindings.length; i !== n; ++ i ) {
var binding = bindings[ i ];
if ( -- binding.referenceCount === 0 ) {
this._removeInactiveBinding( binding );
}
}
},
_lendAction: function( action ) {
// [ active actions | inactive actions ]
// [ active actions >| inactive actions ]
// s a
// <-swap->
// a s
var actions = this._actions,
prevIndex = action._cacheIndex,
lastActiveIndex = this._nActiveActions ++,
firstInactiveAction = actions[ lastActiveIndex ];
action._cacheIndex = lastActiveIndex;
actions[ lastActiveIndex ] = action;
firstInactiveAction._cacheIndex = prevIndex;
actions[ prevIndex ] = firstInactiveAction;
},
_takeBackAction: function( action ) {
// [ active actions | inactive actions ]
// [ active actions |< inactive actions ]
// a s
// <-swap->
// s a
var actions = this._actions,
prevIndex = action._cacheIndex,
firstInactiveIndex = -- this._nActiveActions,
lastActiveAction = actions[ firstInactiveIndex ];
action._cacheIndex = firstInactiveIndex;
actions[ firstInactiveIndex ] = action;
lastActiveAction._cacheIndex = prevIndex;
actions[ prevIndex ] = lastActiveAction;
},
// Memory management for PropertyMixer objects
_addInactiveBinding: function( binding, rootUuid, trackName ) {
var bindingsByRoot = this._bindingsByRootAndName,
bindingByName = bindingsByRoot[ rootUuid ],
bindings = this._bindings;
if ( bindingByName === undefined ) {
bindingByName = {};
bindingsByRoot[ rootUuid ] = bindingByName;
}
bindingByName[ trackName ] = binding;
binding._cacheIndex = bindings.length;
bindings.push( binding );
},
_removeInactiveBinding: function( binding ) {
var bindings = this._bindings,
propBinding = binding.binding,
rootUuid = propBinding.rootNode.uuid,
trackName = propBinding.path,
bindingsByRoot = this._bindingsByRootAndName,
bindingByName = bindingsByRoot[ rootUuid ],
lastInactiveBinding = bindings[ bindings.length - 1 ],
cacheIndex = binding._cacheIndex;
lastInactiveBinding._cacheIndex = cacheIndex;
bindings[ cacheIndex ] = lastInactiveBinding;
bindings.pop();
delete bindingByName[ trackName ];
remove_empty_map: {
for ( var _ in bindingByName ) break remove_empty_map;
delete bindingsByRoot[ rootUuid ];
}
},
_lendBinding: function( binding ) {
var bindings = this._bindings,
prevIndex = binding._cacheIndex,
lastActiveIndex = this._nActiveBindings ++,
firstInactiveBinding = bindings[ lastActiveIndex ];
binding._cacheIndex = lastActiveIndex;
bindings[ lastActiveIndex ] = binding;
firstInactiveBinding._cacheIndex = prevIndex;
bindings[ prevIndex ] = firstInactiveBinding;
},
_takeBackBinding: function( binding ) {
var bindings = this._bindings,
prevIndex = binding._cacheIndex,
firstInactiveIndex = -- this._nActiveBindings,
lastActiveBinding = bindings[ firstInactiveIndex ];
binding._cacheIndex = firstInactiveIndex;
bindings[ firstInactiveIndex ] = binding;
lastActiveBinding._cacheIndex = prevIndex;
bindings[ prevIndex ] = lastActiveBinding;
},
// Memory management of Interpolants for weight and time scale
_lendControlInterpolant: function() {
var interpolants = this._controlInterpolants,
lastActiveIndex = this._nActiveControlInterpolants ++,
interpolant = interpolants[ lastActiveIndex ];
if ( interpolant === undefined ) {
interpolant = new THREE.LinearInterpolant(
new Float32Array( 2 ), new Float32Array( 2 ),
1, this._controlInterpolantsResultBuffer );
interpolant.__cacheIndex = lastActiveIndex;
interpolants[ lastActiveIndex ] = interpolant;
}
return interpolant;
},
_takeBackControlInterpolant: function( interpolant ) {
var interpolants = this._controlInterpolants,
prevIndex = interpolant.__cacheIndex,
firstInactiveIndex = -- this._nActiveControlInterpolants,
lastActiveInterpolant = interpolants[ firstInactiveIndex ];
interpolant.__cacheIndex = firstInactiveIndex;
interpolants[ firstInactiveIndex ] = interpolant;
lastActiveInterpolant.__cacheIndex = prevIndex;
interpolants[ prevIndex ] = lastActiveInterpolant;
},
_controlInterpolantsResultBuffer: new Float32Array( 1 )
} );
// File:src/animation/AnimationObjectGroup.js
/**
*
* A group of objects that receives a shared animation state.
*
* Usage:
*
* - Add objects you would otherwise pass as 'root' to the
* constructor or the .clipAction method of AnimationMixer.
*
* - Instead pass this object as 'root'.
*
* - You can also add and remove objects later when the mixer
* is running.
*
* Note:
*
* Objects of this class appear as one object to the mixer,
* so cache control of the individual objects must be done
* on the group.
*
* Limitation:
*
* - The animated properties must be compatible among the
* all objects in the group.
*
* - A single property can either be controlled through a
* target group or directly, but not both.
*
* @author tschw
*/
THREE.AnimationObjectGroup = function( var_args ) {
this.uuid = THREE.Math.generateUUID();
// cached objects followed by the active ones
this._objects = Array.prototype.slice.call( arguments );
this.nCachedObjects_ = 0; // threshold
// note: read by PropertyBinding.Composite
var indices = {};
this._indicesByUUID = indices; // for bookkeeping
for ( var i = 0, n = arguments.length; i !== n; ++ i ) {
indices[ arguments[ i ].uuid ] = i;
}
this._paths = []; // inside: string
this._parsedPaths = []; // inside: { we don't care, here }
this._bindings = []; // inside: Array< PropertyBinding >
this._bindingsIndicesByPath = {}; // inside: indices in these arrays
var scope = this;
this.stats = {
objects: {
get total() { return scope._objects.length; },
get inUse() { return this.total - scope.nCachedObjects_; }
},
get bindingsPerObject() { return scope._bindings.length; }
};
};
THREE.AnimationObjectGroup.prototype = {
constructor: THREE.AnimationObjectGroup,
add: function( var_args ) {
var objects = this._objects,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_,
indicesByUUID = this._indicesByUUID,
paths = this._paths,
parsedPaths = this._parsedPaths,
bindings = this._bindings,
nBindings = bindings.length;
for ( var i = 0, n = arguments.length; i !== n; ++ i ) {
var object = arguments[ i ],
uuid = object.uuid,
index = indicesByUUID[ uuid ];
if ( index === undefined ) {
// unknown object -> add it to the ACTIVE region
index = nObjects ++;
indicesByUUID[ uuid ] = index;
objects.push( object );
// accounting is done, now do the same for all bindings
for ( var j = 0, m = nBindings; j !== m; ++ j ) {
bindings[ j ].push(
new THREE.PropertyBinding(
object, paths[ j ], parsedPaths[ j ] ) );
}
} else if ( index < nCachedObjects ) {
var knownObject = objects[ index ];
// move existing object to the ACTIVE region
var firstActiveIndex = -- nCachedObjects,
lastCachedObject = objects[ firstActiveIndex ];
indicesByUUID[ lastCachedObject.uuid ] = index;
objects[ index ] = lastCachedObject;
indicesByUUID[ uuid ] = firstActiveIndex;
objects[ firstActiveIndex ] = object;
// accounting is done, now do the same for all bindings
for ( var j = 0, m = nBindings; j !== m; ++ j ) {
var bindingsForPath = bindings[ j ],
lastCached = bindingsForPath[ firstActiveIndex ],
binding = bindingsForPath[ index ];
bindingsForPath[ index ] = lastCached;
if ( binding === undefined ) {
// since we do not bother to create new bindings
// for objects that are cached, the binding may
// or may not exist
binding = new THREE.PropertyBinding(
object, paths[ j ], parsedPaths[ j ] );
}
bindingsForPath[ firstActiveIndex ] = binding;
}
} else if ( objects[ index ] !== knownObject) {
console.error( "Different objects with the same UUID " +
"detected. Clean the caches or recreate your " +
"infrastructure when reloading scenes..." );
} // else the object is already where we want it to be
} // for arguments
this.nCachedObjects_ = nCachedObjects;
},
remove: function( var_args ) {
var objects = this._objects,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_,
indicesByUUID = this._indicesByUUID,
bindings = this._bindings,
nBindings = bindings.length;
for ( var i = 0, n = arguments.length; i !== n; ++ i ) {
var object = arguments[ i ],
uuid = object.uuid,
index = indicesByUUID[ uuid ];
if ( index !== undefined && index >= nCachedObjects ) {
// move existing object into the CACHED region
var lastCachedIndex = nCachedObjects ++,
firstActiveObject = objects[ lastCachedIndex ];
indicesByUUID[ firstActiveObject.uuid ] = index;
objects[ index ] = firstActiveObject;
indicesByUUID[ uuid ] = lastCachedIndex;
objects[ lastCachedIndex ] = object;
// accounting is done, now do the same for all bindings
for ( var j = 0, m = nBindings; j !== m; ++ j ) {
var bindingsForPath = bindings[ j ],
firstActive = bindingsForPath[ lastCachedIndex ],
binding = bindingsForPath[ index ];
bindingsForPath[ index ] = firstActive;
bindingsForPath[ lastCachedIndex ] = binding;
}
}
} // for arguments
this.nCachedObjects_ = nCachedObjects;
},
// remove & forget
uncache: function( var_args ) {
var objects = this._objects,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_,
indicesByUUID = this._indicesByUUID,
bindings = this._bindings,
nBindings = bindings.length;
for ( var i = 0, n = arguments.length; i !== n; ++ i ) {
var object = arguments[ i ],
uuid = object.uuid,
index = indicesByUUID[ uuid ];
if ( index !== undefined ) {
delete indicesByUUID[ uuid ];
if ( index < nCachedObjects ) {
// object is cached, shrink the CACHED region
var firstActiveIndex = -- nCachedObjects,
lastCachedObject = objects[ firstActiveIndex ],
lastIndex = -- nObjects,
lastObject = objects[ lastIndex ];
// last cached object takes this object's place
indicesByUUID[ lastCachedObject.uuid ] = index;
objects[ index ] = lastCachedObject;
// last object goes to the activated slot and pop
indicesByUUID[ lastObject.uuid ] = firstActiveIndex;
objects[ firstActiveIndex ] = lastObject;
objects.pop();
// accounting is done, now do the same for all bindings
for ( var j = 0, m = nBindings; j !== m; ++ j ) {
var bindingsForPath = bindings[ j ],
lastCached = bindingsForPath[ firstActiveIndex ],
last = bindingsForPath[ lastIndex ];
bindingsForPath[ index ] = lastCached;
bindingsForPath[ firstActiveIndex ] = last;
bindingsForPath.pop();
}
} else {
// object is active, just swap with the last and pop
var lastIndex = -- nObjects,
lastObject = objects[ lastIndex ];
indicesByUUID[ lastObject.uuid ] = index;
objects[ index ] = lastObject;
objects.pop();
// accounting is done, now do the same for all bindings
for ( var j = 0, m = nBindings; j !== m; ++ j ) {
var bindingsForPath = bindings[ j ];
bindingsForPath[ index ] = bindingsForPath[ lastIndex ];
bindingsForPath.pop();
}
} // cached or active
} // if object is known
} // for arguments
this.nCachedObjects_ = nCachedObjects;
},
// Internal interface used by befriended PropertyBinding.Composite:
subscribe_: function( path, parsedPath ) {
// returns an array of bindings for the given path that is changed
// according to the contained objects in the group
var indicesByPath = this._bindingsIndicesByPath,
index = indicesByPath[ path ],
bindings = this._bindings;
if ( index !== undefined ) return bindings[ index ];
var paths = this._paths,
parsedPaths = this._parsedPaths,
objects = this._objects,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_,
bindingsForPath = new Array( nObjects );
index = bindings.length;
indicesByPath[ path ] = index;
paths.push( path );
parsedPaths.push( parsedPath );
bindings.push( bindingsForPath );
for ( var i = nCachedObjects,
n = objects.length; i !== n; ++ i ) {
var object = objects[ i ];
bindingsForPath[ i ] =
new THREE.PropertyBinding( object, path, parsedPath );
}
return bindingsForPath;
},
unsubscribe_: function( path ) {
// tells the group to forget about a property path and no longer
// update the array previously obtained with 'subscribe_'
var indicesByPath = this._bindingsIndicesByPath,
index = indicesByPath[ path ];
if ( index !== undefined ) {
var paths = this._paths,
parsedPaths = this._parsedPaths,
bindings = this._bindings,
lastBindingsIndex = bindings.length - 1,
lastBindings = bindings[ lastBindingsIndex ],
lastBindingsPath = path[ lastBindingsIndex ];
indicesByPath[ lastBindingsPath ] = index;
bindings[ index ] = lastBindings;
bindings.pop();
parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ];
parsedPaths.pop();
paths[ index ] = paths[ lastBindingsIndex ];
paths.pop();
}
}
};
// File:src/animation/AnimationUtils.js
/**
* @author tschw
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
*/
THREE.AnimationUtils = {
// same as Array.prototype.slice, but also works on typed arrays
arraySlice: function( array, from, to ) {
if ( THREE.AnimationUtils.isTypedArray( array ) ) {
return new array.constructor( array.subarray( from, to ) );
}
return array.slice( from, to );
},
// converts an array to a specific type
convertArray: function( array, type, forceClone ) {
if ( ! array || // let 'undefined' and 'null' pass
! forceClone && array.constructor === type ) return array;
if ( typeof type.BYTES_PER_ELEMENT === 'number' ) {
return new type( array ); // create typed array
}
return Array.prototype.slice.call( array ); // create Array
},
isTypedArray: function( object ) {
return ArrayBuffer.isView( object ) &&
! ( object instanceof DataView );
},
// returns an array by which times and values can be sorted
getKeyframeOrder: function( times ) {
function compareTime( i, j ) {
return times[ i ] - times[ j ];
}
var n = times.length;
var result = new Array( n );
for ( var i = 0; i !== n; ++ i ) result[ i ] = i;
result.sort( compareTime );
return result;
},
// uses the array previously returned by 'getKeyframeOrder' to sort data
sortedArray: function( values, stride, order ) {
var nValues = values.length;
var result = new values.constructor( nValues );
for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) {
var srcOffset = order[ i ] * stride;
for ( var j = 0; j !== stride; ++ j ) {
result[ dstOffset ++ ] = values[ srcOffset + j ];
}
}
return result;
},
// function for parsing AOS keyframe formats
flattenJSON: function( jsonKeys, times, values, valuePropertyName ) {
var i = 1, key = jsonKeys[ 0 ];
while ( key !== undefined && key[ valuePropertyName ] === undefined ) {
key = jsonKeys[ i ++ ];
}
if ( key === undefined ) return; // no data
var value = key[ valuePropertyName ];
if ( value === undefined ) return; // no data
if ( Array.isArray( value ) ) {
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
values.push.apply( values, value ); // push all elements
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
} else if ( value.toArray !== undefined ) {
// ...assume THREE.Math-ish
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
value.toArray( values, values.length );
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
} else {
// otherwise push as-is
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
values.push( value );
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
}
}
};
// File:src/animation/KeyframeTrack.js
/**
*
* A timed sequence of keyframes for a specific property.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.KeyframeTrack = function ( name, times, values, interpolation ) {
if( name === undefined ) throw new Error( "track name is undefined" );
if( times === undefined || times.length === 0 ) {
throw new Error( "no keyframes in track named " + name );
}
this.name = name;
this.times = THREE.AnimationUtils.convertArray( times, this.TimeBufferType );
this.values = THREE.AnimationUtils.convertArray( values, this.ValueBufferType );
this.setInterpolation( interpolation || this.DefaultInterpolation );
this.validate();
this.optimize();
};
THREE.KeyframeTrack.prototype = {
constructor: THREE.KeyframeTrack,
TimeBufferType: Float32Array,
ValueBufferType: Float32Array,
DefaultInterpolation: THREE.InterpolateLinear,
InterpolantFactoryMethodDiscrete: function( result ) {
return new THREE.DiscreteInterpolant(
this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodLinear: function( result ) {
return new THREE.LinearInterpolant(
this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodSmooth: function( result ) {
return new THREE.CubicInterpolant(
this.times, this.values, this.getValueSize(), result );
},
setInterpolation: function( interpolation ) {
var factoryMethod = undefined;
switch ( interpolation ) {
case THREE.InterpolateDiscrete:
factoryMethod = this.InterpolantFactoryMethodDiscrete;
break;
case THREE.InterpolateLinear:
factoryMethod = this.InterpolantFactoryMethodLinear;
break;
case THREE.InterpolateSmooth:
factoryMethod = this.InterpolantFactoryMethodSmooth;
break;
}
if ( factoryMethod === undefined ) {
var message = "unsupported interpolation for " +
this.ValueTypeName + " keyframe track named " + this.name;
if ( this.createInterpolant === undefined ) {
// fall back to default, unless the default itself is messed up
if ( interpolation !== this.DefaultInterpolation ) {
this.setInterpolation( this.DefaultInterpolation );
} else {
throw new Error( message ); // fatal, in this case
}
}
console.warn( message );
return;
}
this.createInterpolant = factoryMethod;
},
getInterpolation: function() {
switch ( this.createInterpolant ) {
case this.InterpolantFactoryMethodDiscrete:
return THREE.InterpolateDiscrete;
case this.InterpolantFactoryMethodLinear:
return THREE.InterpolateLinear;
case this.InterpolantFactoryMethodSmooth:
return THREE.InterpolateSmooth;
}
},
getValueSize: function() {
return this.values.length / this.times.length;
},
// move all keyframes either forwards or backwards in time
shift: function( timeOffset ) {
if( timeOffset !== 0.0 ) {
var times = this.times;
for( var i = 0, n = times.length; i !== n; ++ i ) {
times[ i ] += timeOffset;
}
}
return this;
},
// scale all keyframe times by a factor (useful for frame <-> seconds conversions)
scale: function( timeScale ) {
if( timeScale !== 1.0 ) {
var times = this.times;
for( var i = 0, n = times.length; i !== n; ++ i ) {
times[ i ] *= timeScale;
}
}
return this;
},
// removes keyframes before and after animation without changing any values within the range [startTime, endTime].
// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
trim: function( startTime, endTime ) {
var times = this.times,
nKeys = times.length,
from = 0,
to = nKeys - 1;
while ( from !== nKeys && times[ from ] < startTime ) ++ from;
while ( to !== -1 && times[ to ] > endTime ) -- to;
++ to; // inclusive -> exclusive bound
if( from !== 0 || to !== nKeys ) {
// empty tracks are forbidden, so keep at least one keyframe
if ( from >= to ) to = Math.max( to , 1 ), from = to - 1;
var stride = this.getValueSize();
this.times = THREE.AnimationUtils.arraySlice( times, from, to );
this.values = THREE.AnimationUtils.
arraySlice( this.values, from * stride, to * stride );
}
return this;
},
// ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
validate: function() {
var valid = true;
var valueSize = this.getValueSize();
if ( valueSize - Math.floor( valueSize ) !== 0 ) {
console.error( "invalid value size in track", this );
valid = false;
}
var times = this.times,
values = this.values,
nKeys = times.length;
if( nKeys === 0 ) {
console.error( "track is empty", this );
valid = false;
}
var prevTime = null;
for( var i = 0; i !== nKeys; i ++ ) {
var currTime = times[ i ];
if ( typeof currTime === 'number' && isNaN( currTime ) ) {
console.error( "time is not a valid number", this, i, currTime );
valid = false;
break;
}
if( prevTime !== null && prevTime > currTime ) {
console.error( "out of order keys", this, i, currTime, prevTime );
valid = false;
break;
}
prevTime = currTime;
}
if ( values !== undefined ) {
if ( THREE.AnimationUtils.isTypedArray( values ) ) {
for ( var i = 0, n = values.length; i !== n; ++ i ) {
var value = values[ i ];
if ( isNaN( value ) ) {
console.error( "value is not a valid number", this, i, value );
valid = false;
break;
}
}
}
}
return valid;
},
// removes equivalent sequential keys as common in morph target sequences
// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
optimize: function() {
var times = this.times,
values = this.values,
stride = this.getValueSize(),
writeIndex = 1;
for( var i = 1, n = times.length - 1; i <= n; ++ i ) {
var keep = false;
var time = times[ i ];
var timeNext = times[ i + 1 ];
// remove adjacent keyframes scheduled at the same time
if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) {
// remove unnecessary keyframes same as their neighbors
var offset = i * stride,
offsetP = offset - stride,
offsetN = offset + stride;
for ( var j = 0; j !== stride; ++ j ) {
var value = values[ offset + j ];
if ( value !== values[ offsetP + j ] ||
value !== values[ offsetN + j ] ) {
keep = true;
break;
}
}
}
// in-place compaction
if ( keep ) {
if ( i !== writeIndex ) {
times[ writeIndex ] = times[ i ];
var readOffset = i * stride,
writeOffset = writeIndex * stride;
for ( var j = 0; j !== stride; ++ j ) {
values[ writeOffset + j ] = values[ readOffset + j ];
}
}
++ writeIndex;
}
}
if ( writeIndex !== times.length ) {
this.times = THREE.AnimationUtils.arraySlice( times, 0, writeIndex );
this.values = THREE.AnimationUtils.arraySlice( values, 0, writeIndex * stride );
}
return this;
}
};
// Static methods:
Object.assign( THREE.KeyframeTrack, {
// Serialization (in static context, because of constructor invocation
// and automatic invocation of .toJSON):
parse: function( json ) {
if( json.type === undefined ) {
throw new Error( "track type undefined, can not parse" );
}
var trackType = THREE.KeyframeTrack._getTrackTypeForValueTypeName( json.type );
if ( json.times === undefined ) {
console.warn( "legacy JSON format detected, converting" );
var times = [], values = [];
THREE.AnimationUtils.flattenJSON( json.keys, times, values, 'value' );
json.times = times;
json.values = values;
}
// derived classes can define a static parse method
if ( trackType.parse !== undefined ) {
return trackType.parse( json );
} else {
// by default, we asssume a constructor compatible with the base
return new trackType(
json.name, json.times, json.values, json.interpolation );
}
},
toJSON: function( track ) {
var trackType = track.constructor;
var json;
// derived classes can define a static toJSON method
if ( trackType.toJSON !== undefined ) {
json = trackType.toJSON( track );
} else {
// by default, we assume the data can be serialized as-is
json = {
'name': track.name,
'times': THREE.AnimationUtils.convertArray( track.times, Array ),
'values': THREE.AnimationUtils.convertArray( track.values, Array )
};
var interpolation = track.getInterpolation();
if ( interpolation !== track.DefaultInterpolation ) {
json.interpolation = interpolation;
}
}
json.type = track.ValueTypeName; // mandatory
return json;
},
_getTrackTypeForValueTypeName: function( typeName ) {
switch( typeName.toLowerCase() ) {
case "scalar":
case "double":
case "float":
case "number":
case "integer":
return THREE.NumberKeyframeTrack;
case "vector":
case "vector2":
case "vector3":
case "vector4":
return THREE.VectorKeyframeTrack;
case "color":
return THREE.ColorKeyframeTrack;
case "quaternion":
return THREE.QuaternionKeyframeTrack;
case "bool":
case "boolean":
return THREE.BooleanKeyframeTrack;
case "string":
return THREE.StringKeyframeTrack;
};
throw new Error( "Unsupported typeName: " + typeName );
}
} );
// File:src/animation/PropertyBinding.js
/**
*
* A reference to a real property in the scene graph.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.PropertyBinding = function ( rootNode, path, parsedPath ) {
this.path = path;
this.parsedPath = parsedPath ||
THREE.PropertyBinding.parseTrackName( path );
this.node = THREE.PropertyBinding.findNode(
rootNode, this.parsedPath.nodeName ) || rootNode;
this.rootNode = rootNode;
};
THREE.PropertyBinding.prototype = {
constructor: THREE.PropertyBinding,
getValue: function getValue_unbound( targetArray, offset ) {
this.bind();
this.getValue( targetArray, offset );
// Note: This class uses a State pattern on a per-method basis:
// 'bind' sets 'this.getValue' / 'setValue' and shadows the
// prototype version of these methods with one that represents
// the bound state. When the property is not found, the methods
// become no-ops.
},
setValue: function getValue_unbound( sourceArray, offset ) {
this.bind();
this.setValue( sourceArray, offset );
},
// create getter / setter pair for a property in the scene graph
bind: function() {
var targetObject = this.node,
parsedPath = this.parsedPath,
objectName = parsedPath.objectName,
propertyName = parsedPath.propertyName,
propertyIndex = parsedPath.propertyIndex;
if ( ! targetObject ) {
targetObject = THREE.PropertyBinding.findNode(
this.rootNode, parsedPath.nodeName ) || this.rootNode;
this.node = targetObject;
}
// set fail state so we can just 'return' on error
this.getValue = this._getValue_unavailable;
this.setValue = this._setValue_unavailable;
// ensure there is a value node
if ( ! targetObject ) {
console.error( " trying to update node for track: " + this.path + " but it wasn't found." );
return;
}
if( objectName ) {
var objectIndex = parsedPath.objectIndex;
// special cases were we need to reach deeper into the hierarchy to get the face materials....
switch ( objectName ) {
case 'materials':
if( ! targetObject.material ) {
console.error( ' can not bind to material as node does not have a material', this );
return;
}
if( ! targetObject.material.materials ) {
console.error( ' can not bind to material.materials as node.material does not have a materials array', this );
return;
}
targetObject = targetObject.material.materials;
break;
case 'bones':
if( ! targetObject.skeleton ) {
console.error( ' can not bind to bones as node does not have a skeleton', this );
return;
}
// potential future optimization: skip this if propertyIndex is already an integer
// and convert the integer string to a true integer.
targetObject = targetObject.skeleton.bones;
// support resolving morphTarget names into indices.
for ( var i = 0; i < targetObject.length; i ++ ) {
if ( targetObject[i].name === objectIndex ) {
objectIndex = i;
break;
}
}
break;
default:
if ( targetObject[ objectName ] === undefined ) {
console.error( ' can not bind to objectName of node, undefined', this );
return;
}
targetObject = targetObject[ objectName ];
}
if ( objectIndex !== undefined ) {
if( targetObject[ objectIndex ] === undefined ) {
console.error( " trying to bind to objectIndex of objectName, but is undefined:", this, targetObject );
return;
}
targetObject = targetObject[ objectIndex ];
}
}
// resolve property
var nodeProperty = targetObject[ propertyName ];
if ( ! nodeProperty ) {
var nodeName = parsedPath.nodeName;
console.error( " trying to update property for track: " + nodeName +
'.' + propertyName + " but it wasn't found.", targetObject );
return;
}
// determine versioning scheme
var versioning = this.Versioning.None;
if ( targetObject.needsUpdate !== undefined ) { // material
versioning = this.Versioning.NeedsUpdate;
this.targetObject = targetObject;
} else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform
versioning = this.Versioning.MatrixWorldNeedsUpdate;
this.targetObject = targetObject;
}
// determine how the property gets bound
var bindingType = this.BindingType.Direct;
if ( propertyIndex !== undefined ) {
// access a sub element of the property array (only primitives are supported right now)
if ( propertyName === "morphTargetInfluences" ) {
// potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.
// support resolving morphTarget names into indices.
if ( ! targetObject.geometry ) {
console.error( ' can not bind to morphTargetInfluences becasuse node does not have a geometry', this );
return;
}
if ( ! targetObject.geometry.morphTargets ) {
console.error( ' can not bind to morphTargetInfluences becasuse node does not have a geometry.morphTargets', this );
return;
}
for ( var i = 0; i < this.node.geometry.morphTargets.length; i ++ ) {
if ( targetObject.geometry.morphTargets[i].name === propertyIndex ) {
propertyIndex = i;
break;
}
}
}
bindingType = this.BindingType.ArrayElement;
this.resolvedProperty = nodeProperty;
this.propertyIndex = propertyIndex;
} else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) {
// must use copy for Object3D.Euler/Quaternion
bindingType = this.BindingType.HasFromToArray;
this.resolvedProperty = nodeProperty;
} else if ( nodeProperty.length !== undefined ) {
bindingType = this.BindingType.EntireArray;
this.resolvedProperty = nodeProperty;
} else {
this.propertyName = propertyName;
}
// select getter / setter
this.getValue = this.GetterByBindingType[ bindingType ];
this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ];
},
unbind: function() {
this.node = null;
// back to the prototype version of getValue / setValue
// note: avoiding to mutate the shape of 'this' via 'delete'
this.getValue = this._getValue_unbound;
this.setValue = this._setValue_unbound;
}
};
Object.assign( THREE.PropertyBinding.prototype, { // prototype, continued
// these are used to "bind" a nonexistent property
_getValue_unavailable: function() {},
_setValue_unavailable: function() {},
// initial state of these methods that calls 'bind'
_getValue_unbound: THREE.PropertyBinding.prototype.getValue,
_setValue_unbound: THREE.PropertyBinding.prototype.setValue,
BindingType: {
Direct: 0,
EntireArray: 1,
ArrayElement: 2,
HasFromToArray: 3
},
Versioning: {
None: 0,
NeedsUpdate: 1,
MatrixWorldNeedsUpdate: 2
},
GetterByBindingType: [
function getValue_direct( buffer, offset ) {
buffer[ offset ] = this.node[ this.propertyName ];
},
function getValue_array( buffer, offset ) {
var source = this.resolvedProperty;
for ( var i = 0, n = source.length; i !== n; ++ i ) {
buffer[ offset ++ ] = source[ i ];
}
},
function getValue_arrayElement( buffer, offset ) {
buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ];
},
function getValue_toArray( buffer, offset ) {
this.resolvedProperty.toArray( buffer, offset );
}
],
SetterByBindingTypeAndVersioning: [
[
// Direct
function setValue_direct( buffer, offset ) {
this.node[ this.propertyName ] = buffer[ offset ];
},
function setValue_direct_setNeedsUpdate( buffer, offset ) {
this.node[ this.propertyName ] = buffer[ offset ];
this.targetObject.needsUpdate = true;
},
function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) {
this.node[ this.propertyName ] = buffer[ offset ];
this.targetObject.matrixWorldNeedsUpdate = true;
}
], [
// EntireArray
function setValue_array( buffer, offset ) {
var dest = this.resolvedProperty;
for ( var i = 0, n = dest.length; i !== n; ++ i ) {
dest[ i ] = buffer[ offset ++ ];
}
},
function setValue_array_setNeedsUpdate( buffer, offset ) {
var dest = this.resolvedProperty;
for ( var i = 0, n = dest.length; i !== n; ++ i ) {
dest[ i ] = buffer[ offset ++ ];
}
this.targetObject.needsUpdate = true;
},
function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) {
var dest = this.resolvedProperty;
for ( var i = 0, n = dest.length; i !== n; ++ i ) {
dest[ i ] = buffer[ offset ++ ];
}
this.targetObject.matrixWorldNeedsUpdate = true;
}
], [
// ArrayElement
function setValue_arrayElement( buffer, offset ) {
this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
},
function setValue_arrayElement_setNeedsUpdate( buffer, offset ) {
this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
this.targetObject.needsUpdate = true;
},
function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) {
this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
this.targetObject.matrixWorldNeedsUpdate = true;
}
], [
// HasToFromArray
function setValue_fromArray( buffer, offset ) {
this.resolvedProperty.fromArray( buffer, offset );
},
function setValue_fromArray_setNeedsUpdate( buffer, offset ) {
this.resolvedProperty.fromArray( buffer, offset );
this.targetObject.needsUpdate = true;
},
function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) {
this.resolvedProperty.fromArray( buffer, offset );
this.targetObject.matrixWorldNeedsUpdate = true;
}
]
]
} );
THREE.PropertyBinding.Composite =
function( targetGroup, path, optionalParsedPath ) {
var parsedPath = optionalParsedPath ||
THREE.PropertyBinding.parseTrackName( path );
this._targetGroup = targetGroup;
this._bindings = targetGroup.subscribe_( path, parsedPath );
};
THREE.PropertyBinding.Composite.prototype = {
constructor: THREE.PropertyBinding.Composite,
getValue: function( array, offset ) {
this.bind(); // bind all binding
var firstValidIndex = this._targetGroup.nCachedObjects_,
binding = this._bindings[ firstValidIndex ];
// and only call .getValue on the first
if ( binding !== undefined ) binding.getValue( array, offset );
},
setValue: function( array, offset ) {
var bindings = this._bindings;
for ( var i = this._targetGroup.nCachedObjects_,
n = bindings.length; i !== n; ++ i ) {
bindings[ i ].setValue( array, offset );
}
},
bind: function() {
var bindings = this._bindings;
for ( var i = this._targetGroup.nCachedObjects_,
n = bindings.length; i !== n; ++ i ) {
bindings[ i ].bind();
}
},
unbind: function() {
var bindings = this._bindings;
for ( var i = this._targetGroup.nCachedObjects_,
n = bindings.length; i !== n; ++ i ) {
bindings[ i ].unbind();
}
}
};
THREE.PropertyBinding.create = function( root, path, parsedPath ) {
if ( ! ( root instanceof THREE.AnimationObjectGroup ) ) {
return new THREE.PropertyBinding( root, path, parsedPath );
} else {
return new THREE.PropertyBinding.Composite( root, path, parsedPath );
}
};
THREE.PropertyBinding.parseTrackName = function( trackName ) {
// matches strings in the form of:
// nodeName.property
// nodeName.property[accessor]
// nodeName.material.property[accessor]
// uuid.property[accessor]
// uuid.objectName[objectIndex].propertyName[propertyIndex]
// parentName/nodeName.property
// parentName/parentName/nodeName.property[index]
// .bone[Armature.DEF_cog].position
// created and tested via https://regex101.com/#javascript
var re = /^(([\w]+\/)*)([\w-\d]+)?(\.([\w]+)(\[([\w\d\[\]\_.:\- ]+)\])?)?(\.([\w.]+)(\[([\w\d\[\]\_. ]+)\])?)$/;
var matches = re.exec(trackName);
if( ! matches ) {
throw new Error( "cannot parse trackName at all: " + trackName );
}
if (matches.index === re.lastIndex) {
re.lastIndex++;
}
var results = {
// directoryName: matches[1], // (tschw) currently unused
nodeName: matches[3], // allowed to be null, specified root node.
objectName: matches[5],
objectIndex: matches[7],
propertyName: matches[9],
propertyIndex: matches[11] // allowed to be null, specifies that the whole property is set.
};
if( results.propertyName === null || results.propertyName.length === 0 ) {
throw new Error( "can not parse propertyName from trackName: " + trackName );
}
return results;
};
THREE.PropertyBinding.findNode = function( root, nodeName ) {
if( ! nodeName || nodeName === "" || nodeName === "root" || nodeName === "." || nodeName === -1 || nodeName === root.name || nodeName === root.uuid ) {
return root;
}
// search into skeleton bones.
if( root.skeleton ) {
var searchSkeleton = function( skeleton ) {
for( var i = 0; i < skeleton.bones.length; i ++ ) {
var bone = skeleton.bones[i];
if( bone.name === nodeName ) {
return bone;
}
}
return null;
};
var bone = searchSkeleton( root.skeleton );
if( bone ) {
return bone;
}
}
// search into node subtree.
if( root.children ) {
var searchNodeSubtree = function( children ) {
for( var i = 0; i < children.length; i ++ ) {
var childNode = children[i];
if( childNode.name === nodeName || childNode.uuid === nodeName ) {
return childNode;
}
var result = searchNodeSubtree( childNode.children );
if( result ) return result;
}
return null;
};
var subTreeNode = searchNodeSubtree( root.children );
if( subTreeNode ) {
return subTreeNode;
}
}
return null;
}
// File:src/animation/PropertyMixer.js
/**
*
* Buffered scene graph property that allows weighted accumulation.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.PropertyMixer = function ( binding, typeName, valueSize ) {
this.binding = binding;
this.valueSize = valueSize;
var bufferType = Float64Array,
mixFunction;
switch ( typeName ) {
case 'quaternion': mixFunction = this._slerp; break;
case 'string':
case 'bool':
bufferType = Array, mixFunction = this._select; break;
default: mixFunction = this._lerp;
}
this.buffer = new bufferType( valueSize * 4 );
// layout: [ incoming | accu0 | accu1 | orig ]
//
// interpolators can use .buffer as their .result
// the data then goes to 'incoming'
//
// 'accu0' and 'accu1' are used frame-interleaved for
// the cumulative result and are compared to detect
// changes
//
// 'orig' stores the original state of the property
this._mixBufferRegion = mixFunction;
this.cumulativeWeight = 0;
this.useCount = 0;
this.referenceCount = 0;
};
THREE.PropertyMixer.prototype = {
constructor: THREE.PropertyMixer,
// accumulate data in the 'incoming' region into 'accu<i>'
accumulate: function( accuIndex, weight ) {
// note: happily accumulating nothing when weight = 0, the caller knows
// the weight and shouldn't have made the call in the first place
var buffer = this.buffer,
stride = this.valueSize,
offset = accuIndex * stride + stride,
currentWeight = this.cumulativeWeight;
if ( currentWeight === 0 ) {
// accuN := incoming * weight
for ( var i = 0; i !== stride; ++ i ) {
buffer[ offset + i ] = buffer[ i ];
}
currentWeight = weight;
} else {
// accuN := accuN + incoming * weight
currentWeight += weight;
var mix = weight / currentWeight;
this._mixBufferRegion( buffer, offset, 0, mix, stride );
}
this.cumulativeWeight = currentWeight;
},
// apply the state of 'accu<i>' to the binding when accus differ
apply: function( accuIndex ) {
var stride = this.valueSize,
buffer = this.buffer,
offset = accuIndex * stride + stride,
weight = this.cumulativeWeight,
binding = this.binding;
this.cumulativeWeight = 0;
if ( weight < 1 ) {
// accuN := accuN + original * ( 1 - cumulativeWeight )
var originalValueOffset = stride * 3;
this._mixBufferRegion(
buffer, offset, originalValueOffset, 1 - weight, stride );
}
for ( var i = stride, e = stride + stride; i !== e; ++ i ) {
if ( buffer[ i ] !== buffer[ i + stride ] ) {
// value has changed -> update scene graph
binding.setValue( buffer, offset );
break;
}
}
},
// remember the state of the bound property and copy it to both accus
saveOriginalState: function() {
var binding = this.binding;
var buffer = this.buffer,
stride = this.valueSize,
originalValueOffset = stride * 3;
binding.getValue( buffer, originalValueOffset );
// accu[0..1] := orig -- initially detect changes against the original
for ( var i = stride, e = originalValueOffset; i !== e; ++ i ) {
buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ];
}
this.cumulativeWeight = 0;
},
// apply the state previously taken via 'saveOriginalState' to the binding
restoreOriginalState: function() {
var originalValueOffset = this.valueSize * 3;
this.binding.setValue( this.buffer, originalValueOffset );
},
// mix functions
_select: function( buffer, dstOffset, srcOffset, t, stride ) {
if ( t >= 0.5 ) {
for ( var i = 0; i !== stride; ++ i ) {
buffer[ dstOffset + i ] = buffer[ srcOffset + i ];
}
}
},
_slerp: function( buffer, dstOffset, srcOffset, t, stride ) {
THREE.Quaternion.slerpFlat( buffer, dstOffset,
buffer, dstOffset, buffer, srcOffset, t );
},
_lerp: function( buffer, dstOffset, srcOffset, t, stride ) {
var s = 1 - t;
for ( var i = 0; i !== stride; ++ i ) {
var j = dstOffset + i;
buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t;
}
}
};
// File:src/animation/tracks/BooleanKeyframeTrack.js
/**
*
* A Track of Boolean keyframe values.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.BooleanKeyframeTrack = function ( name, times, values ) {
THREE.KeyframeTrack.call( this, name, times, values );
};
THREE.BooleanKeyframeTrack.prototype =
Object.assign( Object.create( THREE.KeyframeTrack.prototype ), {
constructor: THREE.BooleanKeyframeTrack,
ValueTypeName: 'bool',
ValueBufferType: Array,
DefaultInterpolation: THREE.InterpolateDiscrete,
InterpolantFactoryMethodLinear: undefined,
InterpolantFactoryMethodSmooth: undefined
// Note: Actually this track could have a optimized / compressed
// representation of a single value and a custom interpolant that
// computes "firstValue ^ isOdd( index )".
} );
// File:src/animation/tracks/ColorKeyframeTrack.js
/**
*
* A Track of keyframe values that represent color.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.ColorKeyframeTrack = function ( name, times, values, interpolation ) {
THREE.KeyframeTrack.call( this, name, times, values, interpolation );
};
THREE.ColorKeyframeTrack.prototype =
Object.assign( Object.create( THREE.KeyframeTrack.prototype ), {
constructor: THREE.ColorKeyframeTrack,
ValueTypeName: 'color'
// ValueBufferType is inherited
// DefaultInterpolation is inherited
// Note: Very basic implementation and nothing special yet.
// However, this is the place for color space parameterization.
} );
// File:src/animation/tracks/NumberKeyframeTrack.js
/**
*
* A Track of numeric keyframe values.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.NumberKeyframeTrack = function ( name, times, values, interpolation ) {
THREE.KeyframeTrack.call( this, name, times, values, interpolation );
};
THREE.NumberKeyframeTrack.prototype =
Object.assign( Object.create( THREE.KeyframeTrack.prototype ), {
constructor: THREE.NumberKeyframeTrack,
ValueTypeName: 'number',
// ValueBufferType is inherited
// DefaultInterpolation is inherited
} );
// File:src/animation/tracks/QuaternionKeyframeTrack.js
/**
*
* A Track of quaternion keyframe values.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.QuaternionKeyframeTrack = function ( name, times, values, interpolation ) {
THREE.KeyframeTrack.call( this, name, times, values, interpolation );
};
THREE.QuaternionKeyframeTrack.prototype =
Object.assign( Object.create( THREE.KeyframeTrack.prototype ), {
constructor: THREE.QuaternionKeyframeTrack,
ValueTypeName: 'quaternion',
// ValueBufferType is inherited
DefaultInterpolation: THREE.InterpolateLinear,
InterpolantFactoryMethodLinear: function( result ) {
return new THREE.QuaternionLinearInterpolant(
this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodSmooth: undefined // not yet implemented
} );
// File:src/animation/tracks/StringKeyframeTrack.js
/**
*
* A Track that interpolates Strings
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.StringKeyframeTrack = function ( name, times, values, interpolation ) {
THREE.KeyframeTrack.call( this, name, times, values, interpolation );
};
THREE.StringKeyframeTrack.prototype =
Object.assign( Object.create( THREE.KeyframeTrack.prototype ), {
constructor: THREE.StringKeyframeTrack,
ValueTypeName: 'string',
ValueBufferType: Array,
DefaultInterpolation: THREE.InterpolateDiscrete,
InterpolantFactoryMethodLinear: undefined,
InterpolantFactoryMethodSmooth: undefined
} );
// File:src/animation/tracks/VectorKeyframeTrack.js
/**
*
* A Track of vectored keyframe values.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.VectorKeyframeTrack = function ( name, times, values, interpolation ) {
THREE.KeyframeTrack.call( this, name, times, values, interpolation );
};
THREE.VectorKeyframeTrack.prototype =
Object.assign( Object.create( THREE.KeyframeTrack.prototype ), {
constructor: THREE.VectorKeyframeTrack,
ValueTypeName: 'vector'
// ValueBufferType is inherited
// DefaultInterpolation is inherited
} );
// File:src/audio/Audio.js
/**
* @author mrdoob / http://mrdoob.com/
* @author Reece Aaron Lecrivain / http://reecenotes.com/
*/
THREE.Audio = function ( listener ) {
THREE.Object3D.call( this );
this.type = 'Audio';
this.context = listener.context;
this.source = this.context.createBufferSource();
this.source.onended = this.onEnded.bind( this );
this.gain = this.context.createGain();
this.gain.connect( listener.getInput() );
this.autoplay = false;
this.startTime = 0;
this.playbackRate = 1;
this.isPlaying = false;
this.hasPlaybackControl = true;
this.sourceType = 'empty';
this.filter = null;
};
THREE.Audio.prototype = Object.create( THREE.Object3D.prototype );
THREE.Audio.prototype.constructor = THREE.Audio;
THREE.Audio.prototype.getOutput = function () {
return this.gain;
};
THREE.Audio.prototype.setNodeSource = function ( audioNode ) {
this.hasPlaybackControl = false;
this.sourceType = 'audioNode';
this.source = audioNode;
this.connect();
return this;
};
THREE.Audio.prototype.setBuffer = function ( audioBuffer ) {
var scope = this;
scope.source.buffer = audioBuffer;
scope.sourceType = 'buffer';
if ( scope.autoplay ) scope.play();
return this;
};
THREE.Audio.prototype.play = function () {
if ( this.isPlaying === true ) {
console.warn( 'THREE.Audio: Audio is already playing.' );
return;
}
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
var source = this.context.createBufferSource();
source.buffer = this.source.buffer;
source.loop = this.source.loop;
source.onended = this.source.onended;
source.start( 0, this.startTime );
source.playbackRate.value = this.playbackRate;
this.isPlaying = true;
this.source = source;
this.connect();
};
THREE.Audio.prototype.pause = function () {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this.source.stop();
this.startTime = this.context.currentTime;
};
THREE.Audio.prototype.stop = function () {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this.source.stop();
this.startTime = 0;
};
THREE.Audio.prototype.connect = function () {
if ( this.filter !== null ) {
this.source.connect( this.filter );
this.filter.connect( this.getOutput() );
} else {
this.source.connect( this.getOutput() );
}
};
THREE.Audio.prototype.disconnect = function () {
if ( this.filter !== null ) {
this.source.disconnect( this.filter );
this.filter.disconnect( this.getOutput() );
} else {
this.source.disconnect( this.getOutput() );
}
};
THREE.Audio.prototype.getFilter = function () {
return this.filter;
};
THREE.Audio.prototype.setFilter = function ( value ) {
if ( value === undefined ) value = null;
if ( this.isPlaying === true ) {
this.disconnect();
this.filter = value;
this.connect();
} else {
this.filter = value;
}
};
THREE.Audio.prototype.setPlaybackRate = function ( value ) {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this.playbackRate = value;
if ( this.isPlaying === true ) {
this.source.playbackRate.value = this.playbackRate;
}
};
THREE.Audio.prototype.getPlaybackRate = function () {
return this.playbackRate;
};
THREE.Audio.prototype.onEnded = function () {
this.isPlaying = false;
};
THREE.Audio.prototype.setLoop = function ( value ) {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this.source.loop = value;
};
THREE.Audio.prototype.getLoop = function () {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return false;
}
return this.source.loop;
};
THREE.Audio.prototype.setVolume = function ( value ) {
this.gain.gain.value = value;
};
THREE.Audio.prototype.getVolume = function () {
return this.gain.gain.value;
};
// File:src/audio/AudioAnalyser.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.AudioAnalyser = function ( audio, fftSize ) {
this.analyser = audio.context.createAnalyser();
this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048;
this.data = new Uint8Array( this.analyser.frequencyBinCount );
audio.getOutput().connect( this.analyser );
};
THREE.AudioAnalyser.prototype = {
constructor: THREE.AudioAnalyser,
getData: function () {
this.analyser.getByteFrequencyData( this.data );
return this.data;
}
};
// File:src/audio/AudioContext.js
/**
* @author mrdoob / http://mrdoob.com/
*/
Object.defineProperty( THREE, 'AudioContext', {
get: ( function () {
var context;
return function () {
if ( context === undefined ) {
context = new ( window.AudioContext || window.webkitAudioContext )();
}
return context;
};
} )()
} );
// File:src/audio/PositionalAudio.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.PositionalAudio = function ( listener ) {
THREE.Audio.call( this, listener );
this.panner = this.context.createPanner();
this.panner.connect( this.gain );
};
THREE.PositionalAudio.prototype = Object.create( THREE.Audio.prototype );
THREE.PositionalAudio.prototype.constructor = THREE.PositionalAudio;
THREE.PositionalAudio.prototype.getOutput = function () {
return this.panner;
};
THREE.PositionalAudio.prototype.setRefDistance = function ( value ) {
this.panner.refDistance = value;
};
THREE.PositionalAudio.prototype.getRefDistance = function () {
return this.panner.refDistance;
};
THREE.PositionalAudio.prototype.setRolloffFactor = function ( value ) {
this.panner.rolloffFactor = value;
};
THREE.PositionalAudio.prototype.getRolloffFactor = function () {
return this.panner.rolloffFactor;
};
THREE.PositionalAudio.prototype.setDistanceModel = function ( value ) {
this.panner.distanceModel = value;
};
THREE.PositionalAudio.prototype.getDistanceModel = function () {
return this.panner.distanceModel;
};
THREE.PositionalAudio.prototype.setMaxDistance = function ( value ) {
this.panner.maxDistance = value;
};
THREE.PositionalAudio.prototype.getMaxDistance = function () {
return this.panner.maxDistance;
};
THREE.PositionalAudio.prototype.updateMatrixWorld = ( function () {
var position = new THREE.Vector3();
return function updateMatrixWorld( force ) {
THREE.Object3D.prototype.updateMatrixWorld.call( this, force );
position.setFromMatrixPosition( this.matrixWorld );
this.panner.setPosition( position.x, position.y, position.z );
};
} )();
// File:src/audio/AudioListener.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.AudioListener = function () {
THREE.Object3D.call( this );
this.type = 'AudioListener';
this.context = THREE.AudioContext;
this.gain = this.context.createGain();
this.gain.connect( this.context.destination );
this.filter = null;
};
THREE.AudioListener.prototype = Object.create( THREE.Object3D.prototype );
THREE.AudioListener.prototype.constructor = THREE.AudioListener;
THREE.AudioListener.prototype.getInput = function () {
return this.gain;
};
THREE.AudioListener.prototype.removeFilter = function ( ) {
if ( this.filter !== null ) {
this.gain.disconnect( this.filter );
this.filter.disconnect( this.context.destination );
this.gain.connect( this.context.destination );
this.filter = null;
}
};
THREE.AudioListener.prototype.setFilter = function ( value ) {
if ( this.filter !== null ) {
this.gain.disconnect( this.filter );
this.filter.disconnect( this.context.destination );
} else {
this.gain.disconnect( this.context.destination );
}
this.filter = value;
this.gain.connect( this.filter );
this.filter.connect( this.context.destination );
};
THREE.AudioListener.prototype.getFilter = function () {
return this.filter;
};
THREE.AudioListener.prototype.setMasterVolume = function ( value ) {
this.gain.gain.value = value;
};
THREE.AudioListener.prototype.getMasterVolume = function () {
return this.gain.gain.value;
};
THREE.AudioListener.prototype.updateMatrixWorld = ( function () {
var position = new THREE.Vector3();
var quaternion = new THREE.Quaternion();
var scale = new THREE.Vector3();
var orientation = new THREE.Vector3();
return function updateMatrixWorld( force ) {
THREE.Object3D.prototype.updateMatrixWorld.call( this, force );
var listener = this.context.listener;
var up = this.up;
this.matrixWorld.decompose( position, quaternion, scale );
orientation.set( 0, 0, - 1 ).applyQuaternion( quaternion );
listener.setPosition( position.x, position.y, position.z );
listener.setOrientation( orientation.x, orientation.y, orientation.z, up.x, up.y, up.z );
};
} )();
// File:src/cameras/Camera.js
/**
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
* @author WestLangley / http://github.com/WestLangley
*/
THREE.Camera = function () {
THREE.Object3D.call( this );
this.type = 'Camera';
this.matrixWorldInverse = new THREE.Matrix4();
this.projectionMatrix = new THREE.Matrix4();
};
THREE.Camera.prototype = Object.create( THREE.Object3D.prototype );
THREE.Camera.prototype.constructor = THREE.Camera;
THREE.Camera.prototype.getWorldDirection = function () {
var quaternion = new THREE.Quaternion();
return function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
this.getWorldQuaternion( quaternion );
return result.set( 0, 0, - 1 ).applyQuaternion( quaternion );
};
}();
THREE.Camera.prototype.lookAt = function () {
// This routine does not support cameras with rotated and/or translated parent(s)
var m1 = new THREE.Matrix4();
return function ( vector ) {
m1.lookAt( this.position, vector, this.up );
this.quaternion.setFromRotationMatrix( m1 );
};
}();
THREE.Camera.prototype.clone = function () {
return new this.constructor().copy( this );
};
THREE.Camera.prototype.copy = function ( source ) {
THREE.Object3D.prototype.copy.call( this, source );
this.matrixWorldInverse.copy( source.matrixWorldInverse );
this.projectionMatrix.copy( source.projectionMatrix );
return this;
};
// File:src/cameras/CubeCamera.js
/**
* Camera for rendering cube maps
* - renders scene into axis-aligned cube
*
* @author alteredq / http://alteredqualia.com/
*/
THREE.CubeCamera = function ( near, far, cubeResolution ) {
THREE.Object3D.call( this );
this.type = 'CubeCamera';
var fov = 90, aspect = 1;
var cameraPX = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraPX.up.set( 0, - 1, 0 );
cameraPX.lookAt( new THREE.Vector3( 1, 0, 0 ) );
this.add( cameraPX );
var cameraNX = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraNX.up.set( 0, - 1, 0 );
cameraNX.lookAt( new THREE.Vector3( - 1, 0, 0 ) );
this.add( cameraNX );
var cameraPY = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraPY.up.set( 0, 0, 1 );
cameraPY.lookAt( new THREE.Vector3( 0, 1, 0 ) );
this.add( cameraPY );
var cameraNY = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraNY.up.set( 0, 0, - 1 );
cameraNY.lookAt( new THREE.Vector3( 0, - 1, 0 ) );
this.add( cameraNY );
var cameraPZ = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraPZ.up.set( 0, - 1, 0 );
cameraPZ.lookAt( new THREE.Vector3( 0, 0, 1 ) );
this.add( cameraPZ );
var cameraNZ = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraNZ.up.set( 0, - 1, 0 );
cameraNZ.lookAt( new THREE.Vector3( 0, 0, - 1 ) );
this.add( cameraNZ );
var options = { format: THREE.RGBFormat, magFilter: THREE.LinearFilter, minFilter: THREE.LinearFilter };
this.renderTarget = new THREE.WebGLRenderTargetCube( cubeResolution, cubeResolution, options );
this.updateCubeMap = function ( renderer, scene ) {
if ( this.parent === null ) this.updateMatrixWorld();
var renderTarget = this.renderTarget;
var generateMipmaps = renderTarget.texture.generateMipmaps;
renderTarget.texture.generateMipmaps = false;
renderTarget.activeCubeFace = 0;
renderer.render( scene, cameraPX, renderTarget );
renderTarget.activeCubeFace = 1;
renderer.render( scene, cameraNX, renderTarget );
renderTarget.activeCubeFace = 2;
renderer.render( scene, cameraPY, renderTarget );
renderTarget.activeCubeFace = 3;
renderer.render( scene, cameraNY, renderTarget );
renderTarget.activeCubeFace = 4;
renderer.render( scene, cameraPZ, renderTarget );
renderTarget.texture.generateMipmaps = generateMipmaps;
renderTarget.activeCubeFace = 5;
renderer.render( scene, cameraNZ, renderTarget );
renderer.setRenderTarget( null );
};
};
THREE.CubeCamera.prototype = Object.create( THREE.Object3D.prototype );
THREE.CubeCamera.prototype.constructor = THREE.CubeCamera;
// File:src/cameras/OrthographicCamera.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.OrthographicCamera = function ( left, right, top, bottom, near, far ) {
THREE.Camera.call( this );
this.type = 'OrthographicCamera';
this.zoom = 1;
this.left = left;
this.right = right;
this.top = top;
this.bottom = bottom;
this.near = ( near !== undefined ) ? near : 0.1;
this.far = ( far !== undefined ) ? far : 2000;
this.updateProjectionMatrix();
};
THREE.OrthographicCamera.prototype = Object.create( THREE.Camera.prototype );
THREE.OrthographicCamera.prototype.constructor = THREE.OrthographicCamera;
THREE.OrthographicCamera.prototype.updateProjectionMatrix = function () {
var dx = ( this.right - this.left ) / ( 2 * this.zoom );
var dy = ( this.top - this.bottom ) / ( 2 * this.zoom );
var cx = ( this.right + this.left ) / 2;
var cy = ( this.top + this.bottom ) / 2;
this.projectionMatrix.makeOrthographic( cx - dx, cx + dx, cy + dy, cy - dy, this.near, this.far );
};
THREE.OrthographicCamera.prototype.copy = function ( source ) {
THREE.Camera.prototype.copy.call( this, source );
this.left = source.left;
this.right = source.right;
this.top = source.top;
this.bottom = source.bottom;
this.near = source.near;
this.far = source.far;
this.zoom = source.zoom;
return this;
};
THREE.OrthographicCamera.prototype.toJSON = function ( meta ) {
var data = THREE.Object3D.prototype.toJSON.call( this, meta );
data.object.zoom = this.zoom;
data.object.left = this.left;
data.object.right = this.right;
data.object.top = this.top;
data.object.bottom = this.bottom;
data.object.near = this.near;
data.object.far = this.far;
return data;
};
// File:src/cameras/PerspectiveCamera.js
/**
* @author mrdoob / http://mrdoob.com/
* @author greggman / http://games.greggman.com/
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author tschw
*/
THREE.PerspectiveCamera = function( fov, aspect, near, far ) {
THREE.Camera.call( this );
this.type = 'PerspectiveCamera';
this.fov = fov !== undefined ? fov : 50;
this.zoom = 1;
this.near = near !== undefined ? near : 0.1;
this.far = far !== undefined ? far : 2000;
this.focus = 10;
this.aspect = aspect !== undefined ? aspect : 1;
this.view = null;
this.filmGauge = 35; // width of the film (default in millimeters)
this.filmOffset = 0; // horizontal film offset (same unit as gauge)
this.updateProjectionMatrix();
};
THREE.PerspectiveCamera.prototype = Object.create( THREE.Camera.prototype );
THREE.PerspectiveCamera.prototype.constructor = THREE.PerspectiveCamera;
/**
* Sets the FOV by focal length (DEPRECATED).
*
* Optionally also sets .filmGauge, otherwise uses it. See .setFocalLength.
*/
THREE.PerspectiveCamera.prototype.setLens = function( focalLength, filmGauge ) {
console.warn( "THREE.PerspectiveCamera.setLens is deprecated. " +
"Use .setFocalLength and .filmGauge for a photographic setup." );
if ( filmGauge !== undefined ) this.filmGauge = filmGauge;
this.setFocalLength( focalLength );
};
/**
* Sets the FOV by focal length in respect to the current .filmGauge.
*
* The default film gauge is 35, so that the focal length can be specified for
* a 35mm (full frame) camera.
*
* Values for focal length and film gauge must have the same unit.
*/
THREE.PerspectiveCamera.prototype.setFocalLength = function( focalLength ) {
// see http://www.bobatkins.com/photography/technical/field_of_view.html
var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
this.fov = THREE.Math.RAD2DEG * 2 * Math.atan( vExtentSlope );
this.updateProjectionMatrix();
};
/**
* Calculates the focal length from the current .fov and .filmGauge.
*/
THREE.PerspectiveCamera.prototype.getFocalLength = function() {
var vExtentSlope = Math.tan( THREE.Math.DEG2RAD * 0.5 * this.fov );
return 0.5 * this.getFilmHeight() / vExtentSlope;
};
THREE.PerspectiveCamera.prototype.getEffectiveFOV = function() {
return THREE.Math.RAD2DEG * 2 * Math.atan(
Math.tan( THREE.Math.DEG2RAD * 0.5 * this.fov ) / this.zoom );
};
THREE.PerspectiveCamera.prototype.getFilmWidth = function() {
// film not completely covered in portrait format (aspect < 1)
return this.filmGauge * Math.min( this.aspect, 1 );
};
THREE.PerspectiveCamera.prototype.getFilmHeight = function() {
// film not completely covered in landscape format (aspect > 1)
return this.filmGauge / Math.max( this.aspect, 1 );
};
/**
* Sets an offset in a larger frustum. This is useful for multi-window or
* multi-monitor/multi-machine setups.
*
* For example, if you have 3x2 monitors and each monitor is 1920x1080 and
* the monitors are in grid like this
*
* +---+---+---+
* | A | B | C |
* +---+---+---+
* | D | E | F |
* +---+---+---+
*
* then for each monitor you would call it like this
*
* var w = 1920;
* var h = 1080;
* var fullWidth = w * 3;
* var fullHeight = h * 2;
*
* --A--
* camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
* --B--
* camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
* --C--
* camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
* --D--
* camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
* --E--
* camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
* --F--
* camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
*
* Note there is no reason monitors have to be the same size or in a grid.
*/
THREE.PerspectiveCamera.prototype.setViewOffset = function( fullWidth, fullHeight, x, y, width, height ) {
this.aspect = fullWidth / fullHeight;
this.view = {
fullWidth: fullWidth,
fullHeight: fullHeight,
offsetX: x,
offsetY: y,
width: width,
height: height
};
this.updateProjectionMatrix();
};
THREE.PerspectiveCamera.prototype.updateProjectionMatrix = function() {
var near = this.near,
top = near * Math.tan(
THREE.Math.DEG2RAD * 0.5 * this.fov ) / this.zoom,
height = 2 * top,
width = this.aspect * height,
left = - 0.5 * width,
view = this.view;
if ( view !== null ) {
var fullWidth = view.fullWidth,
fullHeight = view.fullHeight;
left += view.offsetX * width / fullWidth;
top -= view.offsetY * height / fullHeight;
width *= view.width / fullWidth;
height *= view.height / fullHeight;
}
var skew = this.filmOffset;
if ( skew !== 0 ) left += near * skew / this.getFilmWidth();
this.projectionMatrix.makeFrustum(
left, left + width, top - height, top, near, this.far );
};
THREE.PerspectiveCamera.prototype.copy = function( source ) {
THREE.Camera.prototype.copy.call( this, source );
this.fov = source.fov;
this.zoom = source.zoom;
this.near = source.near;
this.far = source.far;
this.focus = source.focus;
this.aspect = source.aspect;
this.view = source.view === null ? null : Object.assign( {}, source.view );
this.filmGauge = source.filmGauge;
this.filmOffset = source.filmOffset;
return this;
};
THREE.PerspectiveCamera.prototype.toJSON = function( meta ) {
var data = THREE.Object3D.prototype.toJSON.call( this, meta );
data.object.fov = this.fov;
data.object.zoom = this.zoom;
data.object.near = this.near;
data.object.far = this.far;
data.object.focus = this.focus;
data.object.aspect = this.aspect;
if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );
data.object.filmGauge = this.filmGauge;
data.object.filmOffset = this.filmOffset;
return data;
};
// File:src/cameras/StereoCamera.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.StereoCamera = function () {
this.type = 'StereoCamera';
this.aspect = 1;
this.cameraL = new THREE.PerspectiveCamera();
this.cameraL.layers.enable( 1 );
this.cameraL.matrixAutoUpdate = false;
this.cameraR = new THREE.PerspectiveCamera();
this.cameraR.layers.enable( 2 );
this.cameraR.matrixAutoUpdate = false;
};
THREE.StereoCamera.prototype = {
constructor: THREE.StereoCamera,
update: ( function () {
var focus, fov, aspect, near, far;
var eyeRight = new THREE.Matrix4();
var eyeLeft = new THREE.Matrix4();
return function update ( camera ) {
var needsUpdate = focus !== camera.focus || fov !== camera.fov ||
aspect !== camera.aspect * this.aspect || near !== camera.near ||
far !== camera.far;
if ( needsUpdate ) {
focus = camera.focus;
fov = camera.fov;
aspect = camera.aspect * this.aspect;
near = camera.near;
far = camera.far;
// Off-axis stereoscopic effect based on
// http://paulbourke.net/stereographics/stereorender/
var projectionMatrix = camera.projectionMatrix.clone();
var eyeSep = 0.064 / 2;
var eyeSepOnProjection = eyeSep * near / focus;
var ymax = near * Math.tan( THREE.Math.DEG2RAD * fov * 0.5 );
var xmin, xmax;
// translate xOffset
eyeLeft.elements[ 12 ] = - eyeSep;
eyeRight.elements[ 12 ] = eyeSep;
// for left eye
xmin = - ymax * aspect + eyeSepOnProjection;
xmax = ymax * aspect + eyeSepOnProjection;
projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin );
projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );
this.cameraL.projectionMatrix.copy( projectionMatrix );
// for right eye
xmin = - ymax * aspect - eyeSepOnProjection;
xmax = ymax * aspect - eyeSepOnProjection;
projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin );
projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );
this.cameraR.projectionMatrix.copy( projectionMatrix );
}
this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( eyeLeft );
this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( eyeRight );
};
} )()
};
// File:src/lights/Light.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Light = function ( color, intensity ) {
THREE.Object3D.call( this );
this.type = 'Light';
this.color = new THREE.Color( color );
this.intensity = intensity !== undefined ? intensity : 1;
this.receiveShadow = undefined;
};
THREE.Light.prototype = Object.create( THREE.Object3D.prototype );
THREE.Light.prototype.constructor = THREE.Light;
THREE.Light.prototype.copy = function ( source ) {
THREE.Object3D.prototype.copy.call( this, source );
this.color.copy( source.color );
this.intensity = source.intensity;
return this;
};
THREE.Light.prototype.toJSON = function ( meta ) {
var data = THREE.Object3D.prototype.toJSON.call( this, meta );
data.object.color = this.color.getHex();
data.object.intensity = this.intensity;
if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex();
if ( this.distance !== undefined ) data.object.distance = this.distance;
if ( this.angle !== undefined ) data.object.angle = this.angle;
if ( this.decay !== undefined ) data.object.decay = this.decay;
if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra;
return data;
};
// File:src/lights/LightShadow.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.LightShadow = function ( camera ) {
this.camera = camera;
this.bias = 0;
this.radius = 1;
this.mapSize = new THREE.Vector2( 512, 512 );
this.map = null;
this.matrix = new THREE.Matrix4();
};
THREE.LightShadow.prototype = {
constructor: THREE.LightShadow,
copy: function ( source ) {
this.camera = source.camera.clone();
this.bias = source.bias;
this.radius = source.radius;
this.mapSize.copy( source.mapSize );
return this;
},
clone: function () {
return new this.constructor().copy( this );
}
};
// File:src/lights/AmbientLight.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.AmbientLight = function ( color, intensity ) {
THREE.Light.call( this, color, intensity );
this.type = 'AmbientLight';
this.castShadow = undefined;
};
THREE.AmbientLight.prototype = Object.create( THREE.Light.prototype );
THREE.AmbientLight.prototype.constructor = THREE.AmbientLight;
// File:src/lights/DirectionalLight.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.DirectionalLight = function ( color, intensity ) {
THREE.Light.call( this, color, intensity );
this.type = 'DirectionalLight';
this.position.set( 0, 1, 0 );
this.updateMatrix();
this.target = new THREE.Object3D();
this.shadow = new THREE.DirectionalLightShadow();
};
THREE.DirectionalLight.prototype = Object.create( THREE.Light.prototype );
THREE.DirectionalLight.prototype.constructor = THREE.DirectionalLight;
THREE.DirectionalLight.prototype.copy = function ( source ) {
THREE.Light.prototype.copy.call( this, source );
this.target = source.target.clone();
this.shadow = source.shadow.clone();
return this;
};
// File:src/lights/DirectionalLightShadow.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.DirectionalLightShadow = function ( light ) {
THREE.LightShadow.call( this, new THREE.OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) );
};
THREE.DirectionalLightShadow.prototype = Object.create( THREE.LightShadow.prototype );
THREE.DirectionalLightShadow.prototype.constructor = THREE.DirectionalLightShadow;
// File:src/lights/HemisphereLight.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.HemisphereLight = function ( skyColor, groundColor, intensity ) {
THREE.Light.call( this, skyColor, intensity );
this.type = 'HemisphereLight';
this.castShadow = undefined;
this.position.set( 0, 1, 0 );
this.updateMatrix();
this.groundColor = new THREE.Color( groundColor );
};
THREE.HemisphereLight.prototype = Object.create( THREE.Light.prototype );
THREE.HemisphereLight.prototype.constructor = THREE.HemisphereLight;
THREE.HemisphereLight.prototype.copy = function ( source ) {
THREE.Light.prototype.copy.call( this, source );
this.groundColor.copy( source.groundColor );
return this;
};
// File:src/lights/PointLight.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.PointLight = function ( color, intensity, distance, decay ) {
THREE.Light.call( this, color, intensity );
this.type = 'PointLight';
this.distance = ( distance !== undefined ) ? distance : 0;
this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2.
this.shadow = new THREE.LightShadow( new THREE.PerspectiveCamera( 90, 1, 0.5, 500 ) );
};
THREE.PointLight.prototype = Object.create( THREE.Light.prototype );
THREE.PointLight.prototype.constructor = THREE.PointLight;
Object.defineProperty( THREE.PointLight.prototype, "power", {
get: function () {
// intensity = power per solid angle.
// ref: equation (15) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
return this.intensity * 4 * Math.PI;
},
set: function ( power ) {
// intensity = power per solid angle.
// ref: equation (15) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
this.intensity = power / ( 4 * Math.PI );
}
} );
THREE.PointLight.prototype.copy = function ( source ) {
THREE.Light.prototype.copy.call( this, source );
this.distance = source.distance;
this.decay = source.decay;
this.shadow = source.shadow.clone();
return this;
};
// File:src/lights/SpotLight.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.SpotLight = function ( color, intensity, distance, angle, penumbra, decay ) {
THREE.Light.call( this, color, intensity );
this.type = 'SpotLight';
this.position.set( 0, 1, 0 );
this.updateMatrix();
this.target = new THREE.Object3D();
this.distance = ( distance !== undefined ) ? distance : 0;
this.angle = ( angle !== undefined ) ? angle : Math.PI / 3;
this.penumbra = ( penumbra !== undefined ) ? penumbra : 0;
this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2.
this.shadow = new THREE.SpotLightShadow();
};
THREE.SpotLight.prototype = Object.create( THREE.Light.prototype );
THREE.SpotLight.prototype.constructor = THREE.SpotLight;
Object.defineProperty( THREE.SpotLight.prototype, "power", {
get: function () {
// intensity = power per solid angle.
// ref: equation (17) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
return this.intensity * Math.PI;
},
set: function ( power ) {
// intensity = power per solid angle.
// ref: equation (17) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
this.intensity = power / Math.PI;
}
} );
THREE.SpotLight.prototype.copy = function ( source ) {
THREE.Light.prototype.copy.call( this, source );
this.distance = source.distance;
this.angle = source.angle;
this.penumbra = source.penumbra;
this.decay = source.decay;
this.target = source.target.clone();
this.shadow = source.shadow.clone();
return this;
};
// File:src/lights/SpotLightShadow.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.SpotLightShadow = function () {
THREE.LightShadow.call( this, new THREE.PerspectiveCamera( 50, 1, 0.5, 500 ) );
};
THREE.SpotLightShadow.prototype = Object.create( THREE.LightShadow.prototype );
THREE.SpotLightShadow.prototype.constructor = THREE.SpotLightShadow;
THREE.SpotLightShadow.prototype.update = function ( light ) {
var fov = THREE.Math.RAD2DEG * 2 * light.angle;
var aspect = this.mapSize.width / this.mapSize.height;
var far = light.distance || 500;
var camera = this.camera;
if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) {
camera.fov = fov;
camera.aspect = aspect;
camera.far = far;
camera.updateProjectionMatrix();
}
};
// File:src/loaders/AudioLoader.js
/**
* @author Reece Aaron Lecrivain / http://reecenotes.com/
*/
THREE.AudioLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.AudioLoader.prototype = {
constructor: THREE.AudioLoader,
load: function ( url, onLoad, onProgress, onError ) {
var loader = new THREE.XHRLoader( this.manager );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( buffer ) {
var context = THREE.AudioContext;
context.decodeAudioData( buffer, function ( audioBuffer ) {
onLoad( audioBuffer );
} );
}, onProgress, onError );
}
};
// File:src/loaders/Cache.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.Cache = {
enabled: false,
files: {},
add: function ( key, file ) {
if ( this.enabled === false ) return;
// console.log( 'THREE.Cache', 'Adding key:', key );
this.files[ key ] = file;
},
get: function ( key ) {
if ( this.enabled === false ) return;
// console.log( 'THREE.Cache', 'Checking key:', key );
return this.files[ key ];
},
remove: function ( key ) {
delete this.files[ key ];
},
clear: function () {
this.files = {};
}
};
// File:src/loaders/Loader.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.Loader = function () {
this.onLoadStart = function () {};
this.onLoadProgress = function () {};
this.onLoadComplete = function () {};
};
THREE.Loader.prototype = {
constructor: THREE.Loader,
crossOrigin: undefined,
extractUrlBase: function ( url ) {
var parts = url.split( '/' );
if ( parts.length === 1 ) return './';
parts.pop();
return parts.join( '/' ) + '/';
},
initMaterials: function ( materials, texturePath, crossOrigin ) {
var array = [];
for ( var i = 0; i < materials.length; ++ i ) {
array[ i ] = this.createMaterial( materials[ i ], texturePath, crossOrigin );
}
return array;
},
createMaterial: ( function () {
var color, textureLoader, materialLoader;
return function ( m, texturePath, crossOrigin ) {
if ( color === undefined ) color = new THREE.Color();
if ( textureLoader === undefined ) textureLoader = new THREE.TextureLoader();
if ( materialLoader === undefined ) materialLoader = new THREE.MaterialLoader();
// convert from old material format
var textures = {};
function loadTexture( path, repeat, offset, wrap, anisotropy ) {
var fullPath = texturePath + path;
var loader = THREE.Loader.Handlers.get( fullPath );
var texture;
if ( loader !== null ) {
texture = loader.load( fullPath );
} else {
textureLoader.setCrossOrigin( crossOrigin );
texture = textureLoader.load( fullPath );
}
if ( repeat !== undefined ) {
texture.repeat.fromArray( repeat );
if ( repeat[ 0 ] !== 1 ) texture.wrapS = THREE.RepeatWrapping;
if ( repeat[ 1 ] !== 1 ) texture.wrapT = THREE.RepeatWrapping;
}
if ( offset !== undefined ) {
texture.offset.fromArray( offset );
}
if ( wrap !== undefined ) {
if ( wrap[ 0 ] === 'repeat' ) texture.wrapS = THREE.RepeatWrapping;
if ( wrap[ 0 ] === 'mirror' ) texture.wrapS = THREE.MirroredRepeatWrapping;
if ( wrap[ 1 ] === 'repeat' ) texture.wrapT = THREE.RepeatWrapping;
if ( wrap[ 1 ] === 'mirror' ) texture.wrapT = THREE.MirroredRepeatWrapping;
}
if ( anisotropy !== undefined ) {
texture.anisotropy = anisotropy;
}
var uuid = THREE.Math.generateUUID();
textures[ uuid ] = texture;
return uuid;
}
//
var json = {
uuid: THREE.Math.generateUUID(),
type: 'MeshLambertMaterial'
};
for ( var name in m ) {
var value = m[ name ];
switch ( name ) {
case 'DbgColor':
case 'DbgIndex':
case 'opticalDensity':
case 'illumination':
break;
case 'DbgName':
json.name = value;
break;
case 'blending':
json.blending = THREE[ value ];
break;
case 'colorAmbient':
case 'mapAmbient':
console.warn( 'THREE.Loader.createMaterial:', name, 'is no longer supported.' );
break;
case 'colorDiffuse':
json.color = color.fromArray( value ).getHex();
break;
case 'colorSpecular':
json.specular = color.fromArray( value ).getHex();
break;
case 'colorEmissive':
json.emissive = color.fromArray( value ).getHex();
break;
case 'specularCoef':
json.shininess = value;
break;
case 'shading':
if ( value.toLowerCase() === 'basic' ) json.type = 'MeshBasicMaterial';
if ( value.toLowerCase() === 'phong' ) json.type = 'MeshPhongMaterial';
break;
case 'mapDiffuse':
json.map = loadTexture( value, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap, m.mapDiffuseAnisotropy );
break;
case 'mapDiffuseRepeat':
case 'mapDiffuseOffset':
case 'mapDiffuseWrap':
case 'mapDiffuseAnisotropy':
break;
case 'mapLight':
json.lightMap = loadTexture( value, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap, m.mapLightAnisotropy );
break;
case 'mapLightRepeat':
case 'mapLightOffset':
case 'mapLightWrap':
case 'mapLightAnisotropy':
break;
case 'mapAO':
json.aoMap = loadTexture( value, m.mapAORepeat, m.mapAOOffset, m.mapAOWrap, m.mapAOAnisotropy );
break;
case 'mapAORepeat':
case 'mapAOOffset':
case 'mapAOWrap':
case 'mapAOAnisotropy':
break;
case 'mapBump':
json.bumpMap = loadTexture( value, m.mapBumpRepeat, m.mapBumpOffset, m.mapBumpWrap, m.mapBumpAnisotropy );
break;
case 'mapBumpScale':
json.bumpScale = value;
break;
case 'mapBumpRepeat':
case 'mapBumpOffset':
case 'mapBumpWrap':
case 'mapBumpAnisotropy':
break;
case 'mapNormal':
json.normalMap = loadTexture( value, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap, m.mapNormalAnisotropy );
break;
case 'mapNormalFactor':
json.normalScale = [ value, value ];
break;
case 'mapNormalRepeat':
case 'mapNormalOffset':
case 'mapNormalWrap':
case 'mapNormalAnisotropy':
break;
case 'mapSpecular':
json.specularMap = loadTexture( value, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap, m.mapSpecularAnisotropy );
break;
case 'mapSpecularRepeat':
case 'mapSpecularOffset':
case 'mapSpecularWrap':
case 'mapSpecularAnisotropy':
break;
case 'mapAlpha':
json.alphaMap = loadTexture( value, m.mapAlphaRepeat, m.mapAlphaOffset, m.mapAlphaWrap, m.mapAlphaAnisotropy );
break;
case 'mapAlphaRepeat':
case 'mapAlphaOffset':
case 'mapAlphaWrap':
case 'mapAlphaAnisotropy':
break;
case 'flipSided':
json.side = THREE.BackSide;
break;
case 'doubleSided':
json.side = THREE.DoubleSide;
break;
case 'transparency':
console.warn( 'THREE.Loader.createMaterial: transparency has been renamed to opacity' );
json.opacity = value;
break;
case 'depthTest':
case 'depthWrite':
case 'colorWrite':
case 'opacity':
case 'reflectivity':
case 'transparent':
case 'visible':
case 'wireframe':
json[ name ] = value;
break;
case 'vertexColors':
if ( value === true ) json.vertexColors = THREE.VertexColors;
if ( value === 'face' ) json.vertexColors = THREE.FaceColors;
break;
default:
console.error( 'THREE.Loader.createMaterial: Unsupported', name, value );
break;
}
}
if ( json.type === 'MeshBasicMaterial' ) delete json.emissive;
if ( json.type !== 'MeshPhongMaterial' ) delete json.specular;
if ( json.opacity < 1 ) json.transparent = true;
materialLoader.setTextures( textures );
return materialLoader.parse( json );
};
} )()
};
THREE.Loader.Handlers = {
handlers: [],
add: function ( regex, loader ) {
this.handlers.push( regex, loader );
},
get: function ( file ) {
var handlers = this.handlers;
for ( var i = 0, l = handlers.length; i < l; i += 2 ) {
var regex = handlers[ i ];
var loader = handlers[ i + 1 ];
if ( regex.test( file ) ) {
return loader;
}
}
return null;
}
};
// File:src/loaders/XHRLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.XHRLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.XHRLoader.prototype = {
constructor: THREE.XHRLoader,
load: function ( url, onLoad, onProgress, onError ) {
if ( this.path !== undefined ) url = this.path + url;
var scope = this;
var cached = THREE.Cache.get( url );
if ( cached !== undefined ) {
if ( onLoad ) {
setTimeout( function () {
onLoad( cached );
}, 0 );
}
return cached;
}
var request = new XMLHttpRequest();
request.overrideMimeType( 'text/plain' );
request.open( 'GET', url, true );
request.addEventListener( 'load', function ( event ) {
var response = event.target.response;
THREE.Cache.add( url, response );
if ( this.status === 200 ) {
if ( onLoad ) onLoad( response );
scope.manager.itemEnd( url );
} else if ( this.status === 0 ) {
// Some browsers return HTTP Status 0 when using non-http protocol
// e.g. 'file://' or 'data://'. Handle as success.
console.warn( 'THREE.XHRLoader: HTTP Status 0 received.' );
if ( onLoad ) onLoad( response );
scope.manager.itemEnd( url );
} else {
if ( onError ) onError( event );
scope.manager.itemError( url );
}
}, false );
if ( onProgress !== undefined ) {
request.addEventListener( 'progress', function ( event ) {
onProgress( event );
}, false );
}
request.addEventListener( 'error', function ( event ) {
if ( onError ) onError( event );
scope.manager.itemError( url );
}, false );
if ( this.responseType !== undefined ) request.responseType = this.responseType;
if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials;
request.send( null );
scope.manager.itemStart( url );
return request;
},
setPath: function ( value ) {
this.path = value;
},
setResponseType: function ( value ) {
this.responseType = value;
},
setWithCredentials: function ( value ) {
this.withCredentials = value;
}
};
// File:src/loaders/FontLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.FontLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.FontLoader.prototype = {
constructor: THREE.FontLoader,
load: function ( url, onLoad, onProgress, onError ) {
var loader = new THREE.XHRLoader( this.manager );
loader.load( url, function ( text ) {
onLoad( new THREE.Font( JSON.parse( text.substring( 65, text.length - 2 ) ) ) );
}, onProgress, onError );
}
};
// File:src/loaders/ImageLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.ImageLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.ImageLoader.prototype = {
constructor: THREE.ImageLoader,
load: function ( url, onLoad, onProgress, onError ) {
if ( this.path !== undefined ) url = this.path + url;
var scope = this;
var cached = THREE.Cache.get( url );
if ( cached !== undefined ) {
scope.manager.itemStart( url );
if ( onLoad ) {
setTimeout( function () {
onLoad( cached );
scope.manager.itemEnd( url );
}, 0 );
} else {
scope.manager.itemEnd( url );
}
return cached;
}
var image = document.createElement( 'img' );
image.addEventListener( 'load', function ( event ) {
THREE.Cache.add( url, this );
if ( onLoad ) onLoad( this );
scope.manager.itemEnd( url );
}, false );
if ( onProgress !== undefined ) {
image.addEventListener( 'progress', function ( event ) {
onProgress( event );
}, false );
}
image.addEventListener( 'error', function ( event ) {
if ( onError ) onError( event );
scope.manager.itemError( url );
}, false );
if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin;
scope.manager.itemStart( url );
image.src = url;
return image;
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
},
setPath: function ( value ) {
this.path = value;
}
};
// File:src/loaders/JSONLoader.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.JSONLoader = function ( manager ) {
if ( typeof manager === 'boolean' ) {
console.warn( 'THREE.JSONLoader: showStatus parameter has been removed from constructor.' );
manager = undefined;
}
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
this.withCredentials = false;
};
THREE.JSONLoader.prototype = {
constructor: THREE.JSONLoader,
// Deprecated
get statusDomElement () {
if ( this._statusDomElement === undefined ) {
this._statusDomElement = document.createElement( 'div' );
}
console.warn( 'THREE.JSONLoader: .statusDomElement has been removed.' );
return this._statusDomElement;
},
load: function( url, onLoad, onProgress, onError ) {
var scope = this;
var texturePath = this.texturePath && ( typeof this.texturePath === "string" ) ? this.texturePath : THREE.Loader.prototype.extractUrlBase( url );
var loader = new THREE.XHRLoader( this.manager );
loader.setWithCredentials( this.withCredentials );
loader.load( url, function ( text ) {
var json = JSON.parse( text );
var metadata = json.metadata;
if ( metadata !== undefined ) {
var type = metadata.type;
if ( type !== undefined ) {
if ( type.toLowerCase() === 'object' ) {
console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.ObjectLoader instead.' );
return;
}
if ( type.toLowerCase() === 'scene' ) {
console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.SceneLoader instead.' );
return;
}
}
}
var object = scope.parse( json, texturePath );
onLoad( object.geometry, object.materials );
}, onProgress, onError );
},
setTexturePath: function ( value ) {
this.texturePath = value;
},
parse: function ( json, texturePath ) {
var geometry = new THREE.Geometry(),
scale = ( json.scale !== undefined ) ? 1.0 / json.scale : 1.0;
parseModel( scale );
parseSkin();
parseMorphing( scale );
parseAnimations();
geometry.computeFaceNormals();
geometry.computeBoundingSphere();
function parseModel( scale ) {
function isBitSet( value, position ) {
return value & ( 1 << position );
}
var i, j, fi,
offset, zLength,
colorIndex, normalIndex, uvIndex, materialIndex,
type,
isQuad,
hasMaterial,
hasFaceVertexUv,
hasFaceNormal, hasFaceVertexNormal,
hasFaceColor, hasFaceVertexColor,
vertex, face, faceA, faceB, hex, normal,
uvLayer, uv, u, v,
faces = json.faces,
vertices = json.vertices,
normals = json.normals,
colors = json.colors,
nUvLayers = 0;
if ( json.uvs !== undefined ) {
// disregard empty arrays
for ( i = 0; i < json.uvs.length; i ++ ) {
if ( json.uvs[ i ].length ) nUvLayers ++;
}
for ( i = 0; i < nUvLayers; i ++ ) {
geometry.faceVertexUvs[ i ] = [];
}
}
offset = 0;
zLength = vertices.length;
while ( offset < zLength ) {
vertex = new THREE.Vector3();
vertex.x = vertices[ offset ++ ] * scale;
vertex.y = vertices[ offset ++ ] * scale;
vertex.z = vertices[ offset ++ ] * scale;
geometry.vertices.push( vertex );
}
offset = 0;
zLength = faces.length;
while ( offset < zLength ) {
type = faces[ offset ++ ];
isQuad = isBitSet( type, 0 );
hasMaterial = isBitSet( type, 1 );
hasFaceVertexUv = isBitSet( type, 3 );
hasFaceNormal = isBitSet( type, 4 );
hasFaceVertexNormal = isBitSet( type, 5 );
hasFaceColor = isBitSet( type, 6 );
hasFaceVertexColor = isBitSet( type, 7 );
// console.log("type", type, "bits", isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor);
if ( isQuad ) {
faceA = new THREE.Face3();
faceA.a = faces[ offset ];
faceA.b = faces[ offset + 1 ];
faceA.c = faces[ offset + 3 ];
faceB = new THREE.Face3();
faceB.a = faces[ offset + 1 ];
faceB.b = faces[ offset + 2 ];
faceB.c = faces[ offset + 3 ];
offset += 4;
if ( hasMaterial ) {
materialIndex = faces[ offset ++ ];
faceA.materialIndex = materialIndex;
faceB.materialIndex = materialIndex;
}
// to get face <=> uv index correspondence
fi = geometry.faces.length;
if ( hasFaceVertexUv ) {
for ( i = 0; i < nUvLayers; i ++ ) {
uvLayer = json.uvs[ i ];
geometry.faceVertexUvs[ i ][ fi ] = [];
geometry.faceVertexUvs[ i ][ fi + 1 ] = [];
for ( j = 0; j < 4; j ++ ) {
uvIndex = faces[ offset ++ ];
u = uvLayer[ uvIndex * 2 ];
v = uvLayer[ uvIndex * 2 + 1 ];
uv = new THREE.Vector2( u, v );
if ( j !== 2 ) geometry.faceVertexUvs[ i ][ fi ].push( uv );
if ( j !== 0 ) geometry.faceVertexUvs[ i ][ fi + 1 ].push( uv );
}
}
}
if ( hasFaceNormal ) {
normalIndex = faces[ offset ++ ] * 3;
faceA.normal.set(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
faceB.normal.copy( faceA.normal );
}
if ( hasFaceVertexNormal ) {
for ( i = 0; i < 4; i ++ ) {
normalIndex = faces[ offset ++ ] * 3;
normal = new THREE.Vector3(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
if ( i !== 2 ) faceA.vertexNormals.push( normal );
if ( i !== 0 ) faceB.vertexNormals.push( normal );
}
}
if ( hasFaceColor ) {
colorIndex = faces[ offset ++ ];
hex = colors[ colorIndex ];
faceA.color.setHex( hex );
faceB.color.setHex( hex );
}
if ( hasFaceVertexColor ) {
for ( i = 0; i < 4; i ++ ) {
colorIndex = faces[ offset ++ ];
hex = colors[ colorIndex ];
if ( i !== 2 ) faceA.vertexColors.push( new THREE.Color( hex ) );
if ( i !== 0 ) faceB.vertexColors.push( new THREE.Color( hex ) );
}
}
geometry.faces.push( faceA );
geometry.faces.push( faceB );
} else {
face = new THREE.Face3();
face.a = faces[ offset ++ ];
face.b = faces[ offset ++ ];
face.c = faces[ offset ++ ];
if ( hasMaterial ) {
materialIndex = faces[ offset ++ ];
face.materialIndex = materialIndex;
}
// to get face <=> uv index correspondence
fi = geometry.faces.length;
if ( hasFaceVertexUv ) {
for ( i = 0; i < nUvLayers; i ++ ) {
uvLayer = json.uvs[ i ];
geometry.faceVertexUvs[ i ][ fi ] = [];
for ( j = 0; j < 3; j ++ ) {
uvIndex = faces[ offset ++ ];
u = uvLayer[ uvIndex * 2 ];
v = uvLayer[ uvIndex * 2 + 1 ];
uv = new THREE.Vector2( u, v );
geometry.faceVertexUvs[ i ][ fi ].push( uv );
}
}
}
if ( hasFaceNormal ) {
normalIndex = faces[ offset ++ ] * 3;
face.normal.set(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
}
if ( hasFaceVertexNormal ) {
for ( i = 0; i < 3; i ++ ) {
normalIndex = faces[ offset ++ ] * 3;
normal = new THREE.Vector3(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
face.vertexNormals.push( normal );
}
}
if ( hasFaceColor ) {
colorIndex = faces[ offset ++ ];
face.color.setHex( colors[ colorIndex ] );
}
if ( hasFaceVertexColor ) {
for ( i = 0; i < 3; i ++ ) {
colorIndex = faces[ offset ++ ];
face.vertexColors.push( new THREE.Color( colors[ colorIndex ] ) );
}
}
geometry.faces.push( face );
}
}
};
function parseSkin() {
var influencesPerVertex = ( json.influencesPerVertex !== undefined ) ? json.influencesPerVertex : 2;
if ( json.skinWeights ) {
for ( var i = 0, l = json.skinWeights.length; i < l; i += influencesPerVertex ) {
var x = json.skinWeights[ i ];
var y = ( influencesPerVertex > 1 ) ? json.skinWeights[ i + 1 ] : 0;
var z = ( influencesPerVertex > 2 ) ? json.skinWeights[ i + 2 ] : 0;
var w = ( influencesPerVertex > 3 ) ? json.skinWeights[ i + 3 ] : 0;
geometry.skinWeights.push( new THREE.Vector4( x, y, z, w ) );
}
}
if ( json.skinIndices ) {
for ( var i = 0, l = json.skinIndices.length; i < l; i += influencesPerVertex ) {
var a = json.skinIndices[ i ];
var b = ( influencesPerVertex > 1 ) ? json.skinIndices[ i + 1 ] : 0;
var c = ( influencesPerVertex > 2 ) ? json.skinIndices[ i + 2 ] : 0;
var d = ( influencesPerVertex > 3 ) ? json.skinIndices[ i + 3 ] : 0;
geometry.skinIndices.push( new THREE.Vector4( a, b, c, d ) );
}
}
geometry.bones = json.bones;
if ( geometry.bones && geometry.bones.length > 0 && ( geometry.skinWeights.length !== geometry.skinIndices.length || geometry.skinIndices.length !== geometry.vertices.length ) ) {
console.warn( 'When skinning, number of vertices (' + geometry.vertices.length + '), skinIndices (' +
geometry.skinIndices.length + '), and skinWeights (' + geometry.skinWeights.length + ') should match.' );
}
};
function parseMorphing( scale ) {
if ( json.morphTargets !== undefined ) {
for ( var i = 0, l = json.morphTargets.length; i < l; i ++ ) {
geometry.morphTargets[ i ] = {};
geometry.morphTargets[ i ].name = json.morphTargets[ i ].name;
geometry.morphTargets[ i ].vertices = [];
var dstVertices = geometry.morphTargets[ i ].vertices;
var srcVertices = json.morphTargets[ i ].vertices;
for ( var v = 0, vl = srcVertices.length; v < vl; v += 3 ) {
var vertex = new THREE.Vector3();
vertex.x = srcVertices[ v ] * scale;
vertex.y = srcVertices[ v + 1 ] * scale;
vertex.z = srcVertices[ v + 2 ] * scale;
dstVertices.push( vertex );
}
}
}
if ( json.morphColors !== undefined && json.morphColors.length > 0 ) {
console.warn( 'THREE.JSONLoader: "morphColors" no longer supported. Using them as face colors.' );
var faces = geometry.faces;
var morphColors = json.morphColors[ 0 ].colors;
for ( var i = 0, l = faces.length; i < l; i ++ ) {
faces[ i ].color.fromArray( morphColors, i * 3 );
}
}
}
function parseAnimations() {
var outputAnimations = [];
// parse old style Bone/Hierarchy animations
var animations = [];
if ( json.animation !== undefined ) {
animations.push( json.animation );
}
if ( json.animations !== undefined ) {
if ( json.animations.length ) {
animations = animations.concat( json.animations );
} else {
animations.push( json.animations );
}
}
for ( var i = 0; i < animations.length; i ++ ) {
var clip = THREE.AnimationClip.parseAnimation( animations[ i ], geometry.bones );
if ( clip ) outputAnimations.push( clip );
}
// parse implicit morph animations
if ( geometry.morphTargets ) {
// TODO: Figure out what an appropraite FPS is for morph target animations -- defaulting to 10, but really it is completely arbitrary.
var morphAnimationClips = THREE.AnimationClip.CreateClipsFromMorphTargetSequences( geometry.morphTargets, 10 );
outputAnimations = outputAnimations.concat( morphAnimationClips );
}
if ( outputAnimations.length > 0 ) geometry.animations = outputAnimations;
};
if ( json.materials === undefined || json.materials.length === 0 ) {
return { geometry: geometry };
} else {
var materials = THREE.Loader.prototype.initMaterials( json.materials, texturePath, this.crossOrigin );
return { geometry: geometry, materials: materials };
}
}
};
// File:src/loaders/LoadingManager.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.LoadingManager = function ( onLoad, onProgress, onError ) {
var scope = this;
var isLoading = false, itemsLoaded = 0, itemsTotal = 0;
this.onStart = undefined;
this.onLoad = onLoad;
this.onProgress = onProgress;
this.onError = onError;
this.itemStart = function ( url ) {
itemsTotal ++;
if ( isLoading === false ) {
if ( scope.onStart !== undefined ) {
scope.onStart( url, itemsLoaded, itemsTotal );
}
}
isLoading = true;
};
this.itemEnd = function ( url ) {
itemsLoaded ++;
if ( scope.onProgress !== undefined ) {
scope.onProgress( url, itemsLoaded, itemsTotal );
}
if ( itemsLoaded === itemsTotal ) {
isLoading = false;
if ( scope.onLoad !== undefined ) {
scope.onLoad();
}
}
};
this.itemError = function ( url ) {
if ( scope.onError !== undefined ) {
scope.onError( url );
}
};
};
THREE.DefaultLoadingManager = new THREE.LoadingManager();
// File:src/loaders/BufferGeometryLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.BufferGeometryLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.BufferGeometryLoader.prototype = {
constructor: THREE.BufferGeometryLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var loader = new THREE.XHRLoader( scope.manager );
loader.load( url, function ( text ) {
onLoad( scope.parse( JSON.parse( text ) ) );
}, onProgress, onError );
},
parse: function ( json ) {
var geometry = new THREE.BufferGeometry();
var index = json.data.index;
var TYPED_ARRAYS = {
'Int8Array': Int8Array,
'Uint8Array': Uint8Array,
'Uint8ClampedArray': Uint8ClampedArray,
'Int16Array': Int16Array,
'Uint16Array': Uint16Array,
'Int32Array': Int32Array,
'Uint32Array': Uint32Array,
'Float32Array': Float32Array,
'Float64Array': Float64Array
};
if ( index !== undefined ) {
var typedArray = new TYPED_ARRAYS[ index.type ]( index.array );
geometry.setIndex( new THREE.BufferAttribute( typedArray, 1 ) );
}
var attributes = json.data.attributes;
for ( var key in attributes ) {
var attribute = attributes[ key ];
var typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array );
geometry.addAttribute( key, new THREE.BufferAttribute( typedArray, attribute.itemSize, attribute.normalized ) );
}
var groups = json.data.groups || json.data.drawcalls || json.data.offsets;
if ( groups !== undefined ) {
for ( var i = 0, n = groups.length; i !== n; ++ i ) {
var group = groups[ i ];
geometry.addGroup( group.start, group.count, group.materialIndex );
}
}
var boundingSphere = json.data.boundingSphere;
if ( boundingSphere !== undefined ) {
var center = new THREE.Vector3();
if ( boundingSphere.center !== undefined ) {
center.fromArray( boundingSphere.center );
}
geometry.boundingSphere = new THREE.Sphere( center, boundingSphere.radius );
}
return geometry;
}
};
// File:src/loaders/MaterialLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.MaterialLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
this.textures = {};
};
THREE.MaterialLoader.prototype = {
constructor: THREE.MaterialLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var loader = new THREE.XHRLoader( scope.manager );
loader.load( url, function ( text ) {
onLoad( scope.parse( JSON.parse( text ) ) );
}, onProgress, onError );
},
setTextures: function ( value ) {
this.textures = value;
},
getTexture: function ( name ) {
var textures = this.textures;
if ( textures[ name ] === undefined ) {
console.warn( 'THREE.MaterialLoader: Undefined texture', name );
}
return textures[ name ];
},
parse: function ( json ) {
var material = new THREE[ json.type ];
if ( json.uuid !== undefined ) material.uuid = json.uuid;
if ( json.name !== undefined ) material.name = json.name;
if ( json.color !== undefined ) material.color.setHex( json.color );
if ( json.roughness !== undefined ) material.roughness = json.roughness;
if ( json.metalness !== undefined ) material.metalness = json.metalness;
if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive );
if ( json.specular !== undefined ) material.specular.setHex( json.specular );
if ( json.shininess !== undefined ) material.shininess = json.shininess;
if ( json.uniforms !== undefined ) material.uniforms = json.uniforms;
if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader;
if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader;
if ( json.vertexColors !== undefined ) material.vertexColors = json.vertexColors;
if ( json.shading !== undefined ) material.shading = json.shading;
if ( json.blending !== undefined ) material.blending = json.blending;
if ( json.side !== undefined ) material.side = json.side;
if ( json.opacity !== undefined ) material.opacity = json.opacity;
if ( json.transparent !== undefined ) material.transparent = json.transparent;
if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest;
if ( json.depthTest !== undefined ) material.depthTest = json.depthTest;
if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite;
if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite;
if ( json.wireframe !== undefined ) material.wireframe = json.wireframe;
if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth;
// for PointsMaterial
if ( json.size !== undefined ) material.size = json.size;
if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation;
// maps
if ( json.map !== undefined ) material.map = this.getTexture( json.map );
if ( json.alphaMap !== undefined ) {
material.alphaMap = this.getTexture( json.alphaMap );
material.transparent = true;
}
if ( json.bumpMap !== undefined ) material.bumpMap = this.getTexture( json.bumpMap );
if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale;
if ( json.normalMap !== undefined ) material.normalMap = this.getTexture( json.normalMap );
if ( json.normalScale !== undefined ) {
var normalScale = json.normalScale;
if ( Array.isArray( normalScale ) === false ) {
// Blender exporter used to export a scalar. See #7459
normalScale = [ normalScale, normalScale ];
}
material.normalScale = new THREE.Vector2().fromArray( normalScale );
}
if ( json.displacementMap !== undefined ) material.displacementMap = this.getTexture( json.displacementMap );
if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale;
if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias;
if ( json.roughnessMap !== undefined ) material.roughnessMap = this.getTexture( json.roughnessMap );
if ( json.metalnessMap !== undefined ) material.metalnessMap = this.getTexture( json.metalnessMap );
if ( json.emissiveMap !== undefined ) material.emissiveMap = this.getTexture( json.emissiveMap );
if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity;
if ( json.specularMap !== undefined ) material.specularMap = this.getTexture( json.specularMap );
if ( json.envMap !== undefined ) {
material.envMap = this.getTexture( json.envMap );
material.combine = THREE.MultiplyOperation;
}
if ( json.reflectivity ) material.reflectivity = json.reflectivity;
if ( json.lightMap !== undefined ) material.lightMap = this.getTexture( json.lightMap );
if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity;
if ( json.aoMap !== undefined ) material.aoMap = this.getTexture( json.aoMap );
if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity;
// MultiMaterial
if ( json.materials !== undefined ) {
for ( var i = 0, l = json.materials.length; i < l; i ++ ) {
material.materials.push( this.parse( json.materials[ i ] ) );
}
}
return material;
}
};
// File:src/loaders/ObjectLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.ObjectLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
this.texturePath = '';
};
THREE.ObjectLoader.prototype = {
constructor: THREE.ObjectLoader,
load: function ( url, onLoad, onProgress, onError ) {
if ( this.texturePath === '' ) {
this.texturePath = url.substring( 0, url.lastIndexOf( '/' ) + 1 );
}
var scope = this;
var loader = new THREE.XHRLoader( scope.manager );
loader.load( url, function ( text ) {
scope.parse( JSON.parse( text ), onLoad );
}, onProgress, onError );
},
setTexturePath: function ( value ) {
this.texturePath = value;
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
},
parse: function ( json, onLoad ) {
var geometries = this.parseGeometries( json.geometries );
var images = this.parseImages( json.images, function () {
if ( onLoad !== undefined ) onLoad( object );
} );
var textures = this.parseTextures( json.textures, images );
var materials = this.parseMaterials( json.materials, textures );
var object = this.parseObject( json.object, geometries, materials );
if ( json.animations ) {
object.animations = this.parseAnimations( json.animations );
}
if ( json.images === undefined || json.images.length === 0 ) {
if ( onLoad !== undefined ) onLoad( object );
}
return object;
},
parseGeometries: function ( json ) {
var geometries = {};
if ( json !== undefined ) {
var geometryLoader = new THREE.JSONLoader();
var bufferGeometryLoader = new THREE.BufferGeometryLoader();
for ( var i = 0, l = json.length; i < l; i ++ ) {
var geometry;
var data = json[ i ];
switch ( data.type ) {
case 'PlaneGeometry':
case 'PlaneBufferGeometry':
geometry = new THREE[ data.type ](
data.width,
data.height,
data.widthSegments,
data.heightSegments
);
break;
case 'BoxGeometry':
case 'BoxBufferGeometry':
case 'CubeGeometry': // backwards compatible
geometry = new THREE[ data.type ](
data.width,
data.height,
data.depth,
data.widthSegments,
data.heightSegments,
data.depthSegments
);
break;
case 'CircleGeometry':
case 'CircleBufferGeometry':
geometry = new THREE[ data.type ](
data.radius,
data.segments,
data.thetaStart,
data.thetaLength
);
break;
case 'CylinderGeometry':
case 'CylinderBufferGeometry':
geometry = new THREE[ data.type ](
data.radiusTop,
data.radiusBottom,
data.height,
data.radialSegments,
data.heightSegments,
data.openEnded,
data.thetaStart,
data.thetaLength
);
break;
case 'SphereGeometry':
case 'SphereBufferGeometry':
geometry = new THREE[ data.type ](
data.radius,
data.widthSegments,
data.heightSegments,
data.phiStart,
data.phiLength,
data.thetaStart,
data.thetaLength
);
break;
case 'DodecahedronGeometry':
geometry = new THREE.DodecahedronGeometry(
data.radius,
data.detail
);
break;
case 'IcosahedronGeometry':
geometry = new THREE.IcosahedronGeometry(
data.radius,
data.detail
);
break;
case 'OctahedronGeometry':
geometry = new THREE.OctahedronGeometry(
data.radius,
data.detail
);
break;
case 'TetrahedronGeometry':
geometry = new THREE.TetrahedronGeometry(
data.radius,
data.detail
);
break;
case 'RingGeometry':
case 'RingBufferGeometry':
geometry = new THREE[ data.type ](
data.innerRadius,
data.outerRadius,
data.thetaSegments,
data.phiSegments,
data.thetaStart,
data.thetaLength
);
break;
case 'TorusGeometry':
case 'TorusBufferGeometry':
geometry = new THREE[ data.type ](
data.radius,
data.tube,
data.radialSegments,
data.tubularSegments,
data.arc
);
break;
case 'TorusKnotGeometry':
case 'TorusKnotBufferGeometry':
geometry = new THREE[ data.type ](
data.radius,
data.tube,
data.tubularSegments,
data.radialSegments,
data.p,
data.q
);
break;
case 'LatheGeometry':
case 'LatheBufferGeometry':
geometry = new THREE[ data.type ](
data.points,
data.segments,
data.phiStart,
data.phiLength
);
break;
case 'BufferGeometry':
geometry = bufferGeometryLoader.parse( data );
break;
case 'Geometry':
geometry = geometryLoader.parse( data.data, this.texturePath ).geometry;
break;
default:
console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' );
continue;
}
geometry.uuid = data.uuid;
if ( data.name !== undefined ) geometry.name = data.name;
geometries[ data.uuid ] = geometry;
}
}
return geometries;
},
parseMaterials: function ( json, textures ) {
var materials = {};
if ( json !== undefined ) {
var loader = new THREE.MaterialLoader();
loader.setTextures( textures );
for ( var i = 0, l = json.length; i < l; i ++ ) {
var material = loader.parse( json[ i ] );
materials[ material.uuid ] = material;
}
}
return materials;
},
parseAnimations: function ( json ) {
var animations = [];
for ( var i = 0; i < json.length; i ++ ) {
var clip = THREE.AnimationClip.parse( json[ i ] );
animations.push( clip );
}
return animations;
},
parseImages: function ( json, onLoad ) {
var scope = this;
var images = {};
function loadImage( url ) {
scope.manager.itemStart( url );
return loader.load( url, function () {
scope.manager.itemEnd( url );
} );
}
if ( json !== undefined && json.length > 0 ) {
var manager = new THREE.LoadingManager( onLoad );
var loader = new THREE.ImageLoader( manager );
loader.setCrossOrigin( this.crossOrigin );
for ( var i = 0, l = json.length; i < l; i ++ ) {
var image = json[ i ];
var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.texturePath + image.url;
images[ image.uuid ] = loadImage( path );
}
}
return images;
},
parseTextures: function ( json, images ) {
function parseConstant( value ) {
if ( typeof( value ) === 'number' ) return value;
console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value );
return THREE[ value ];
}
var textures = {};
if ( json !== undefined ) {
for ( var i = 0, l = json.length; i < l; i ++ ) {
var data = json[ i ];
if ( data.image === undefined ) {
console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid );
}
if ( images[ data.image ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined image', data.image );
}
var texture = new THREE.Texture( images[ data.image ] );
texture.needsUpdate = true;
texture.uuid = data.uuid;
if ( data.name !== undefined ) texture.name = data.name;
if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping );
if ( data.offset !== undefined ) texture.offset = new THREE.Vector2( data.offset[ 0 ], data.offset[ 1 ] );
if ( data.repeat !== undefined ) texture.repeat = new THREE.Vector2( data.repeat[ 0 ], data.repeat[ 1 ] );
if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter );
if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter );
if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy;
if ( Array.isArray( data.wrap ) ) {
texture.wrapS = parseConstant( data.wrap[ 0 ] );
texture.wrapT = parseConstant( data.wrap[ 1 ] );
}
textures[ data.uuid ] = texture;
}
}
return textures;
},
parseObject: function () {
var matrix = new THREE.Matrix4();
return function ( data, geometries, materials ) {
var object;
function getGeometry( name ) {
if ( geometries[ name ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined geometry', name );
}
return geometries[ name ];
}
function getMaterial( name ) {
if ( name === undefined ) return undefined;
if ( materials[ name ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined material', name );
}
return materials[ name ];
}
switch ( data.type ) {
case 'Scene':
object = new THREE.Scene();
break;
case 'PerspectiveCamera':
object = new THREE.PerspectiveCamera(
data.fov, data.aspect, data.near, data.far );
if ( data.focus !== undefined ) object.focus = data.focus;
if ( data.zoom !== undefined ) object.zoom = data.zoom;
if ( data.filmGauge !== undefined ) object.filmGauge = data.filmGauge;
if ( data.filmOffset !== undefined ) object.filmOffset = data.filmOffset;
if ( data.view !== undefined ) object.view = Object.assign( {}, data.view );
break;
case 'OrthographicCamera':
object = new THREE.OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far );
break;
case 'AmbientLight':
object = new THREE.AmbientLight( data.color, data.intensity );
break;
case 'DirectionalLight':
object = new THREE.DirectionalLight( data.color, data.intensity );
break;
case 'PointLight':
object = new THREE.PointLight( data.color, data.intensity, data.distance, data.decay );
break;
case 'SpotLight':
object = new THREE.SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay );
break;
case 'HemisphereLight':
object = new THREE.HemisphereLight( data.color, data.groundColor, data.intensity );
break;
case 'Mesh':
var geometry = getGeometry( data.geometry );
var material = getMaterial( data.material );
if ( geometry.bones && geometry.bones.length > 0 ) {
object = new THREE.SkinnedMesh( geometry, material );
} else {
object = new THREE.Mesh( geometry, material );
}
break;
case 'LOD':
object = new THREE.LOD();
break;
case 'Line':
object = new THREE.Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode );
break;
case 'PointCloud':
case 'Points':
object = new THREE.Points( getGeometry( data.geometry ), getMaterial( data.material ) );
break;
case 'Sprite':
object = new THREE.Sprite( getMaterial( data.material ) );
break;
case 'Group':
object = new THREE.Group();
break;
default:
object = new THREE.Object3D();
}
object.uuid = data.uuid;
if ( data.name !== undefined ) object.name = data.name;
if ( data.matrix !== undefined ) {
matrix.fromArray( data.matrix );
matrix.decompose( object.position, object.quaternion, object.scale );
} else {
if ( data.position !== undefined ) object.position.fromArray( data.position );
if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation );
if ( data.scale !== undefined ) object.scale.fromArray( data.scale );
}
if ( data.castShadow !== undefined ) object.castShadow = data.castShadow;
if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow;
if ( data.visible !== undefined ) object.visible = data.visible;
if ( data.userData !== undefined ) object.userData = data.userData;
if ( data.children !== undefined ) {
for ( var child in data.children ) {
object.add( this.parseObject( data.children[ child ], geometries, materials ) );
}
}
if ( data.type === 'LOD' ) {
var levels = data.levels;
for ( var l = 0; l < levels.length; l ++ ) {
var level = levels[ l ];
var child = object.getObjectByProperty( 'uuid', level.object );
if ( child !== undefined ) {
object.addLevel( child, level.distance );
}
}
}
return object;
};
}()
};
// File:src/loaders/TextureLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.TextureLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.TextureLoader.prototype = {
constructor: THREE.TextureLoader,
load: function ( url, onLoad, onProgress, onError ) {
var texture = new THREE.Texture();
var loader = new THREE.ImageLoader( this.manager );
loader.setCrossOrigin( this.crossOrigin );
loader.setPath( this.path );
loader.load( url, function ( image ) {
texture.image = image;
texture.needsUpdate = true;
if ( onLoad !== undefined ) {
onLoad( texture );
}
}, onProgress, onError );
return texture;
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
},
setPath: function ( value ) {
this.path = value;
}
};
// File:src/loaders/CubeTextureLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.CubeTextureLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.CubeTextureLoader.prototype = {
constructor: THREE.CubeTextureLoader,
load: function ( urls, onLoad, onProgress, onError ) {
var texture = new THREE.CubeTexture();
var loader = new THREE.ImageLoader( this.manager );
loader.setCrossOrigin( this.crossOrigin );
loader.setPath( this.path );
var loaded = 0;
function loadTexture( i ) {
loader.load( urls[ i ], function ( image ) {
texture.images[ i ] = image;
loaded ++;
if ( loaded === 6 ) {
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture );
}
}, undefined, onError );
}
for ( var i = 0; i < urls.length; ++ i ) {
loadTexture( i );
}
return texture;
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
},
setPath: function ( value ) {
this.path = value;
}
};
// File:src/loaders/BinaryTextureLoader.js
/**
* @author Nikos M. / https://github.com/foo123/
*
* Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
*/
THREE.DataTextureLoader = THREE.BinaryTextureLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
// override in sub classes
this._parser = null;
};
THREE.BinaryTextureLoader.prototype = {
constructor: THREE.BinaryTextureLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var texture = new THREE.DataTexture();
var loader = new THREE.XHRLoader( this.manager );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( buffer ) {
var texData = scope._parser( buffer );
if ( ! texData ) return;
if ( undefined !== texData.image ) {
texture.image = texData.image;
} else if ( undefined !== texData.data ) {
texture.image.width = texData.width;
texture.image.height = texData.height;
texture.image.data = texData.data;
}
texture.wrapS = undefined !== texData.wrapS ? texData.wrapS : THREE.ClampToEdgeWrapping;
texture.wrapT = undefined !== texData.wrapT ? texData.wrapT : THREE.ClampToEdgeWrapping;
texture.magFilter = undefined !== texData.magFilter ? texData.magFilter : THREE.LinearFilter;
texture.minFilter = undefined !== texData.minFilter ? texData.minFilter : THREE.LinearMipMapLinearFilter;
texture.anisotropy = undefined !== texData.anisotropy ? texData.anisotropy : 1;
if ( undefined !== texData.format ) {
texture.format = texData.format;
}
if ( undefined !== texData.type ) {
texture.type = texData.type;
}
if ( undefined !== texData.mipmaps ) {
texture.mipmaps = texData.mipmaps;
}
if ( 1 === texData.mipmapCount ) {
texture.minFilter = THREE.LinearFilter;
}
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture, texData );
}, onProgress, onError );
return texture;
}
};
// File:src/loaders/CompressedTextureLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*
* Abstract Base class to block based textures loader (dds, pvr, ...)
*/
THREE.CompressedTextureLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
// override in sub classes
this._parser = null;
};
THREE.CompressedTextureLoader.prototype = {
constructor: THREE.CompressedTextureLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var images = [];
var texture = new THREE.CompressedTexture();
texture.image = images;
var loader = new THREE.XHRLoader( this.manager );
loader.setPath( this.path );
loader.setResponseType( 'arraybuffer' );
function loadTexture( i ) {
loader.load( url[ i ], function ( buffer ) {
var texDatas = scope._parser( buffer, true );
images[ i ] = {
width: texDatas.width,
height: texDatas.height,
format: texDatas.format,
mipmaps: texDatas.mipmaps
};
loaded += 1;
if ( loaded === 6 ) {
if ( texDatas.mipmapCount === 1 )
texture.minFilter = THREE.LinearFilter;
texture.format = texDatas.format;
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture );
}
}, onProgress, onError );
}
if ( Array.isArray( url ) ) {
var loaded = 0;
for ( var i = 0, il = url.length; i < il; ++ i ) {
loadTexture( i );
}
} else {
// compressed cubemap texture stored in a single DDS file
loader.load( url, function ( buffer ) {
var texDatas = scope._parser( buffer, true );
if ( texDatas.isCubemap ) {
var faces = texDatas.mipmaps.length / texDatas.mipmapCount;
for ( var f = 0; f < faces; f ++ ) {
images[ f ] = { mipmaps : [] };
for ( var i = 0; i < texDatas.mipmapCount; i ++ ) {
images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] );
images[ f ].format = texDatas.format;
images[ f ].width = texDatas.width;
images[ f ].height = texDatas.height;
}
}
} else {
texture.image.width = texDatas.width;
texture.image.height = texDatas.height;
texture.mipmaps = texDatas.mipmaps;
}
if ( texDatas.mipmapCount === 1 ) {
texture.minFilter = THREE.LinearFilter;
}
texture.format = texDatas.format;
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture );
}, onProgress, onError );
}
return texture;
},
setPath: function ( value ) {
this.path = value;
}
};
// File:src/materials/Material.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Material = function () {
Object.defineProperty( this, 'id', { value: THREE.MaterialIdCount ++ } );
this.uuid = THREE.Math.generateUUID();
this.name = '';
this.type = 'Material';
this.side = THREE.FrontSide;
this.opacity = 1;
this.transparent = false;
this.blending = THREE.NormalBlending;
this.blendSrc = THREE.SrcAlphaFactor;
this.blendDst = THREE.OneMinusSrcAlphaFactor;
this.blendEquation = THREE.AddEquation;
this.blendSrcAlpha = null;
this.blendDstAlpha = null;
this.blendEquationAlpha = null;
this.depthFunc = THREE.LessEqualDepth;
this.depthTest = true;
this.depthWrite = true;
this.clippingPlanes = null;
this.clipShadows = false;
this.colorWrite = true;
this.precision = null; // override the renderer's default precision for this material
this.polygonOffset = false;
this.polygonOffsetFactor = 0;
this.polygonOffsetUnits = 0;
this.alphaTest = 0;
this.premultipliedAlpha = false;
this.overdraw = 0; // Overdrawn pixels (typically between 0 and 1) for fixing antialiasing gaps in CanvasRenderer
this.visible = true;
this._needsUpdate = true;
};
THREE.Material.prototype = {
constructor: THREE.Material,
get needsUpdate () {
return this._needsUpdate;
},
set needsUpdate ( value ) {
if ( value === true ) this.update();
this._needsUpdate = value;
},
setValues: function ( values ) {
if ( values === undefined ) return;
for ( var key in values ) {
var newValue = values[ key ];
if ( newValue === undefined ) {
console.warn( "THREE.Material: '" + key + "' parameter is undefined." );
continue;
}
var currentValue = this[ key ];
if ( currentValue === undefined ) {
console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." );
continue;
}
if ( currentValue instanceof THREE.Color ) {
currentValue.set( newValue );
} else if ( currentValue instanceof THREE.Vector3 && newValue instanceof THREE.Vector3 ) {
currentValue.copy( newValue );
} else if ( key === 'overdraw' ) {
// ensure overdraw is backwards-compatible with legacy boolean type
this[ key ] = Number( newValue );
} else {
this[ key ] = newValue;
}
}
},
toJSON: function ( meta ) {
var isRoot = meta === undefined;
if ( isRoot ) {
meta = {
textures: {},
images: {}
};
}
var data = {
metadata: {
version: 4.4,
type: 'Material',
generator: 'Material.toJSON'
}
};
// standard Material serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.color instanceof THREE.Color ) data.color = this.color.getHex();
if ( this.roughness !== 0.5 ) data.roughness = this.roughness;
if ( this.metalness !== 0.5 ) data.metalness = this.metalness;
if ( this.emissive instanceof THREE.Color ) data.emissive = this.emissive.getHex();
if ( this.specular instanceof THREE.Color ) data.specular = this.specular.getHex();
if ( this.shininess !== undefined ) data.shininess = this.shininess;
if ( this.map instanceof THREE.Texture ) data.map = this.map.toJSON( meta ).uuid;
if ( this.alphaMap instanceof THREE.Texture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid;
if ( this.lightMap instanceof THREE.Texture ) data.lightMap = this.lightMap.toJSON( meta ).uuid;
if ( this.bumpMap instanceof THREE.Texture ) {
data.bumpMap = this.bumpMap.toJSON( meta ).uuid;
data.bumpScale = this.bumpScale;
}
if ( this.normalMap instanceof THREE.Texture ) {
data.normalMap = this.normalMap.toJSON( meta ).uuid;
data.normalScale = this.normalScale.toArray();
}
if ( this.displacementMap instanceof THREE.Texture ) {
data.displacementMap = this.displacementMap.toJSON( meta ).uuid;
data.displacementScale = this.displacementScale;
data.displacementBias = this.displacementBias;
}
if ( this.roughnessMap instanceof THREE.Texture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid;
if ( this.metalnessMap instanceof THREE.Texture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid;
if ( this.emissiveMap instanceof THREE.Texture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid;
if ( this.specularMap instanceof THREE.Texture ) data.specularMap = this.specularMap.toJSON( meta ).uuid;
if ( this.envMap instanceof THREE.Texture ) {
data.envMap = this.envMap.toJSON( meta ).uuid;
data.reflectivity = this.reflectivity; // Scale behind envMap
}
if ( this.size !== undefined ) data.size = this.size;
if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation;
if ( this.vertexColors !== undefined && this.vertexColors !== THREE.NoColors ) data.vertexColors = this.vertexColors;
if ( this.shading !== undefined && this.shading !== THREE.SmoothShading ) data.shading = this.shading;
if ( this.blending !== undefined && this.blending !== THREE.NormalBlending ) data.blending = this.blending;
if ( this.side !== undefined && this.side !== THREE.FrontSide ) data.side = this.side;
if ( this.opacity < 1 ) data.opacity = this.opacity;
if ( this.transparent === true ) data.transparent = this.transparent;
if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest;
if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha;
if ( this.wireframe === true ) data.wireframe = this.wireframe;
if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth;
// TODO: Copied from Object3D.toJSON
function extractFromCache ( cache ) {
var values = [];
for ( var key in cache ) {
var data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
if ( isRoot ) {
var textures = extractFromCache( meta.textures );
var images = extractFromCache( meta.images );
if ( textures.length > 0 ) data.textures = textures;
if ( images.length > 0 ) data.images = images;
}
return data;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.name = source.name;
this.side = source.side;
this.opacity = source.opacity;
this.transparent = source.transparent;
this.blending = source.blending;
this.blendSrc = source.blendSrc;
this.blendDst = source.blendDst;
this.blendEquation = source.blendEquation;
this.blendSrcAlpha = source.blendSrcAlpha;
this.blendDstAlpha = source.blendDstAlpha;
this.blendEquationAlpha = source.blendEquationAlpha;
this.depthFunc = source.depthFunc;
this.depthTest = source.depthTest;
this.depthWrite = source.depthWrite;
this.colorWrite = source.colorWrite;
this.precision = source.precision;
this.polygonOffset = source.polygonOffset;
this.polygonOffsetFactor = source.polygonOffsetFactor;
this.polygonOffsetUnits = source.polygonOffsetUnits;
this.alphaTest = source.alphaTest;
this.premultipliedAlpha = source.premultipliedAlpha;
this.overdraw = source.overdraw;
this.visible = source.visible;
this.clipShadows = source.clipShadows;
var srcPlanes = source.clippingPlanes,
dstPlanes = null;
if ( srcPlanes !== null ) {
var n = srcPlanes.length;
dstPlanes = new Array( n );
for ( var i = 0; i !== n; ++ i )
dstPlanes[ i ] = srcPlanes[ i ].clone();
}
this.clippingPlanes = dstPlanes;
return this;
},
update: function () {
this.dispatchEvent( { type: 'update' } );
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
};
THREE.EventDispatcher.prototype.apply( THREE.Material.prototype );
THREE.MaterialIdCount = 0;
// File:src/materials/LineBasicMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* linewidth: <float>,
* linecap: "round",
* linejoin: "round",
*
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* vertexColors: <bool>
*
* fog: <bool>
* }
*/
THREE.LineBasicMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'LineBasicMaterial';
this.color = new THREE.Color( 0xffffff );
this.linewidth = 1;
this.linecap = 'round';
this.linejoin = 'round';
this.blending = THREE.NormalBlending;
this.vertexColors = THREE.NoColors;
this.fog = true;
this.setValues( parameters );
};
THREE.LineBasicMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.LineBasicMaterial.prototype.constructor = THREE.LineBasicMaterial;
THREE.LineBasicMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.linewidth = source.linewidth;
this.linecap = source.linecap;
this.linejoin = source.linejoin;
this.vertexColors = source.vertexColors;
this.fog = source.fog;
return this;
};
// File:src/materials/LineDashedMaterial.js
/**
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* linewidth: <float>,
*
* scale: <float>,
* dashSize: <float>,
* gapSize: <float>,
*
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* vertexColors: THREE.NoColors / THREE.FaceColors / THREE.VertexColors
*
* fog: <bool>
* }
*/
THREE.LineDashedMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'LineDashedMaterial';
this.color = new THREE.Color( 0xffffff );
this.linewidth = 1;
this.scale = 1;
this.dashSize = 3;
this.gapSize = 1;
this.blending = THREE.NormalBlending;
this.vertexColors = THREE.NoColors;
this.fog = true;
this.setValues( parameters );
};
THREE.LineDashedMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.LineDashedMaterial.prototype.constructor = THREE.LineDashedMaterial;
THREE.LineDashedMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.linewidth = source.linewidth;
this.scale = source.scale;
this.dashSize = source.dashSize;
this.gapSize = source.gapSize;
this.vertexColors = source.vertexColors;
this.fog = source.fog;
return this;
};
// File:src/materials/MeshBasicMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* shading: THREE.SmoothShading,
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors,
*
* skinning: <bool>,
* morphTargets: <bool>,
*
* fog: <bool>
* }
*/
THREE.MeshBasicMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'MeshBasicMaterial';
this.color = new THREE.Color( 0xffffff ); // emissive
this.map = null;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = THREE.MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.fog = true;
this.shading = THREE.SmoothShading;
this.blending = THREE.NormalBlending;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.vertexColors = THREE.NoColors;
this.skinning = false;
this.morphTargets = false;
this.setValues( parameters );
};
THREE.MeshBasicMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.MeshBasicMaterial.prototype.constructor = THREE.MeshBasicMaterial;
THREE.MeshBasicMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.fog = source.fog;
this.shading = source.shading;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.vertexColors = source.vertexColors;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
return this;
};
// File:src/materials/MeshDepthMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author bhouston / https://clara.io
* @author WestLangley / http://github.com/WestLangley
*
* parameters = {
*
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>
* }
*/
THREE.MeshDepthMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'MeshDepthMaterial';
this.depthPacking = THREE.BasicDepthPacking;
this.skinning = false;
this.morphTargets = false;
this.map = null;
this.alphaMap = null;
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.setValues( parameters );
};
THREE.MeshDepthMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.MeshDepthMaterial.prototype.constructor = THREE.MeshDepthMaterial;
THREE.MeshDepthMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.depthPacking = source.depthPacking;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.map = source.map;
this.alphaMap = source.alphaMap;
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
return this;
};
// File:src/materials/MeshLambertMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>,
*
* fog: <bool>
* }
*/
THREE.MeshLambertMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'MeshLambertMaterial';
this.color = new THREE.Color( 0xffffff ); // diffuse
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new THREE.Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = THREE.MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.fog = true;
this.blending = THREE.NormalBlending;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.vertexColors = THREE.NoColors;
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
};
THREE.MeshLambertMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.MeshLambertMaterial.prototype.constructor = THREE.MeshLambertMaterial;
THREE.MeshLambertMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.fog = source.fog;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.vertexColors = source.vertexColors;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
// File:src/materials/MeshNormalMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
*
* parameters = {
* opacity: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>
* }
*/
THREE.MeshNormalMaterial = function ( parameters ) {
THREE.Material.call( this, parameters );
this.type = 'MeshNormalMaterial';
this.wireframe = false;
this.wireframeLinewidth = 1;
this.morphTargets = false;
this.setValues( parameters );
};
THREE.MeshNormalMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.MeshNormalMaterial.prototype.constructor = THREE.MeshNormalMaterial;
THREE.MeshNormalMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
return this;
};
// File:src/materials/MeshPhongMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* specular: <hex>,
* shininess: <float>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* shading: THREE.SmoothShading,
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>,
*
* fog: <bool>
* }
*/
THREE.MeshPhongMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'MeshPhongMaterial';
this.color = new THREE.Color( 0xffffff ); // diffuse
this.specular = new THREE.Color( 0x111111 );
this.shininess = 30;
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new THREE.Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalScale = new THREE.Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = THREE.MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.fog = true;
this.shading = THREE.SmoothShading;
this.blending = THREE.NormalBlending;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.vertexColors = THREE.NoColors;
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
};
THREE.MeshPhongMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.MeshPhongMaterial.prototype.constructor = THREE.MeshPhongMaterial;
THREE.MeshPhongMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.specular.copy( source.specular );
this.shininess = source.shininess;
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.fog = source.fog;
this.shading = source.shading;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.vertexColors = source.vertexColors;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
// File:src/materials/MeshStandardMaterial.js
/**
* @author WestLangley / http://github.com/WestLangley
*
* parameters = {
* color: <hex>,
* roughness: <float>,
* metalness: <float>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* roughnessMap: new THREE.Texture( <Image> ),
*
* metalnessMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
* envMapIntensity: <float>
*
* refractionRatio: <float>,
*
* shading: THREE.SmoothShading,
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>,
*
* fog: <bool>
* }
*/
THREE.MeshStandardMaterial = function ( parameters ) {
THREE.Material.call( this );
this.defines = { 'STANDARD': '' };
this.type = 'MeshStandardMaterial';
this.color = new THREE.Color( 0xffffff ); // diffuse
this.roughness = 0.5;
this.metalness = 0.5;
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new THREE.Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalScale = new THREE.Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.roughnessMap = null;
this.metalnessMap = null;
this.alphaMap = null;
this.envMap = null;
this.envMapIntensity = 1.0;
this.refractionRatio = 0.98;
this.fog = true;
this.shading = THREE.SmoothShading;
this.blending = THREE.NormalBlending;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.vertexColors = THREE.NoColors;
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
};
THREE.MeshStandardMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.MeshStandardMaterial.prototype.constructor = THREE.MeshStandardMaterial;
THREE.MeshStandardMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.defines = { 'STANDARD': '' };
this.color.copy( source.color );
this.roughness = source.roughness;
this.metalness = source.metalness;
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.roughnessMap = source.roughnessMap;
this.metalnessMap = source.metalnessMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.envMapIntensity = source.envMapIntensity;
this.refractionRatio = source.refractionRatio;
this.fog = source.fog;
this.shading = source.shading;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.vertexColors = source.vertexColors;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
// File:src/materials/MeshPhysicalMaterial.js
/**
* @author WestLangley / http://github.com/WestLangley
*
* parameters = {
* reflectivity: <float>
* }
*/
THREE.MeshPhysicalMaterial = function ( parameters ) {
THREE.MeshStandardMaterial.call( this );
this.defines = { 'PHYSICAL': '' };
this.type = 'MeshPhysicalMaterial';
this.reflectivity = 0.5; // maps to F0 = 0.04
this.setValues( parameters );
};
THREE.MeshPhysicalMaterial.prototype = Object.create( THREE.MeshStandardMaterial.prototype );
THREE.MeshPhysicalMaterial.prototype.constructor = THREE.MeshPhysicalMaterial;
THREE.MeshPhysicalMaterial.prototype.copy = function ( source ) {
THREE.MeshStandardMaterial.prototype.copy.call( this, source );
this.defines = { 'PHYSICAL': '' };
this.reflectivity = source.reflectivity;
return this;
};
// File:src/materials/MultiMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.MultiMaterial = function ( materials ) {
this.uuid = THREE.Math.generateUUID();
this.type = 'MultiMaterial';
this.materials = materials instanceof Array ? materials : [];
this.visible = true;
};
THREE.MultiMaterial.prototype = {
constructor: THREE.MultiMaterial,
toJSON: function ( meta ) {
var output = {
metadata: {
version: 4.2,
type: 'material',
generator: 'MaterialExporter'
},
uuid: this.uuid,
type: this.type,
materials: []
};
var materials = this.materials;
for ( var i = 0, l = materials.length; i < l; i ++ ) {
var material = materials[ i ].toJSON( meta );
delete material.metadata;
output.materials.push( material );
}
output.visible = this.visible;
return output;
},
clone: function () {
var material = new this.constructor();
for ( var i = 0; i < this.materials.length; i ++ ) {
material.materials.push( this.materials[ i ].clone() );
}
material.visible = this.visible;
return material;
}
};
// File:src/materials/PointsMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* size: <float>,
* sizeAttenuation: <bool>,
*
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* vertexColors: <bool>,
*
* fog: <bool>
* }
*/
THREE.PointsMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'PointsMaterial';
this.color = new THREE.Color( 0xffffff );
this.map = null;
this.size = 1;
this.sizeAttenuation = true;
this.blending = THREE.NormalBlending;
this.vertexColors = THREE.NoColors;
this.fog = true;
this.setValues( parameters );
};
THREE.PointsMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.PointsMaterial.prototype.constructor = THREE.PointsMaterial;
THREE.PointsMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.size = source.size;
this.sizeAttenuation = source.sizeAttenuation;
this.vertexColors = source.vertexColors;
this.fog = source.fog;
return this;
};
// File:src/materials/ShaderMaterial.js
/**
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* defines: { "label" : "value" },
* uniforms: { "parameter1": { type: "1f", value: 1.0 }, "parameter2": { type: "1i" value2: 2 } },
*
* fragmentShader: <string>,
* vertexShader: <string>,
*
* shading: THREE.SmoothShading,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* lights: <bool>,
*
* vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>,
*
* fog: <bool>
* }
*/
THREE.ShaderMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'ShaderMaterial';
this.defines = {};
this.uniforms = {};
this.vertexShader = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}';
this.fragmentShader = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}';
this.shading = THREE.SmoothShading;
this.linewidth = 1;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.fog = false; // set to use scene fog
this.lights = false; // set to use scene lights
this.clipping = false; // set to use user-defined clipping planes
this.vertexColors = THREE.NoColors; // set to use "color" attribute stream
this.skinning = false; // set to use skinning attribute streams
this.morphTargets = false; // set to use morph targets
this.morphNormals = false; // set to use morph normals
this.extensions = {
derivatives: false, // set to use derivatives
fragDepth: false, // set to use fragment depth values
drawBuffers: false, // set to use draw buffers
shaderTextureLOD: false // set to use shader texture LOD
};
// When rendered geometry doesn't include these attributes but the material does,
// use these default values in WebGL. This avoids errors when buffer data is missing.
this.defaultAttributeValues = {
'color': [ 1, 1, 1 ],
'uv': [ 0, 0 ],
'uv2': [ 0, 0 ]
};
this.index0AttributeName = undefined;
if ( parameters !== undefined ) {
if ( parameters.attributes !== undefined ) {
console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' );
}
this.setValues( parameters );
}
};
THREE.ShaderMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.ShaderMaterial.prototype.constructor = THREE.ShaderMaterial;
THREE.ShaderMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.fragmentShader = source.fragmentShader;
this.vertexShader = source.vertexShader;
this.uniforms = THREE.UniformsUtils.clone( source.uniforms );
this.defines = source.defines;
this.shading = source.shading;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.fog = source.fog;
this.lights = source.lights;
this.clipping = source.clipping;
this.vertexColors = source.vertexColors;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
this.extensions = source.extensions;
return this;
};
THREE.ShaderMaterial.prototype.toJSON = function ( meta ) {
var data = THREE.Material.prototype.toJSON.call( this, meta );
data.uniforms = this.uniforms;
data.vertexShader = this.vertexShader;
data.fragmentShader = this.fragmentShader;
return data;
};
// File:src/materials/RawShaderMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.RawShaderMaterial = function ( parameters ) {
THREE.ShaderMaterial.call( this, parameters );
this.type = 'RawShaderMaterial';
};
THREE.RawShaderMaterial.prototype = Object.create( THREE.ShaderMaterial.prototype );
THREE.RawShaderMaterial.prototype.constructor = THREE.RawShaderMaterial;
// File:src/materials/SpriteMaterial.js
/**
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* uvOffset: new THREE.Vector2(),
* uvScale: new THREE.Vector2(),
*
* fog: <bool>
* }
*/
THREE.SpriteMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'SpriteMaterial';
this.color = new THREE.Color( 0xffffff );
this.map = null;
this.rotation = 0;
this.fog = false;
// set parameters
this.setValues( parameters );
};
THREE.SpriteMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.SpriteMaterial.prototype.constructor = THREE.SpriteMaterial;
THREE.SpriteMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.rotation = source.rotation;
this.fog = source.fog;
return this;
};
// File:src/textures/Texture.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author szimek / https://github.com/szimek/
*/
THREE.Texture = function ( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
Object.defineProperty( this, 'id', { value: THREE.TextureIdCount ++ } );
this.uuid = THREE.Math.generateUUID();
this.name = '';
this.sourceFile = '';
this.image = image !== undefined ? image : THREE.Texture.DEFAULT_IMAGE;
this.mipmaps = [];
this.mapping = mapping !== undefined ? mapping : THREE.Texture.DEFAULT_MAPPING;
this.wrapS = wrapS !== undefined ? wrapS : THREE.ClampToEdgeWrapping;
this.wrapT = wrapT !== undefined ? wrapT : THREE.ClampToEdgeWrapping;
this.magFilter = magFilter !== undefined ? magFilter : THREE.LinearFilter;
this.minFilter = minFilter !== undefined ? minFilter : THREE.LinearMipMapLinearFilter;
this.anisotropy = anisotropy !== undefined ? anisotropy : 1;
this.format = format !== undefined ? format : THREE.RGBAFormat;
this.type = type !== undefined ? type : THREE.UnsignedByteType;
this.offset = new THREE.Vector2( 0, 0 );
this.repeat = new THREE.Vector2( 1, 1 );
this.generateMipmaps = true;
this.premultiplyAlpha = false;
this.flipY = true;
this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
//
// Also changing the encoding after already used by a Material will not automatically make the Material
// update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
this.encoding = encoding !== undefined ? encoding : THREE.LinearEncoding;
this.version = 0;
this.onUpdate = null;
};
THREE.Texture.DEFAULT_IMAGE = undefined;
THREE.Texture.DEFAULT_MAPPING = THREE.UVMapping;
THREE.Texture.prototype = {
constructor: THREE.Texture,
set needsUpdate ( value ) {
if ( value === true ) this.version ++;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.image = source.image;
this.mipmaps = source.mipmaps.slice( 0 );
this.mapping = source.mapping;
this.wrapS = source.wrapS;
this.wrapT = source.wrapT;
this.magFilter = source.magFilter;
this.minFilter = source.minFilter;
this.anisotropy = source.anisotropy;
this.format = source.format;
this.type = source.type;
this.offset.copy( source.offset );
this.repeat.copy( source.repeat );
this.generateMipmaps = source.generateMipmaps;
this.premultiplyAlpha = source.premultiplyAlpha;
this.flipY = source.flipY;
this.unpackAlignment = source.unpackAlignment;
this.encoding = source.encoding;
return this;
},
toJSON: function ( meta ) {
if ( meta.textures[ this.uuid ] !== undefined ) {
return meta.textures[ this.uuid ];
}
function getDataURL( image ) {
var canvas;
if ( image.toDataURL !== undefined ) {
canvas = image;
} else {
canvas = document.createElement( 'canvas' );
canvas.width = image.width;
canvas.height = image.height;
canvas.getContext( '2d' ).drawImage( image, 0, 0, image.width, image.height );
}
if ( canvas.width > 2048 || canvas.height > 2048 ) {
return canvas.toDataURL( 'image/jpeg', 0.6 );
} else {
return canvas.toDataURL( 'image/png' );
}
}
var output = {
metadata: {
version: 4.4,
type: 'Texture',
generator: 'Texture.toJSON'
},
uuid: this.uuid,
name: this.name,
mapping: this.mapping,
repeat: [ this.repeat.x, this.repeat.y ],
offset: [ this.offset.x, this.offset.y ],
wrap: [ this.wrapS, this.wrapT ],
minFilter: this.minFilter,
magFilter: this.magFilter,
anisotropy: this.anisotropy
};
if ( this.image !== undefined ) {
// TODO: Move to THREE.Image
var image = this.image;
if ( image.uuid === undefined ) {
image.uuid = THREE.Math.generateUUID(); // UGH
}
if ( meta.images[ image.uuid ] === undefined ) {
meta.images[ image.uuid ] = {
uuid: image.uuid,
url: getDataURL( image )
};
}
output.image = image.uuid;
}
meta.textures[ this.uuid ] = output;
return output;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
},
transformUv: function ( uv ) {
if ( this.mapping !== THREE.UVMapping ) return;
uv.multiply( this.repeat );
uv.add( this.offset );
if ( uv.x < 0 || uv.x > 1 ) {
switch ( this.wrapS ) {
case THREE.RepeatWrapping:
uv.x = uv.x - Math.floor( uv.x );
break;
case THREE.ClampToEdgeWrapping:
uv.x = uv.x < 0 ? 0 : 1;
break;
case THREE.MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {
uv.x = Math.ceil( uv.x ) - uv.x;
} else {
uv.x = uv.x - Math.floor( uv.x );
}
break;
}
}
if ( uv.y < 0 || uv.y > 1 ) {
switch ( this.wrapT ) {
case THREE.RepeatWrapping:
uv.y = uv.y - Math.floor( uv.y );
break;
case THREE.ClampToEdgeWrapping:
uv.y = uv.y < 0 ? 0 : 1;
break;
case THREE.MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {
uv.y = Math.ceil( uv.y ) - uv.y;
} else {
uv.y = uv.y - Math.floor( uv.y );
}
break;
}
}
if ( this.flipY ) {
uv.y = 1 - uv.y;
}
}
};
THREE.EventDispatcher.prototype.apply( THREE.Texture.prototype );
THREE.TextureIdCount = 0;
// File:src/textures/DepthTexture.js
/**
* @author Matt DesLauriers / @mattdesl
*/
THREE.DepthTexture = function ( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy ) {
THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, THREE.DepthFormat, type, anisotropy );
this.image = { width: width, height: height };
this.type = type !== undefined ? type : THREE.UnsignedShortType;
this.magFilter = magFilter !== undefined ? magFilter : THREE.NearestFilter;
this.minFilter = minFilter !== undefined ? minFilter : THREE.NearestFilter;
this.flipY = false;
this.generateMipmaps = false;
};
THREE.DepthTexture.prototype = Object.create( THREE.Texture.prototype );
THREE.DepthTexture.prototype.constructor = THREE.DepthTexture;
// File:src/textures/CanvasTexture.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.CanvasTexture = function ( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {
THREE.Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
this.needsUpdate = true;
};
THREE.CanvasTexture.prototype = Object.create( THREE.Texture.prototype );
THREE.CanvasTexture.prototype.constructor = THREE.CanvasTexture;
// File:src/textures/CubeTexture.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.CubeTexture = function ( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
images = images !== undefined ? images : [];
mapping = mapping !== undefined ? mapping : THREE.CubeReflectionMapping;
THREE.Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
this.flipY = false;
};
THREE.CubeTexture.prototype = Object.create( THREE.Texture.prototype );
THREE.CubeTexture.prototype.constructor = THREE.CubeTexture;
Object.defineProperty( THREE.CubeTexture.prototype, 'images', {
get: function () {
return this.image;
},
set: function ( value ) {
this.image = value;
}
} );
// File:src/textures/CompressedTexture.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.CompressedTexture = function ( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {
THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
this.image = { width: width, height: height };
this.mipmaps = mipmaps;
// no flipping for cube textures
// (also flipping doesn't work for compressed textures )
this.flipY = false;
// can't generate mipmaps for compressed textures
// mips must be embedded in DDS files
this.generateMipmaps = false;
};
THREE.CompressedTexture.prototype = Object.create( THREE.Texture.prototype );
THREE.CompressedTexture.prototype.constructor = THREE.CompressedTexture;
// File:src/textures/DataTexture.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.DataTexture = function ( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {
THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
this.image = { data: data, width: width, height: height };
this.magFilter = magFilter !== undefined ? magFilter : THREE.NearestFilter;
this.minFilter = minFilter !== undefined ? minFilter : THREE.NearestFilter;
this.flipY = false;
this.generateMipmaps = false;
};
THREE.DataTexture.prototype = Object.create( THREE.Texture.prototype );
THREE.DataTexture.prototype.constructor = THREE.DataTexture;
// File:src/textures/VideoTexture.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.VideoTexture = function ( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {
THREE.Texture.call( this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
this.generateMipmaps = false;
var scope = this;
function update() {
requestAnimationFrame( update );
if ( video.readyState >= video.HAVE_CURRENT_DATA ) {
scope.needsUpdate = true;
}
}
update();
};
THREE.VideoTexture.prototype = Object.create( THREE.Texture.prototype );
THREE.VideoTexture.prototype.constructor = THREE.VideoTexture;
// File:src/objects/Group.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.Group = function () {
THREE.Object3D.call( this );
this.type = 'Group';
};
THREE.Group.prototype = Object.create( THREE.Object3D.prototype );
THREE.Group.prototype.constructor = THREE.Group;
// File:src/objects/Points.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.Points = function ( geometry, material ) {
THREE.Object3D.call( this );
this.type = 'Points';
this.geometry = geometry !== undefined ? geometry : new THREE.Geometry();
this.material = material !== undefined ? material : new THREE.PointsMaterial( { color: Math.random() * 0xffffff } );
};
THREE.Points.prototype = Object.create( THREE.Object3D.prototype );
THREE.Points.prototype.constructor = THREE.Points;
THREE.Points.prototype.raycast = ( function () {
var inverseMatrix = new THREE.Matrix4();
var ray = new THREE.Ray();
var sphere = new THREE.Sphere();
return function raycast( raycaster, intersects ) {
var object = this;
var geometry = this.geometry;
var matrixWorld = this.matrixWorld;
var threshold = raycaster.params.Points.threshold;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere );
sphere.applyMatrix4( matrixWorld );
if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
//
inverseMatrix.getInverse( matrixWorld );
ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
var localThresholdSq = localThreshold * localThreshold;
var position = new THREE.Vector3();
function testPoint( point, index ) {
var rayPointDistanceSq = ray.distanceSqToPoint( point );
if ( rayPointDistanceSq < localThresholdSq ) {
var intersectPoint = ray.closestPointToPoint( point );
intersectPoint.applyMatrix4( matrixWorld );
var distance = raycaster.ray.origin.distanceTo( intersectPoint );
if ( distance < raycaster.near || distance > raycaster.far ) return;
intersects.push( {
distance: distance,
distanceToRay: Math.sqrt( rayPointDistanceSq ),
point: intersectPoint.clone(),
index: index,
face: null,
object: object
} );
}
}
if ( geometry instanceof THREE.BufferGeometry ) {
var index = geometry.index;
var attributes = geometry.attributes;
var positions = attributes.position.array;
if ( index !== null ) {
var indices = index.array;
for ( var i = 0, il = indices.length; i < il; i ++ ) {
var a = indices[ i ];
position.fromArray( positions, a * 3 );
testPoint( position, a );
}
} else {
for ( var i = 0, l = positions.length / 3; i < l; i ++ ) {
position.fromArray( positions, i * 3 );
testPoint( position, i );
}
}
} else {
var vertices = geometry.vertices;
for ( var i = 0, l = vertices.length; i < l; i ++ ) {
testPoint( vertices[ i ], i );
}
}
};
}() );
THREE.Points.prototype.clone = function () {
return new this.constructor( this.geometry, this.material ).copy( this );
};
// File:src/objects/Line.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.Line = function ( geometry, material, mode ) {
if ( mode === 1 ) {
console.warn( 'THREE.Line: parameter THREE.LinePieces no longer supported. Created THREE.LineSegments instead.' );
return new THREE.LineSegments( geometry, material );
}
THREE.Object3D.call( this );
this.type = 'Line';
this.geometry = geometry !== undefined ? geometry : new THREE.Geometry();
this.material = material !== undefined ? material : new THREE.LineBasicMaterial( { color: Math.random() * 0xffffff } );
};
THREE.Line.prototype = Object.create( THREE.Object3D.prototype );
THREE.Line.prototype.constructor = THREE.Line;
THREE.Line.prototype.raycast = ( function () {
var inverseMatrix = new THREE.Matrix4();
var ray = new THREE.Ray();
var sphere = new THREE.Sphere();
return function raycast( raycaster, intersects ) {
var precision = raycaster.linePrecision;
var precisionSq = precision * precision;
var geometry = this.geometry;
var matrixWorld = this.matrixWorld;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere );
sphere.applyMatrix4( matrixWorld );
if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
//
inverseMatrix.getInverse( matrixWorld );
ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
var vStart = new THREE.Vector3();
var vEnd = new THREE.Vector3();
var interSegment = new THREE.Vector3();
var interRay = new THREE.Vector3();
var step = this instanceof THREE.LineSegments ? 2 : 1;
if ( geometry instanceof THREE.BufferGeometry ) {
var index = geometry.index;
var attributes = geometry.attributes;
var positions = attributes.position.array;
if ( index !== null ) {
var indices = index.array;
for ( var i = 0, l = indices.length - 1; i < l; i += step ) {
var a = indices[ i ];
var b = indices[ i + 1 ];
vStart.fromArray( positions, a * 3 );
vEnd.fromArray( positions, b * 3 );
var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );
if ( distSq > precisionSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
var distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
} else {
for ( var i = 0, l = positions.length / 3 - 1; i < l; i += step ) {
vStart.fromArray( positions, 3 * i );
vEnd.fromArray( positions, 3 * i + 3 );
var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );
if ( distSq > precisionSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
var distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
}
} else if ( geometry instanceof THREE.Geometry ) {
var vertices = geometry.vertices;
var nbVertices = vertices.length;
for ( var i = 0; i < nbVertices - 1; i += step ) {
var distSq = ray.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment );
if ( distSq > precisionSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
var distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
}
};
}() );
THREE.Line.prototype.clone = function () {
return new this.constructor( this.geometry, this.material ).copy( this );
};
// DEPRECATED
THREE.LineStrip = 0;
THREE.LinePieces = 1;
// File:src/objects/LineSegments.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.LineSegments = function ( geometry, material ) {
THREE.Line.call( this, geometry, material );
this.type = 'LineSegments';
};
THREE.LineSegments.prototype = Object.create( THREE.Line.prototype );
THREE.LineSegments.prototype.constructor = THREE.LineSegments;
// File:src/objects/Mesh.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author jonobr1 / http://jonobr1.com/
*/
THREE.Mesh = function ( geometry, material ) {
THREE.Object3D.call( this );
this.type = 'Mesh';
this.geometry = geometry !== undefined ? geometry : new THREE.Geometry();
this.material = material !== undefined ? material : new THREE.MeshBasicMaterial( { color: Math.random() * 0xffffff } );
this.drawMode = THREE.TrianglesDrawMode;
this.updateMorphTargets();
};
THREE.Mesh.prototype = Object.create( THREE.Object3D.prototype );
THREE.Mesh.prototype.constructor = THREE.Mesh;
THREE.Mesh.prototype.setDrawMode = function ( value ) {
this.drawMode = value;
};
THREE.Mesh.prototype.updateMorphTargets = function () {
if ( this.geometry.morphTargets !== undefined && this.geometry.morphTargets.length > 0 ) {
this.morphTargetBase = - 1;
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for ( var m = 0, ml = this.geometry.morphTargets.length; m < ml; m ++ ) {
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ this.geometry.morphTargets[ m ].name ] = m;
}
}
};
THREE.Mesh.prototype.getMorphTargetIndexByName = function ( name ) {
if ( this.morphTargetDictionary[ name ] !== undefined ) {
return this.morphTargetDictionary[ name ];
}
console.warn( 'THREE.Mesh.getMorphTargetIndexByName: morph target ' + name + ' does not exist. Returning 0.' );
return 0;
};
THREE.Mesh.prototype.raycast = ( function () {
var inverseMatrix = new THREE.Matrix4();
var ray = new THREE.Ray();
var sphere = new THREE.Sphere();
var vA = new THREE.Vector3();
var vB = new THREE.Vector3();
var vC = new THREE.Vector3();
var tempA = new THREE.Vector3();
var tempB = new THREE.Vector3();
var tempC = new THREE.Vector3();
var uvA = new THREE.Vector2();
var uvB = new THREE.Vector2();
var uvC = new THREE.Vector2();
var barycoord = new THREE.Vector3();
var intersectionPoint = new THREE.Vector3();
var intersectionPointWorld = new THREE.Vector3();
function uvIntersection( point, p1, p2, p3, uv1, uv2, uv3 ) {
THREE.Triangle.barycoordFromPoint( point, p1, p2, p3, barycoord );
uv1.multiplyScalar( barycoord.x );
uv2.multiplyScalar( barycoord.y );
uv3.multiplyScalar( barycoord.z );
uv1.add( uv2 ).add( uv3 );
return uv1.clone();
}
function checkIntersection( object, raycaster, ray, pA, pB, pC, point ) {
var intersect;
var material = object.material;
if ( material.side === THREE.BackSide ) {
intersect = ray.intersectTriangle( pC, pB, pA, true, point );
} else {
intersect = ray.intersectTriangle( pA, pB, pC, material.side !== THREE.DoubleSide, point );
}
if ( intersect === null ) return null;
intersectionPointWorld.copy( point );
intersectionPointWorld.applyMatrix4( object.matrixWorld );
var distance = raycaster.ray.origin.distanceTo( intersectionPointWorld );
if ( distance < raycaster.near || distance > raycaster.far ) return null;
return {
distance: distance,
point: intersectionPointWorld.clone(),
object: object
};
}
function checkBufferGeometryIntersection( object, raycaster, ray, positions, uvs, a, b, c ) {
vA.fromArray( positions, a * 3 );
vB.fromArray( positions, b * 3 );
vC.fromArray( positions, c * 3 );
var intersection = checkIntersection( object, raycaster, ray, vA, vB, vC, intersectionPoint );
if ( intersection ) {
if ( uvs ) {
uvA.fromArray( uvs, a * 2 );
uvB.fromArray( uvs, b * 2 );
uvC.fromArray( uvs, c * 2 );
intersection.uv = uvIntersection( intersectionPoint, vA, vB, vC, uvA, uvB, uvC );
}
intersection.face = new THREE.Face3( a, b, c, THREE.Triangle.normal( vA, vB, vC ) );
intersection.faceIndex = a;
}
return intersection;
}
return function raycast( raycaster, intersects ) {
var geometry = this.geometry;
var material = this.material;
var matrixWorld = this.matrixWorld;
if ( material === undefined ) return;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere );
sphere.applyMatrix4( matrixWorld );
if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
//
inverseMatrix.getInverse( matrixWorld );
ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
// Check boundingBox before continuing
if ( geometry.boundingBox !== null ) {
if ( ray.intersectsBox( geometry.boundingBox ) === false ) return;
}
var uvs, intersection;
if ( geometry instanceof THREE.BufferGeometry ) {
var a, b, c;
var index = geometry.index;
var attributes = geometry.attributes;
var positions = attributes.position.array;
if ( attributes.uv !== undefined ) {
uvs = attributes.uv.array;
}
if ( index !== null ) {
var indices = index.array;
for ( var i = 0, l = indices.length; i < l; i += 3 ) {
a = indices[ i ];
b = indices[ i + 1 ];
c = indices[ i + 2 ];
intersection = checkBufferGeometryIntersection( this, raycaster, ray, positions, uvs, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indices buffer semantics
intersects.push( intersection );
}
}
} else {
for ( var i = 0, l = positions.length; i < l; i += 9 ) {
a = i / 3;
b = a + 1;
c = a + 2;
intersection = checkBufferGeometryIntersection( this, raycaster, ray, positions, uvs, a, b, c );
if ( intersection ) {
intersection.index = a; // triangle number in positions buffer semantics
intersects.push( intersection );
}
}
}
} else if ( geometry instanceof THREE.Geometry ) {
var fvA, fvB, fvC;
var isFaceMaterial = material instanceof THREE.MultiMaterial;
var materials = isFaceMaterial === true ? material.materials : null;
var vertices = geometry.vertices;
var faces = geometry.faces;
var faceVertexUvs = geometry.faceVertexUvs[ 0 ];
if ( faceVertexUvs.length > 0 ) uvs = faceVertexUvs;
for ( var f = 0, fl = faces.length; f < fl; f ++ ) {
var face = faces[ f ];
var faceMaterial = isFaceMaterial === true ? materials[ face.materialIndex ] : material;
if ( faceMaterial === undefined ) continue;
fvA = vertices[ face.a ];
fvB = vertices[ face.b ];
fvC = vertices[ face.c ];
if ( faceMaterial.morphTargets === true ) {
var morphTargets = geometry.morphTargets;
var morphInfluences = this.morphTargetInfluences;
vA.set( 0, 0, 0 );
vB.set( 0, 0, 0 );
vC.set( 0, 0, 0 );
for ( var t = 0, tl = morphTargets.length; t < tl; t ++ ) {
var influence = morphInfluences[ t ];
if ( influence === 0 ) continue;
var targets = morphTargets[ t ].vertices;
vA.addScaledVector( tempA.subVectors( targets[ face.a ], fvA ), influence );
vB.addScaledVector( tempB.subVectors( targets[ face.b ], fvB ), influence );
vC.addScaledVector( tempC.subVectors( targets[ face.c ], fvC ), influence );
}
vA.add( fvA );
vB.add( fvB );
vC.add( fvC );
fvA = vA;
fvB = vB;
fvC = vC;
}
intersection = checkIntersection( this, raycaster, ray, fvA, fvB, fvC, intersectionPoint );
if ( intersection ) {
if ( uvs ) {
var uvs_f = uvs[ f ];
uvA.copy( uvs_f[ 0 ] );
uvB.copy( uvs_f[ 1 ] );
uvC.copy( uvs_f[ 2 ] );
intersection.uv = uvIntersection( intersectionPoint, fvA, fvB, fvC, uvA, uvB, uvC );
}
intersection.face = face;
intersection.faceIndex = f;
intersects.push( intersection );
}
}
}
};
}() );
THREE.Mesh.prototype.clone = function () {
return new this.constructor( this.geometry, this.material ).copy( this );
};
// File:src/objects/Bone.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author ikerr / http://verold.com
*/
THREE.Bone = function ( skin ) {
THREE.Object3D.call( this );
this.type = 'Bone';
this.skin = skin;
};
THREE.Bone.prototype = Object.create( THREE.Object3D.prototype );
THREE.Bone.prototype.constructor = THREE.Bone;
THREE.Bone.prototype.copy = function ( source ) {
THREE.Object3D.prototype.copy.call( this, source );
this.skin = source.skin;
return this;
};
// File:src/objects/Skeleton.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author michael guerrero / http://realitymeltdown.com
* @author ikerr / http://verold.com
*/
THREE.Skeleton = function ( bones, boneInverses, useVertexTexture ) {
this.useVertexTexture = useVertexTexture !== undefined ? useVertexTexture : true;
this.identityMatrix = new THREE.Matrix4();
// copy the bone array
bones = bones || [];
this.bones = bones.slice( 0 );
// create a bone texture or an array of floats
if ( this.useVertexTexture ) {
// layout (1 matrix = 4 pixels)
// RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
// with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8)
// 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16)
// 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32)
// 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)
var size = Math.sqrt( this.bones.length * 4 ); // 4 pixels needed for 1 matrix
size = THREE.Math.nextPowerOfTwo( Math.ceil( size ) );
size = Math.max( size, 4 );
this.boneTextureWidth = size;
this.boneTextureHeight = size;
this.boneMatrices = new Float32Array( this.boneTextureWidth * this.boneTextureHeight * 4 ); // 4 floats per RGBA pixel
this.boneTexture = new THREE.DataTexture( this.boneMatrices, this.boneTextureWidth, this.boneTextureHeight, THREE.RGBAFormat, THREE.FloatType );
} else {
this.boneMatrices = new Float32Array( 16 * this.bones.length );
}
// use the supplied bone inverses or calculate the inverses
if ( boneInverses === undefined ) {
this.calculateInverses();
} else {
if ( this.bones.length === boneInverses.length ) {
this.boneInverses = boneInverses.slice( 0 );
} else {
console.warn( 'THREE.Skeleton bonInverses is the wrong length.' );
this.boneInverses = [];
for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) {
this.boneInverses.push( new THREE.Matrix4() );
}
}
}
};
THREE.Skeleton.prototype.calculateInverses = function () {
this.boneInverses = [];
for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) {
var inverse = new THREE.Matrix4();
if ( this.bones[ b ] ) {
inverse.getInverse( this.bones[ b ].matrixWorld );
}
this.boneInverses.push( inverse );
}
};
THREE.Skeleton.prototype.pose = function () {
var bone;
// recover the bind-time world matrices
for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) {
bone = this.bones[ b ];
if ( bone ) {
bone.matrixWorld.getInverse( this.boneInverses[ b ] );
}
}
// compute the local matrices, positions, rotations and scales
for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) {
bone = this.bones[ b ];
if ( bone ) {
if ( bone.parent ) {
bone.matrix.getInverse( bone.parent.matrixWorld );
bone.matrix.multiply( bone.matrixWorld );
} else {
bone.matrix.copy( bone.matrixWorld );
}
bone.matrix.decompose( bone.position, bone.quaternion, bone.scale );
}
}
};
THREE.Skeleton.prototype.update = ( function () {
var offsetMatrix = new THREE.Matrix4();
return function update() {
// flatten bone matrices to array
for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) {
// compute the offset between the current and the original transform
var matrix = this.bones[ b ] ? this.bones[ b ].matrixWorld : this.identityMatrix;
offsetMatrix.multiplyMatrices( matrix, this.boneInverses[ b ] );
offsetMatrix.toArray( this.boneMatrices, b * 16 );
}
if ( this.useVertexTexture ) {
this.boneTexture.needsUpdate = true;
}
};
} )();
THREE.Skeleton.prototype.clone = function () {
return new THREE.Skeleton( this.bones, this.boneInverses, this.useVertexTexture );
};
// File:src/objects/SkinnedMesh.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author ikerr / http://verold.com
*/
THREE.SkinnedMesh = function ( geometry, material, useVertexTexture ) {
THREE.Mesh.call( this, geometry, material );
this.type = 'SkinnedMesh';
this.bindMode = "attached";
this.bindMatrix = new THREE.Matrix4();
this.bindMatrixInverse = new THREE.Matrix4();
// init bones
// TODO: remove bone creation as there is no reason (other than
// convenience) for THREE.SkinnedMesh to do this.
var bones = [];
if ( this.geometry && this.geometry.bones !== undefined ) {
var bone, gbone;
for ( var b = 0, bl = this.geometry.bones.length; b < bl; ++ b ) {
gbone = this.geometry.bones[ b ];
bone = new THREE.Bone( this );
bones.push( bone );
bone.name = gbone.name;
bone.position.fromArray( gbone.pos );
bone.quaternion.fromArray( gbone.rotq );
if ( gbone.scl !== undefined ) bone.scale.fromArray( gbone.scl );
}
for ( var b = 0, bl = this.geometry.bones.length; b < bl; ++ b ) {
gbone = this.geometry.bones[ b ];
if ( gbone.parent !== - 1 && gbone.parent !== null &&
bones[ gbone.parent ] !== undefined ) {
bones[ gbone.parent ].add( bones[ b ] );
} else {
this.add( bones[ b ] );
}
}
}
this.normalizeSkinWeights();
this.updateMatrixWorld( true );
this.bind( new THREE.Skeleton( bones, undefined, useVertexTexture ), this.matrixWorld );
};
THREE.SkinnedMesh.prototype = Object.create( THREE.Mesh.prototype );
THREE.SkinnedMesh.prototype.constructor = THREE.SkinnedMesh;
THREE.SkinnedMesh.prototype.bind = function( skeleton, bindMatrix ) {
this.skeleton = skeleton;
if ( bindMatrix === undefined ) {
this.updateMatrixWorld( true );
this.skeleton.calculateInverses();
bindMatrix = this.matrixWorld;
}
this.bindMatrix.copy( bindMatrix );
this.bindMatrixInverse.getInverse( bindMatrix );
};
THREE.SkinnedMesh.prototype.pose = function () {
this.skeleton.pose();
};
THREE.SkinnedMesh.prototype.normalizeSkinWeights = function () {
if ( this.geometry instanceof THREE.Geometry ) {
for ( var i = 0; i < this.geometry.skinWeights.length; i ++ ) {
var sw = this.geometry.skinWeights[ i ];
var scale = 1.0 / sw.lengthManhattan();
if ( scale !== Infinity ) {
sw.multiplyScalar( scale );
} else {
sw.set( 1, 0, 0, 0 ); // do something reasonable
}
}
} else if ( this.geometry instanceof THREE.BufferGeometry ) {
var vec = new THREE.Vector4();
var skinWeight = this.geometry.attributes.skinWeight;
for ( var i = 0; i < skinWeight.count; i ++ ) {
vec.x = skinWeight.getX( i );
vec.y = skinWeight.getY( i );
vec.z = skinWeight.getZ( i );
vec.w = skinWeight.getW( i );
var scale = 1.0 / vec.lengthManhattan();
if ( scale !== Infinity ) {
vec.multiplyScalar( scale );
} else {
vec.set( 1, 0, 0, 0 ); // do something reasonable
}
skinWeight.setXYZW( i, vec.x, vec.y, vec.z, vec.w );
}
}
};
THREE.SkinnedMesh.prototype.updateMatrixWorld = function( force ) {
THREE.Mesh.prototype.updateMatrixWorld.call( this, true );
if ( this.bindMode === "attached" ) {
this.bindMatrixInverse.getInverse( this.matrixWorld );
} else if ( this.bindMode === "detached" ) {
this.bindMatrixInverse.getInverse( this.bindMatrix );
} else {
console.warn( 'THREE.SkinnedMesh unrecognized bindMode: ' + this.bindMode );
}
};
THREE.SkinnedMesh.prototype.clone = function() {
return new this.constructor( this.geometry, this.material, this.useVertexTexture ).copy( this );
};
// File:src/objects/LOD.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
THREE.LOD = function () {
THREE.Object3D.call( this );
this.type = 'LOD';
Object.defineProperties( this, {
levels: {
enumerable: true,
value: []
}
} );
};
THREE.LOD.prototype = Object.create( THREE.Object3D.prototype );
THREE.LOD.prototype.constructor = THREE.LOD;
THREE.LOD.prototype.addLevel = function ( object, distance ) {
if ( distance === undefined ) distance = 0;
distance = Math.abs( distance );
var levels = this.levels;
for ( var l = 0; l < levels.length; l ++ ) {
if ( distance < levels[ l ].distance ) {
break;
}
}
levels.splice( l, 0, { distance: distance, object: object } );
this.add( object );
};
THREE.LOD.prototype.getObjectForDistance = function ( distance ) {
var levels = this.levels;
for ( var i = 1, l = levels.length; i < l; i ++ ) {
if ( distance < levels[ i ].distance ) {
break;
}
}
return levels[ i - 1 ].object;
};
THREE.LOD.prototype.raycast = ( function () {
var matrixPosition = new THREE.Vector3();
return function raycast( raycaster, intersects ) {
matrixPosition.setFromMatrixPosition( this.matrixWorld );
var distance = raycaster.ray.origin.distanceTo( matrixPosition );
this.getObjectForDistance( distance ).raycast( raycaster, intersects );
};
}() );
THREE.LOD.prototype.update = function () {
var v1 = new THREE.Vector3();
var v2 = new THREE.Vector3();
return function update( camera ) {
var levels = this.levels;
if ( levels.length > 1 ) {
v1.setFromMatrixPosition( camera.matrixWorld );
v2.setFromMatrixPosition( this.matrixWorld );
var distance = v1.distanceTo( v2 );
levels[ 0 ].object.visible = true;
for ( var i = 1, l = levels.length; i < l; i ++ ) {
if ( distance >= levels[ i ].distance ) {
levels[ i - 1 ].object.visible = false;
levels[ i ].object.visible = true;
} else {
break;
}
}
for ( ; i < l; i ++ ) {
levels[ i ].object.visible = false;
}
}
};
}();
THREE.LOD.prototype.copy = function ( source ) {
THREE.Object3D.prototype.copy.call( this, source, false );
var levels = source.levels;
for ( var i = 0, l = levels.length; i < l; i ++ ) {
var level = levels[ i ];
this.addLevel( level.object.clone(), level.distance );
}
return this;
};
THREE.LOD.prototype.toJSON = function ( meta ) {
var data = THREE.Object3D.prototype.toJSON.call( this, meta );
data.object.levels = [];
var levels = this.levels;
for ( var i = 0, l = levels.length; i < l; i ++ ) {
var level = levels[ i ];
data.object.levels.push( {
object: level.object.uuid,
distance: level.distance
} );
}
return data;
};
// File:src/objects/Sprite.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Sprite = ( function () {
var indices = new Uint16Array( [ 0, 1, 2, 0, 2, 3 ] );
var vertices = new Float32Array( [ - 0.5, - 0.5, 0, 0.5, - 0.5, 0, 0.5, 0.5, 0, - 0.5, 0.5, 0 ] );
var uvs = new Float32Array( [ 0, 0, 1, 0, 1, 1, 0, 1 ] );
var geometry = new THREE.BufferGeometry();
geometry.setIndex( new THREE.BufferAttribute( indices, 1 ) );
geometry.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) );
geometry.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) );
return function Sprite( material ) {
THREE.Object3D.call( this );
this.type = 'Sprite';
this.geometry = geometry;
this.material = ( material !== undefined ) ? material : new THREE.SpriteMaterial();
};
} )();
THREE.Sprite.prototype = Object.create( THREE.Object3D.prototype );
THREE.Sprite.prototype.constructor = THREE.Sprite;
THREE.Sprite.prototype.raycast = ( function () {
var matrixPosition = new THREE.Vector3();
return function raycast( raycaster, intersects ) {
matrixPosition.setFromMatrixPosition( this.matrixWorld );
var distanceSq = raycaster.ray.distanceSqToPoint( matrixPosition );
var guessSizeSq = this.scale.x * this.scale.y / 4;
if ( distanceSq > guessSizeSq ) {
return;
}
intersects.push( {
distance: Math.sqrt( distanceSq ),
point: this.position,
face: null,
object: this
} );
};
}() );
THREE.Sprite.prototype.clone = function () {
return new this.constructor( this.material ).copy( this );
};
// Backwards compatibility
THREE.Particle = THREE.Sprite;
// File:src/objects/LensFlare.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.LensFlare = function ( texture, size, distance, blending, color ) {
THREE.Object3D.call( this );
this.lensFlares = [];
this.positionScreen = new THREE.Vector3();
this.customUpdateCallback = undefined;
if ( texture !== undefined ) {
this.add( texture, size, distance, blending, color );
}
};
THREE.LensFlare.prototype = Object.create( THREE.Object3D.prototype );
THREE.LensFlare.prototype.constructor = THREE.LensFlare;
/*
* Add: adds another flare
*/
THREE.LensFlare.prototype.add = function ( texture, size, distance, blending, color, opacity ) {
if ( size === undefined ) size = - 1;
if ( distance === undefined ) distance = 0;
if ( opacity === undefined ) opacity = 1;
if ( color === undefined ) color = new THREE.Color( 0xffffff );
if ( blending === undefined ) blending = THREE.NormalBlending;
distance = Math.min( distance, Math.max( 0, distance ) );
this.lensFlares.push( {
texture: texture, // THREE.Texture
size: size, // size in pixels (-1 = use texture.width)
distance: distance, // distance (0-1) from light source (0=at light source)
x: 0, y: 0, z: 0, // screen position (-1 => 1) z = 0 is in front z = 1 is back
scale: 1, // scale
rotation: 0, // rotation
opacity: opacity, // opacity
color: color, // color
blending: blending // blending
} );
};
/*
* Update lens flares update positions on all flares based on the screen position
* Set myLensFlare.customUpdateCallback to alter the flares in your project specific way.
*/
THREE.LensFlare.prototype.updateLensFlares = function () {
var f, fl = this.lensFlares.length;
var flare;
var vecX = - this.positionScreen.x * 2;
var vecY = - this.positionScreen.y * 2;
for ( f = 0; f < fl; f ++ ) {
flare = this.lensFlares[ f ];
flare.x = this.positionScreen.x + vecX * flare.distance;
flare.y = this.positionScreen.y + vecY * flare.distance;
flare.wantedRotation = flare.x * Math.PI * 0.25;
flare.rotation += ( flare.wantedRotation - flare.rotation ) * 0.25;
}
};
THREE.LensFlare.prototype.copy = function ( source ) {
THREE.Object3D.prototype.copy.call( this, source );
this.positionScreen.copy( source.positionScreen );
this.customUpdateCallback = source.customUpdateCallback;
for ( var i = 0, l = source.lensFlares.length; i < l; i ++ ) {
this.lensFlares.push( source.lensFlares[ i ] );
}
return this;
};
// File:src/scenes/Scene.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.Scene = function () {
THREE.Object3D.call( this );
this.type = 'Scene';
this.fog = null;
this.overrideMaterial = null;
this.autoUpdate = true; // checked by the renderer
};
THREE.Scene.prototype = Object.create( THREE.Object3D.prototype );
THREE.Scene.prototype.constructor = THREE.Scene;
THREE.Scene.prototype.copy = function ( source, recursive ) {
THREE.Object3D.prototype.copy.call( this, source, recursive );
if ( source.fog !== null ) this.fog = source.fog.clone();
if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone();
this.autoUpdate = source.autoUpdate;
this.matrixAutoUpdate = source.matrixAutoUpdate;
return this;
};
// File:src/scenes/Fog.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Fog = function ( color, near, far ) {
this.name = '';
this.color = new THREE.Color( color );
this.near = ( near !== undefined ) ? near : 1;
this.far = ( far !== undefined ) ? far : 1000;
};
THREE.Fog.prototype.clone = function () {
return new THREE.Fog( this.color.getHex(), this.near, this.far );
};
// File:src/scenes/FogExp2.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.FogExp2 = function ( color, density ) {
this.name = '';
this.color = new THREE.Color( color );
this.density = ( density !== undefined ) ? density : 0.00025;
};
THREE.FogExp2.prototype.clone = function () {
return new THREE.FogExp2( this.color.getHex(), this.density );
};
// File:src/renderers/shaders/ShaderChunk.js
THREE.ShaderChunk = {};
// File:src/renderers/shaders/ShaderChunk/alphamap_fragment.glsl
THREE.ShaderChunk[ 'alphamap_fragment' ] = "#ifdef USE_ALPHAMAP\n diffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/alphamap_pars_fragment.glsl
THREE.ShaderChunk[ 'alphamap_pars_fragment' ] = "#ifdef USE_ALPHAMAP\n uniform sampler2D alphaMap;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/alphatest_fragment.glsl
THREE.ShaderChunk[ 'alphatest_fragment' ] = "#ifdef ALPHATEST\n if ( diffuseColor.a < ALPHATEST ) discard;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/aomap_fragment.glsl
THREE.ShaderChunk[ 'aomap_fragment' ] = "#ifdef USE_AOMAP\n float ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n reflectedLight.indirectDiffuse *= ambientOcclusion;\n #if defined( USE_ENVMAP ) && defined( PHYSICAL )\n float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n reflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/aomap_pars_fragment.glsl
THREE.ShaderChunk[ 'aomap_pars_fragment' ] = "#ifdef USE_AOMAP\n uniform sampler2D aoMap;\n uniform float aoMapIntensity;\n#endif";
// File:src/renderers/shaders/ShaderChunk/begin_vertex.glsl
THREE.ShaderChunk[ 'begin_vertex' ] = "\nvec3 transformed = vec3( position );\n";
// File:src/renderers/shaders/ShaderChunk/beginnormal_vertex.glsl
THREE.ShaderChunk[ 'beginnormal_vertex' ] = "\nvec3 objectNormal = vec3( normal );\n";
// File:src/renderers/shaders/ShaderChunk/bsdfs.glsl
THREE.ShaderChunk[ 'bsdfs' ] = "bool testLightInRange( const in float lightDistance, const in float cutoffDistance ) {\n return any( bvec2( cutoffDistance == 0.0, lightDistance < cutoffDistance ) );\n}\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n if( decayExponent > 0.0 ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n float maxDistanceCutoffFactor = pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n return distanceFalloff * maxDistanceCutoffFactor;\n#else\n return pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n#endif\n }\n return 1.0;\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n return RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n float fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n return ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n float a2 = pow2( alpha );\n float gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n float gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n return 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n float a2 = pow2( alpha );\n float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n return 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n float a2 = pow2( alpha );\n float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n return RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n float alpha = pow2( roughness );\n vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n float dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\n float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n float dotNH = saturate( dot( geometry.normal, halfDir ) );\n float dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n vec3 F = F_Schlick( specularColor, dotLH );\n float G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n float D = D_GGX( alpha, dotNH );\n return F * ( G * D );\n}\nvec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n vec4 r = roughness * c0 + c1;\n float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;\n return specularColor * AB.x + AB.y;\n}\nfloat G_BlinnPhong_Implicit( ) {\n return 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n float dotNH = saturate( dot( geometry.normal, halfDir ) );\n float dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n vec3 F = F_Schlick( specularColor, dotLH );\n float G = G_BlinnPhong_Implicit( );\n float D = D_BlinnPhong( shininess, dotNH );\n return F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n return ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n return sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n";
// File:src/renderers/shaders/ShaderChunk/bumpmap_pars_fragment.glsl
THREE.ShaderChunk[ 'bumpmap_pars_fragment' ] = "#ifdef USE_BUMPMAP\n uniform sampler2D bumpMap;\n uniform float bumpScale;\n vec2 dHdxy_fwd() {\n vec2 dSTdx = dFdx( vUv );\n vec2 dSTdy = dFdy( vUv );\n float Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n float dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n float dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n return vec2( dBx, dBy );\n }\n vec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n vec3 vSigmaX = dFdx( surf_pos );\n vec3 vSigmaY = dFdy( surf_pos );\n vec3 vN = surf_norm;\n vec3 R1 = cross( vSigmaY, vN );\n vec3 R2 = cross( vN, vSigmaX );\n float fDet = dot( vSigmaX, R1 );\n vec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n return normalize( abs( fDet ) * surf_norm - vGrad );\n }\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/clipping_planes_fragment.glsl
THREE.ShaderChunk[ 'clipping_planes_fragment' ] = "#if NUM_CLIPPING_PLANES > 0\n for ( int i = 0; i < NUM_CLIPPING_PLANES; ++ i ) {\n vec4 plane = clippingPlanes[ i ];\n if ( dot( vViewPosition, plane.xyz ) > plane.w ) discard;\n }\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/clipping_planes_pars_fragment.glsl
THREE.ShaderChunk[ 'clipping_planes_pars_fragment' ] = "#if NUM_CLIPPING_PLANES > 0\n #if ! defined( PHYSICAL ) && ! defined( PHONG )\n varying vec3 vViewPosition;\n #endif\n uniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/clipping_planes_pars_vertex.glsl
THREE.ShaderChunk[ 'clipping_planes_pars_vertex' ] = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\n varying vec3 vViewPosition;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/clipping_planes_vertex.glsl
THREE.ShaderChunk[ 'clipping_planes_vertex' ] = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\n vViewPosition = - mvPosition.xyz;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/color_fragment.glsl
THREE.ShaderChunk[ 'color_fragment' ] = "#ifdef USE_COLOR\n diffuseColor.rgb *= vColor;\n#endif";
// File:src/renderers/shaders/ShaderChunk/color_pars_fragment.glsl
THREE.ShaderChunk[ 'color_pars_fragment' ] = "#ifdef USE_COLOR\n varying vec3 vColor;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/color_pars_vertex.glsl
THREE.ShaderChunk[ 'color_pars_vertex' ] = "#ifdef USE_COLOR\n varying vec3 vColor;\n#endif";
// File:src/renderers/shaders/ShaderChunk/color_vertex.glsl
THREE.ShaderChunk[ 'color_vertex' ] = "#ifdef USE_COLOR\n vColor.xyz = color.xyz;\n#endif";
// File:src/renderers/shaders/ShaderChunk/common.glsl
THREE.ShaderChunk[ 'common' ] = "#define PI 3.14159265359\n#define PI2 6.28318530718\n#define RECIPROCAL_PI 0.31830988618\n#define RECIPROCAL_PI2 0.15915494\n#define LOG2 1.442695\n#define EPSILON 1e-6\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#define whiteCompliment(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n const highp float a = 12.9898, b = 78.233, c = 43758.5453;\n highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n return fract(sin(sn) * c);\n}\nstruct IncidentLight {\n vec3 color;\n vec3 direction;\n bool visible;\n};\nstruct ReflectedLight {\n vec3 directDiffuse;\n vec3 directSpecular;\n vec3 indirectDiffuse;\n vec3 indirectSpecular;\n};\nstruct GeometricContext {\n vec3 position;\n vec3 normal;\n vec3 viewDir;\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n float distance = dot( planeNormal, point - pointOnPlane );\n return - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n return sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n return lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\n";
// File:src/renderers/shaders/ShaderChunk/cube_uv_reflection_fragment.glsl
THREE.ShaderChunk[ 'cube_uv_reflection_fragment' ] = "#ifdef ENVMAP_TYPE_CUBE_UV\nconst float cubeUV_textureSize = 1024.0;\nint getFaceFromDirection(vec3 direction) {\n vec3 absDirection = abs(direction);\n int face = -1;\n if( absDirection.x > absDirection.z ) {\n if(absDirection.x > absDirection.y )\n face = direction.x > 0.0 ? 0 : 3;\n else\n face = direction.y > 0.0 ? 1 : 4;\n }\n else {\n if(absDirection.z > absDirection.y )\n face = direction.z > 0.0 ? 2 : 5;\n else\n face = direction.y > 0.0 ? 1 : 4;\n }\n return face;\n}\nfloat cubeUV_maxLods1 = log2(cubeUV_textureSize*0.25) - 1.0;\nfloat cubeUV_rangeClamp = exp2((6.0 - 1.0) * 2.0);\nvec2 MipLevelInfo( vec3 vec, float roughnessLevel, float roughness ) {\n float scale = exp2(cubeUV_maxLods1 - roughnessLevel);\n float dxRoughness = dFdx(roughness);\n float dyRoughness = dFdy(roughness);\n vec3 dx = dFdx( vec * scale * dxRoughness );\n vec3 dy = dFdy( vec * scale * dyRoughness );\n float d = max( dot( dx, dx ), dot( dy, dy ) );\n d = clamp(d, 1.0, cubeUV_rangeClamp);\n float mipLevel = 0.5 * log2(d);\n return vec2(floor(mipLevel), fract(mipLevel));\n}\nfloat cubeUV_maxLods2 = log2(cubeUV_textureSize*0.25) - 2.0;\nconst float cubeUV_rcpTextureSize = 1.0 / cubeUV_textureSize;\nvec2 getCubeUV(vec3 direction, float roughnessLevel, float mipLevel) {\n mipLevel = roughnessLevel > cubeUV_maxLods2 - 3.0 ? 0.0 : mipLevel;\n float a = 16.0 * cubeUV_rcpTextureSize;\n vec2 exp2_packed = exp2( vec2( roughnessLevel, mipLevel ) );\n vec2 rcp_exp2_packed = vec2( 1.0 ) / exp2_packed;\n float powScale = exp2_packed.x * exp2_packed.y;\n float scale = rcp_exp2_packed.x * rcp_exp2_packed.y * 0.25;\n float mipOffset = 0.75*(1.0 - rcp_exp2_packed.y) * rcp_exp2_packed.x;\n bool bRes = mipLevel == 0.0;\n scale = bRes && (scale < a) ? a : scale;\n vec3 r;\n vec2 offset;\n int face = getFaceFromDirection(direction);\n float rcpPowScale = 1.0 / powScale;\n if( face == 0) {\n r = vec3(direction.x, -direction.z, direction.y);\n offset = vec2(0.0+mipOffset,0.75 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n }\n else if( face == 1) {\n r = vec3(direction.y, direction.x, direction.z);\n offset = vec2(scale+mipOffset, 0.75 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n }\n else if( face == 2) {\n r = vec3(direction.z, direction.x, direction.y);\n offset = vec2(2.0*scale+mipOffset, 0.75 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n }\n else if( face == 3) {\n r = vec3(direction.x, direction.z, direction.y);\n offset = vec2(0.0+mipOffset,0.5 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n }\n else if( face == 4) {\n r = vec3(direction.y, direction.x, -direction.z);\n offset = vec2(scale+mipOffset, 0.5 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n }\n else {\n r = vec3(direction.z, -direction.x, direction.y);\n offset = vec2(2.0*scale+mipOffset, 0.5 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n }\n r = normalize(r);\n float texelOffset = 0.5 * cubeUV_rcpTextureSize;\n vec2 s = ( r.yz / abs( r.x ) + vec2( 1.0 ) ) * 0.5;\n vec2 base = offset + vec2( texelOffset );\n return base + s * ( scale - 2.0 * texelOffset );\n}\nfloat cubeUV_maxLods3 = log2(cubeUV_textureSize*0.25) - 3.0;\nvec4 textureCubeUV(vec3 reflectedDirection, float roughness ) {\n float roughnessVal = roughness* cubeUV_maxLods3;\n float r1 = floor(roughnessVal);\n float r2 = r1 + 1.0;\n float t = fract(roughnessVal);\n vec2 mipInfo = MipLevelInfo(reflectedDirection, r1, roughness);\n float s = mipInfo.y;\n float level0 = mipInfo.x;\n float level1 = level0 + 1.0;\n level1 = level1 > 5.0 ? 5.0 : level1;\n level0 += min( floor( s + 0.5 ), 5.0 );\n vec2 uv_10 = getCubeUV(reflectedDirection, r1, level0);\n vec4 color10 = envMapTexelToLinear(texture2D(envMap, uv_10));\n vec2 uv_20 = getCubeUV(reflectedDirection, r2, level0);\n vec4 color20 = envMapTexelToLinear(texture2D(envMap, uv_20));\n vec4 result = mix(color10, color20, t);\n return vec4(result.rgb, 1.0);\n}\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/defaultnormal_vertex.glsl
THREE.ShaderChunk[ 'defaultnormal_vertex' ] = "#ifdef FLIP_SIDED\n objectNormal = -objectNormal;\n#endif\nvec3 transformedNormal = normalMatrix * objectNormal;\n";
// File:src/renderers/shaders/ShaderChunk/displacementmap_vertex.glsl
THREE.ShaderChunk[ 'displacementmap_vertex' ] = "#ifdef USE_DISPLACEMENTMAP\n transformed += normal * ( texture2D( displacementMap, uv ).x * displacementScale + displacementBias );\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/displacementmap_pars_vertex.glsl
THREE.ShaderChunk[ 'displacementmap_pars_vertex' ] = "#ifdef USE_DISPLACEMENTMAP\n uniform sampler2D displacementMap;\n uniform float displacementScale;\n uniform float displacementBias;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/emissivemap_fragment.glsl
THREE.ShaderChunk[ 'emissivemap_fragment' ] = "#ifdef USE_EMISSIVEMAP\n vec4 emissiveColor = texture2D( emissiveMap, vUv );\n emissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n totalEmissiveRadiance *= emissiveColor.rgb;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/emissivemap_pars_fragment.glsl
THREE.ShaderChunk[ 'emissivemap_pars_fragment' ] = "#ifdef USE_EMISSIVEMAP\n uniform sampler2D emissiveMap;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/encodings_pars_fragment.glsl
THREE.ShaderChunk[ 'encodings_pars_fragment' ] = "\nvec4 LinearToLinear( in vec4 value ) {\n return value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n return vec4( pow( value.xyz, vec3( gammaFactor ) ), value.w );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n return vec4( pow( value.xyz, vec3( 1.0 / gammaFactor ) ), value.w );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n return vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.w );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n return vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.w );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n return vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n float maxComponent = max( max( value.r, value.g ), value.b );\n float fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n return vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n return vec4( value.xyz * value.w * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n float maxRGB = max( value.x, max( value.g, value.b ) );\n float M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n M = ceil( M * 255.0 ) / 255.0;\n return vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n return vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n float maxRGB = max( value.x, max( value.g, value.b ) );\n float D = max( maxRange / maxRGB, 1.0 );\n D = min( floor( D ) / 255.0, 1.0 );\n return vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n vec3 Xp_Y_XYZp = value.rgb * cLogLuvM;\n Xp_Y_XYZp = max(Xp_Y_XYZp, vec3(1e-6, 1e-6, 1e-6));\n vec4 vResult;\n vResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n float Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n vResult.w = fract(Le);\n vResult.z = (Le - (floor(vResult.w*255.0))/255.0)/255.0;\n return vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n float Le = value.z * 255.0 + value.w;\n vec3 Xp_Y_XYZp;\n Xp_Y_XYZp.y = exp2((Le - 127.0) / 2.0);\n Xp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n Xp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n vec3 vRGB = Xp_Y_XYZp.rgb * cLogLuvInverseM;\n return vec4( max(vRGB, 0.0), 1.0 );\n}\n";
// File:src/renderers/shaders/ShaderChunk/encodings_fragment.glsl
THREE.ShaderChunk[ 'encodings_fragment' ] = " gl_FragColor = linearToOutputTexel( gl_FragColor );\n";
// File:src/renderers/shaders/ShaderChunk/envmap_fragment.glsl
THREE.ShaderChunk[ 'envmap_fragment' ] = "#ifdef USE_ENVMAP\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n vec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\n vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n #ifdef ENVMAP_MODE_REFLECTION\n vec3 reflectVec = reflect( cameraToVertex, worldNormal );\n #else\n vec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\n #endif\n #else\n vec3 reflectVec = vReflect;\n #endif\n #ifdef DOUBLE_SIDED\n float flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n #else\n float flipNormal = 1.0;\n #endif\n #ifdef ENVMAP_TYPE_CUBE\n vec4 envColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n #elif defined( ENVMAP_TYPE_EQUIREC )\n vec2 sampleUV;\n sampleUV.y = saturate( flipNormal * reflectVec.y * 0.5 + 0.5 );\n sampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n vec4 envColor = texture2D( envMap, sampleUV );\n #elif defined( ENVMAP_TYPE_SPHERE )\n vec3 reflectView = flipNormal * normalize((viewMatrix * vec4( reflectVec, 0.0 )).xyz + vec3(0.0,0.0,1.0));\n vec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\n #endif\n envColor = envMapTexelToLinear( envColor );\n #ifdef ENVMAP_BLENDING_MULTIPLY\n outgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n #elif defined( ENVMAP_BLENDING_MIX )\n outgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n #elif defined( ENVMAP_BLENDING_ADD )\n outgoingLight += envColor.xyz * specularStrength * reflectivity;\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/envmap_pars_fragment.glsl
THREE.ShaderChunk[ 'envmap_pars_fragment' ] = "#if defined( USE_ENVMAP ) || defined( PHYSICAL )\n uniform float reflectivity;\n uniform float envMapIntenstiy;\n#endif\n#ifdef USE_ENVMAP\n #if ! defined( PHYSICAL ) && ( defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) )\n varying vec3 vWorldPosition;\n #endif\n #ifdef ENVMAP_TYPE_CUBE\n uniform samplerCube envMap;\n #else\n uniform sampler2D envMap;\n #endif\n uniform float flipEnvMap;\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( PHYSICAL )\n uniform float refractionRatio;\n #else\n varying vec3 vReflect;\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/envmap_pars_vertex.glsl
THREE.ShaderChunk[ 'envmap_pars_vertex' ] = "#ifdef USE_ENVMAP\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n varying vec3 vWorldPosition;\n #else\n varying vec3 vReflect;\n uniform float refractionRatio;\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/envmap_vertex.glsl
THREE.ShaderChunk[ 'envmap_vertex' ] = "#ifdef USE_ENVMAP\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n vWorldPosition = worldPosition.xyz;\n #else\n vec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n vec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n #ifdef ENVMAP_MODE_REFLECTION\n vReflect = reflect( cameraToVertex, worldNormal );\n #else\n vReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n #endif\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/fog_fragment.glsl
THREE.ShaderChunk[ 'fog_fragment' ] = "#ifdef USE_FOG\n #ifdef USE_LOGDEPTHBUF_EXT\n float depth = gl_FragDepthEXT / gl_FragCoord.w;\n #else\n float depth = gl_FragCoord.z / gl_FragCoord.w;\n #endif\n #ifdef FOG_EXP2\n float fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * depth * depth * LOG2 ) );\n #else\n float fogFactor = smoothstep( fogNear, fogFar, depth );\n #endif\n gl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/fog_pars_fragment.glsl
THREE.ShaderChunk[ 'fog_pars_fragment' ] = "#ifdef USE_FOG\n uniform vec3 fogColor;\n #ifdef FOG_EXP2\n uniform float fogDensity;\n #else\n uniform float fogNear;\n uniform float fogFar;\n #endif\n#endif";
// File:src/renderers/shaders/ShaderChunk/lightmap_fragment.glsl
THREE.ShaderChunk[ 'lightmap_fragment' ] = "#ifdef USE_LIGHTMAP\n reflectedLight.indirectDiffuse += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/lightmap_pars_fragment.glsl
THREE.ShaderChunk[ 'lightmap_pars_fragment' ] = "#ifdef USE_LIGHTMAP\n uniform sampler2D lightMap;\n uniform float lightMapIntensity;\n#endif";
// File:src/renderers/shaders/ShaderChunk/lights_lambert_vertex.glsl
THREE.ShaderChunk[ 'lights_lambert_vertex' ] = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n vLightBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\n#if NUM_POINT_LIGHTS > 0\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n getPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n#endif\n#if NUM_SPOT_LIGHTS > 0\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n getSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n#endif\n#if NUM_DIR_LIGHTS > 0\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n getDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n#endif\n#if NUM_HEMI_LIGHTS > 0\n for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n vLightFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n #ifdef DOUBLE_SIDED\n vLightBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n #endif\n }\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/lights_pars.glsl
THREE.ShaderChunk[ 'lights_pars' ] = "uniform vec3 ambientLightColor;\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n vec3 irradiance = ambientLightColor;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n return irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n struct DirectionalLight {\n vec3 direction;\n vec3 color;\n int shadow;\n float shadowBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n void getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n directLight.color = directionalLight.color;\n directLight.direction = directionalLight.direction;\n directLight.visible = true;\n }\n#endif\n#if NUM_POINT_LIGHTS > 0\n struct PointLight {\n vec3 position;\n vec3 color;\n float distance;\n float decay;\n int shadow;\n float shadowBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n void getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n vec3 lVector = pointLight.position - geometry.position;\n directLight.direction = normalize( lVector );\n float lightDistance = length( lVector );\n if ( testLightInRange( lightDistance, pointLight.distance ) ) {\n directLight.color = pointLight.color;\n directLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n directLight.visible = true;\n } else {\n directLight.color = vec3( 0.0 );\n directLight.visible = false;\n }\n }\n#endif\n#if NUM_SPOT_LIGHTS > 0\n struct SpotLight {\n vec3 position;\n vec3 direction;\n vec3 color;\n float distance;\n float decay;\n float coneCos;\n float penumbraCos;\n int shadow;\n float shadowBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n void getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n vec3 lVector = spotLight.position - geometry.position;\n directLight.direction = normalize( lVector );\n float lightDistance = length( lVector );\n float angleCos = dot( directLight.direction, spotLight.direction );\n if ( all( bvec2( angleCos > spotLight.coneCos, testLightInRange( lightDistance, spotLight.distance ) ) ) ) {\n float spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n directLight.color = spotLight.color;\n directLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n directLight.visible = true;\n } else {\n directLight.color = vec3( 0.0 );\n directLight.visible = false;\n }\n }\n#endif\n#if NUM_HEMI_LIGHTS > 0\n struct HemisphereLight {\n vec3 direction;\n vec3 skyColor;\n vec3 groundColor;\n };\n uniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n vec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n float dotNL = dot( geometry.normal, hemiLight.direction );\n float hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n vec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n return irradiance;\n }\n#endif\n#if defined( USE_ENVMAP ) && defined( PHYSICAL )\n vec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n #ifdef DOUBLE_SIDED\n float flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n #else\n float flipNormal = 1.0;\n #endif\n vec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n #ifdef ENVMAP_TYPE_CUBE\n vec3 queryVec = flipNormal * vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n #else\n vec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n #endif\n envMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n #elif defined( ENVMAP_TYPE_CUBE_UV )\n vec3 queryVec = flipNormal * vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n vec4 envMapColor = textureCubeUV( queryVec, 1.0 );\n #else\n vec4 envMapColor = vec4( 0.0 );\n #endif\n return PI * envMapColor.rgb * envMapIntensity;\n }\n float getSpecularMIPLevel( const in float blinnShininessExponent, const in int maxMIPLevel ) {\n float maxMIPLevelScalar = float( maxMIPLevel );\n float desiredMIPLevel = maxMIPLevelScalar - 0.79248 - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 );\n return clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n }\n vec3 getLightProbeIndirectRadiance( const in GeometricContext geometry, const in float blinnShininessExponent, const in int maxMIPLevel ) {\n #ifdef ENVMAP_MODE_REFLECTION\n vec3 reflectVec = reflect( -geometry.viewDir, geometry.normal );\n #else\n vec3 reflectVec = refract( -geometry.viewDir, geometry.normal, refractionRatio );\n #endif\n #ifdef DOUBLE_SIDED\n float flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n #else\n float flipNormal = 1.0;\n #endif\n reflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n float specularMIPLevel = getSpecularMIPLevel( blinnShininessExponent, maxMIPLevel );\n #ifdef ENVMAP_TYPE_CUBE\n vec3 queryReflectVec = flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n #else\n vec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n #endif\n envMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n #elif defined( ENVMAP_TYPE_CUBE_UV )\n vec3 queryReflectVec = flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n vec4 envMapColor = textureCubeUV(queryReflectVec, BlinnExponentToGGXRoughness(blinnShininessExponent));\n #elif defined( ENVMAP_TYPE_EQUIREC )\n vec2 sampleUV;\n sampleUV.y = saturate( flipNormal * reflectVec.y * 0.5 + 0.5 );\n sampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\n #else\n vec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\n #endif\n envMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n #elif defined( ENVMAP_TYPE_SPHERE )\n vec3 reflectView = flipNormal * normalize((viewMatrix * vec4( reflectVec, 0.0 )).xyz + vec3(0.0,0.0,1.0));\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n #else\n vec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n #endif\n envMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n #endif\n return envMapColor.rgb * envMapIntensity;\n }\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/lights_phong_fragment.glsl
THREE.ShaderChunk[ 'lights_phong_fragment' ] = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;\n";
// File:src/renderers/shaders/ShaderChunk/lights_phong_pars_fragment.glsl
THREE.ShaderChunk[ 'lights_phong_pars_fragment' ] = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n vec3 diffuseColor;\n vec3 specularColor;\n float specularShininess;\n float specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n float dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n vec3 irradiance = dotNL * directLight.color;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n reflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n reflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct RE_Direct_BlinnPhong\n#define RE_IndirectDiffuse RE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material ) (0)\n";
// File:src/renderers/shaders/ShaderChunk/lights_physical_fragment.glsl
THREE.ShaderChunk[ 'lights_physical_fragment' ] = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nmaterial.specularRoughness = clamp( roughnessFactor, 0.04, 1.0 );\n#ifdef STANDARD\n material.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n#else\n material.specularColor = mix( vec3( 0.16 * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/lights_physical_pars_fragment.glsl
THREE.ShaderChunk[ 'lights_physical_pars_fragment' ] = "struct PhysicalMaterial {\n vec3 diffuseColor;\n float specularRoughness;\n vec3 specularColor;\n #ifndef STANDARD\n #endif\n};\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n float dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n vec3 irradiance = dotNL * directLight.color;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n reflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n reflectedLight.directSpecular += irradiance * BRDF_Specular_GGX( directLight, geometry, material.specularColor, material.specularRoughness );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectSpecular += radiance * BRDF_Specular_GGX_Environment( geometry, material.specularColor, material.specularRoughness );\n}\n#define RE_Direct RE_Direct_Physical\n#define RE_IndirectDiffuse RE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular RE_IndirectSpecular_Physical\n#define Material_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.specularRoughness )\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n return saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}\n";
// File:src/renderers/shaders/ShaderChunk/lights_template.glsl
THREE.ShaderChunk[ 'lights_template' ] = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = normalize( vViewPosition );\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n PointLight pointLight;\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n pointLight = pointLights[ i ];\n getPointDirectLightIrradiance( pointLight, geometry, directLight );\n #ifdef USE_SHADOWMAP\n directLight.color *= all( bvec2( pointLight.shadow, directLight.visible ) ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n SpotLight spotLight;\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n spotLight = spotLights[ i ];\n getSpotDirectLightIrradiance( spotLight, geometry, directLight );\n #ifdef USE_SHADOWMAP\n directLight.color *= all( bvec2( spotLight.shadow, directLight.visible ) ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n DirectionalLight directionalLight;\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n directionalLight = directionalLights[ i ];\n getDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n #ifdef USE_SHADOWMAP\n directLight.color *= all( bvec2( directionalLight.shadow, directLight.visible ) ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n#endif\n#if defined( RE_IndirectDiffuse )\n vec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n #ifdef USE_LIGHTMAP\n vec3 lightMapIrradiance = texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n lightMapIrradiance *= PI;\n #endif\n irradiance += lightMapIrradiance;\n #endif\n #if ( NUM_HEMI_LIGHTS > 0 )\n for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n irradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n }\n #endif\n #if defined( USE_ENVMAP ) && defined( PHYSICAL ) && defined( ENVMAP_TYPE_CUBE_UV )\n irradiance += getLightProbeIndirectIrradiance( geometry, 8 );\n #endif\n RE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n vec3 radiance = getLightProbeIndirectRadiance( geometry, Material_BlinnShininessExponent( material ), 8 );\n RE_IndirectSpecular( radiance, geometry, material, reflectedLight );\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/logdepthbuf_fragment.glsl
THREE.ShaderChunk[ 'logdepthbuf_fragment' ] = "#if defined(USE_LOGDEPTHBUF) && defined(USE_LOGDEPTHBUF_EXT)\n gl_FragDepthEXT = log2(vFragDepth) * logDepthBufFC * 0.5;\n#endif";
// File:src/renderers/shaders/ShaderChunk/logdepthbuf_pars_fragment.glsl
THREE.ShaderChunk[ 'logdepthbuf_pars_fragment' ] = "#ifdef USE_LOGDEPTHBUF\n uniform float logDepthBufFC;\n #ifdef USE_LOGDEPTHBUF_EXT\n varying float vFragDepth;\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/logdepthbuf_pars_vertex.glsl
THREE.ShaderChunk[ 'logdepthbuf_pars_vertex' ] = "#ifdef USE_LOGDEPTHBUF\n #ifdef USE_LOGDEPTHBUF_EXT\n varying float vFragDepth;\n #endif\n uniform float logDepthBufFC;\n#endif";
// File:src/renderers/shaders/ShaderChunk/logdepthbuf_vertex.glsl
THREE.ShaderChunk[ 'logdepthbuf_vertex' ] = "#ifdef USE_LOGDEPTHBUF\n gl_Position.z = log2(max( EPSILON, gl_Position.w + 1.0 )) * logDepthBufFC;\n #ifdef USE_LOGDEPTHBUF_EXT\n vFragDepth = 1.0 + gl_Position.w;\n #else\n gl_Position.z = (gl_Position.z - 1.0) * gl_Position.w;\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/map_fragment.glsl
THREE.ShaderChunk[ 'map_fragment' ] = "#ifdef USE_MAP\n vec4 texelColor = texture2D( map, vUv );\n texelColor = mapTexelToLinear( texelColor );\n diffuseColor *= texelColor;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/map_pars_fragment.glsl
THREE.ShaderChunk[ 'map_pars_fragment' ] = "#ifdef USE_MAP\n uniform sampler2D map;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/map_particle_fragment.glsl
THREE.ShaderChunk[ 'map_particle_fragment' ] = "#ifdef USE_MAP\n vec4 mapTexel = texture2D( map, vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y ) * offsetRepeat.zw + offsetRepeat.xy );\n diffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/map_particle_pars_fragment.glsl
THREE.ShaderChunk[ 'map_particle_pars_fragment' ] = "#ifdef USE_MAP\n uniform vec4 offsetRepeat;\n uniform sampler2D map;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/metalnessmap_fragment.glsl
THREE.ShaderChunk[ 'metalnessmap_fragment' ] = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n vec4 texelMetalness = texture2D( metalnessMap, vUv );\n metalnessFactor *= texelMetalness.r;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/metalnessmap_pars_fragment.glsl
THREE.ShaderChunk[ 'metalnessmap_pars_fragment' ] = "#ifdef USE_METALNESSMAP\n uniform sampler2D metalnessMap;\n#endif";
// File:src/renderers/shaders/ShaderChunk/morphnormal_vertex.glsl
THREE.ShaderChunk[ 'morphnormal_vertex' ] = "#ifdef USE_MORPHNORMALS\n objectNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\n objectNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\n objectNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\n objectNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/morphtarget_pars_vertex.glsl
THREE.ShaderChunk[ 'morphtarget_pars_vertex' ] = "#ifdef USE_MORPHTARGETS\n #ifndef USE_MORPHNORMALS\n uniform float morphTargetInfluences[ 8 ];\n #else\n uniform float morphTargetInfluences[ 4 ];\n #endif\n#endif";
// File:src/renderers/shaders/ShaderChunk/morphtarget_vertex.glsl
THREE.ShaderChunk[ 'morphtarget_vertex' ] = "#ifdef USE_MORPHTARGETS\n transformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\n transformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\n transformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\n transformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\n #ifndef USE_MORPHNORMALS\n transformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\n transformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\n transformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\n transformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/normal_fragment.glsl
THREE.ShaderChunk[ 'normal_fragment' ] = "#ifdef FLAT_SHADED\n vec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n vec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n vec3 normal = normalize( cross( fdx, fdy ) );\n#else\n vec3 normal = normalize( vNormal );\n #ifdef DOUBLE_SIDED\n normal = normal * ( -1.0 + 2.0 * float( gl_FrontFacing ) );\n #endif\n#endif\n#ifdef USE_NORMALMAP\n normal = perturbNormal2Arb( -vViewPosition, normal );\n#elif defined( USE_BUMPMAP )\n normal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/normalmap_pars_fragment.glsl
THREE.ShaderChunk[ 'normalmap_pars_fragment' ] = "#ifdef USE_NORMALMAP\n uniform sampler2D normalMap;\n uniform vec2 normalScale;\n vec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\n vec3 q0 = dFdx( eye_pos.xyz );\n vec3 q1 = dFdy( eye_pos.xyz );\n vec2 st0 = dFdx( vUv.st );\n vec2 st1 = dFdy( vUv.st );\n vec3 S = normalize( q0 * st1.t - q1 * st0.t );\n vec3 T = normalize( -q0 * st1.s + q1 * st0.s );\n vec3 N = normalize( surf_norm );\n vec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n mapN.xy = normalScale * mapN.xy;\n mat3 tsn = mat3( S, T, N );\n return normalize( tsn * mapN );\n }\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/packing.glsl
THREE.ShaderChunk[ 'packing' ] = "vec3 packNormalToRGB( const in vec3 normal ) {\n return normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n return 1.0 - 2.0 * rgb.xyz;\n}\nvec4 packDepthToRGBA( const in float value ) {\n const vec4 bit_shift = vec4( 256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0 );\n const vec4 bit_mask = vec4( 0.0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0 );\n vec4 res = mod( value * bit_shift * vec4( 255 ), vec4( 256 ) ) / vec4( 255 );\n res -= res.xxyz * bit_mask;\n return res;\n}\nfloat unpackRGBAToDepth( const in vec4 rgba ) {\n const vec4 bitSh = vec4( 1.0 / ( 256.0 * 256.0 * 256.0 ), 1.0 / ( 256.0 * 256.0 ), 1.0 / 256.0, 1.0 );\n return dot( rgba, bitSh );\n}\nfloat viewZToOrthoDepth( const in float viewZ, const in float near, const in float far ) {\n return ( viewZ + near ) / ( near - far );\n}\nfloat OrthoDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n return linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n return (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n return ( near * far ) / ( ( far - near ) * invClipZ - far );\n}\n";
// File:src/renderers/shaders/ShaderChunk/premultiplied_alpha_fragment.glsl
THREE.ShaderChunk[ 'premultiplied_alpha_fragment' ] = "#ifdef PREMULTIPLIED_ALPHA\n gl_FragColor.rgb *= gl_FragColor.a;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/project_vertex.glsl
THREE.ShaderChunk[ 'project_vertex' ] = "#ifdef USE_SKINNING\n vec4 mvPosition = modelViewMatrix * skinned;\n#else\n vec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );\n#endif\ngl_Position = projectionMatrix * mvPosition;\n";
// File:src/renderers/shaders/ShaderChunk/roughnessmap_fragment.glsl
THREE.ShaderChunk[ 'roughnessmap_fragment' ] = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n vec4 texelRoughness = texture2D( roughnessMap, vUv );\n roughnessFactor *= texelRoughness.r;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/roughnessmap_pars_fragment.glsl
THREE.ShaderChunk[ 'roughnessmap_pars_fragment' ] = "#ifdef USE_ROUGHNESSMAP\n uniform sampler2D roughnessMap;\n#endif";
// File:src/renderers/shaders/ShaderChunk/shadowmap_pars_fragment.glsl
THREE.ShaderChunk[ 'shadowmap_pars_fragment' ] = "#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n uniform sampler2D directionalShadowMap[ NUM_DIR_LIGHTS ];\n varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n #endif\n #if NUM_SPOT_LIGHTS > 0\n uniform sampler2D spotShadowMap[ NUM_SPOT_LIGHTS ];\n varying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n #endif\n #if NUM_POINT_LIGHTS > 0\n uniform sampler2D pointShadowMap[ NUM_POINT_LIGHTS ];\n varying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n #endif\n float texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n return step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n }\n float texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {\n const vec2 offset = vec2( 0.0, 1.0 );\n vec2 texelSize = vec2( 1.0 ) / size;\n vec2 centroidUV = floor( uv * size + 0.5 ) / size;\n float lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );\n float lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );\n float rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );\n float rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );\n vec2 f = fract( uv * size + 0.5 );\n float a = mix( lb, lt, f.y );\n float b = mix( rb, rt, f.y );\n float c = mix( a, b, f.x );\n return c;\n }\n float getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n shadowCoord.xyz /= shadowCoord.w;\n shadowCoord.z += shadowBias;\n bvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n bool inFrustum = all( inFrustumVec );\n bvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n bool frustumTest = all( frustumTestVec );\n if ( frustumTest ) {\n #if defined( SHADOWMAP_TYPE_PCF )\n vec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n float dx0 = - texelSize.x * shadowRadius;\n float dy0 = - texelSize.y * shadowRadius;\n float dx1 = + texelSize.x * shadowRadius;\n float dy1 = + texelSize.y * shadowRadius;\n return (\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n ) * ( 1.0 / 9.0 );\n #elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n vec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n float dx0 = - texelSize.x * shadowRadius;\n float dy0 = - texelSize.y * shadowRadius;\n float dx1 = + texelSize.x * shadowRadius;\n float dy1 = + texelSize.y * shadowRadius;\n return (\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy, shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n ) * ( 1.0 / 9.0 );\n #else\n return texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n #endif\n }\n return 1.0;\n }\n vec2 cubeToUV( vec3 v, float texelSizeY ) {\n vec3 absV = abs( v );\n float scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n absV *= scaleToCube;\n v *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n vec2 planar = v.xy;\n float almostATexel = 1.5 * texelSizeY;\n float almostOne = 1.0 - almostATexel;\n if ( absV.z >= almostOne ) {\n if ( v.z > 0.0 )\n planar.x = 4.0 - v.x;\n } else if ( absV.x >= almostOne ) {\n float signX = sign( v.x );\n planar.x = v.z * signX + 2.0 * signX;\n } else if ( absV.y >= almostOne ) {\n float signY = sign( v.y );\n planar.x = v.x + 2.0 * signY + 2.0;\n planar.y = v.z * signY - 2.0;\n }\n return vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n }\n float getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n vec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n vec3 lightToPosition = shadowCoord.xyz;\n vec3 bd3D = normalize( lightToPosition );\n float dp = ( length( lightToPosition ) - shadowBias ) / 1000.0;\n #if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT )\n vec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n return (\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n ) * ( 1.0 / 9.0 );\n #else\n return texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n #endif\n }\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/shadowmap_pars_vertex.glsl
THREE.ShaderChunk[ 'shadowmap_pars_vertex' ] = "#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n uniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHTS ];\n varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n #endif\n #if NUM_SPOT_LIGHTS > 0\n uniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHTS ];\n varying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n #endif\n #if NUM_POINT_LIGHTS > 0\n uniform mat4 pointShadowMatrix[ NUM_POINT_LIGHTS ];\n varying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/shadowmap_vertex.glsl
THREE.ShaderChunk[ 'shadowmap_vertex' ] = "#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n vDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\n }\n #endif\n #if NUM_SPOT_LIGHTS > 0\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n vSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\n }\n #endif\n #if NUM_POINT_LIGHTS > 0\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n vPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\n }\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/shadowmask_pars_fragment.glsl
THREE.ShaderChunk[ 'shadowmask_pars_fragment' ] = "float getShadowMask() {\n float shadow = 1.0;\n #ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n DirectionalLight directionalLight;\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n directionalLight = directionalLights[ i ];\n shadow *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n }\n #endif\n #if NUM_SPOT_LIGHTS > 0\n SpotLight spotLight;\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n spotLight = spotLights[ i ];\n shadow *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n }\n #endif\n #if NUM_POINT_LIGHTS > 0\n PointLight pointLight;\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n pointLight = pointLights[ i ];\n shadow *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\n }\n #endif\n #endif\n return shadow;\n}\n";
// File:src/renderers/shaders/ShaderChunk/skinbase_vertex.glsl
THREE.ShaderChunk[ 'skinbase_vertex' ] = "#ifdef USE_SKINNING\n mat4 boneMatX = getBoneMatrix( skinIndex.x );\n mat4 boneMatY = getBoneMatrix( skinIndex.y );\n mat4 boneMatZ = getBoneMatrix( skinIndex.z );\n mat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";
// File:src/renderers/shaders/ShaderChunk/skinning_pars_vertex.glsl
THREE.ShaderChunk[ 'skinning_pars_vertex' ] = "#ifdef USE_SKINNING\n uniform mat4 bindMatrix;\n uniform mat4 bindMatrixInverse;\n #ifdef BONE_TEXTURE\n uniform sampler2D boneTexture;\n uniform int boneTextureWidth;\n uniform int boneTextureHeight;\n mat4 getBoneMatrix( const in float i ) {\n float j = i * 4.0;\n float x = mod( j, float( boneTextureWidth ) );\n float y = floor( j / float( boneTextureWidth ) );\n float dx = 1.0 / float( boneTextureWidth );\n float dy = 1.0 / float( boneTextureHeight );\n y = dy * ( y + 0.5 );\n vec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n vec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n vec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n vec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n mat4 bone = mat4( v1, v2, v3, v4 );\n return bone;\n }\n #else\n uniform mat4 boneMatrices[ MAX_BONES ];\n mat4 getBoneMatrix( const in float i ) {\n mat4 bone = boneMatrices[ int(i) ];\n return bone;\n }\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/skinning_vertex.glsl
THREE.ShaderChunk[ 'skinning_vertex' ] = "#ifdef USE_SKINNING\n vec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n vec4 skinned = vec4( 0.0 );\n skinned += boneMatX * skinVertex * skinWeight.x;\n skinned += boneMatY * skinVertex * skinWeight.y;\n skinned += boneMatZ * skinVertex * skinWeight.z;\n skinned += boneMatW * skinVertex * skinWeight.w;\n skinned = bindMatrixInverse * skinned;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/skinnormal_vertex.glsl
THREE.ShaderChunk[ 'skinnormal_vertex' ] = "#ifdef USE_SKINNING\n mat4 skinMatrix = mat4( 0.0 );\n skinMatrix += skinWeight.x * boneMatX;\n skinMatrix += skinWeight.y * boneMatY;\n skinMatrix += skinWeight.z * boneMatZ;\n skinMatrix += skinWeight.w * boneMatW;\n skinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n objectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/specularmap_fragment.glsl
THREE.ShaderChunk[ 'specularmap_fragment' ] = "float specularStrength;\n#ifdef USE_SPECULARMAP\n vec4 texelSpecular = texture2D( specularMap, vUv );\n specularStrength = texelSpecular.r;\n#else\n specularStrength = 1.0;\n#endif";
// File:src/renderers/shaders/ShaderChunk/specularmap_pars_fragment.glsl
THREE.ShaderChunk[ 'specularmap_pars_fragment' ] = "#ifdef USE_SPECULARMAP\n uniform sampler2D specularMap;\n#endif";
// File:src/renderers/shaders/ShaderChunk/tonemapping_fragment.glsl
THREE.ShaderChunk[ 'tonemapping_fragment' ] = "#if defined( TONE_MAPPING )\n gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/tonemapping_pars_fragment.glsl
THREE.ShaderChunk[ 'tonemapping_pars_fragment' ] = "#define saturate(a) clamp( a, 0.0, 1.0 )\nuniform float toneMappingExposure;\nuniform float toneMappingWhitePoint;\nvec3 LinearToneMapping( vec3 color ) {\n return toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n return saturate( color / ( vec3( 1.0 ) + color ) );\n}\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\nvec3 Uncharted2ToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n return saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n color = max( vec3( 0.0 ), color - 0.004 );\n return pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\n";
// File:src/renderers/shaders/ShaderChunk/uv2_pars_fragment.glsl
THREE.ShaderChunk[ 'uv2_pars_fragment' ] = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n varying vec2 vUv2;\n#endif";
// File:src/renderers/shaders/ShaderChunk/uv2_pars_vertex.glsl
THREE.ShaderChunk[ 'uv2_pars_vertex' ] = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n attribute vec2 uv2;\n varying vec2 vUv2;\n#endif";
// File:src/renderers/shaders/ShaderChunk/uv2_vertex.glsl
THREE.ShaderChunk[ 'uv2_vertex' ] = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n vUv2 = uv2;\n#endif";
// File:src/renderers/shaders/ShaderChunk/uv_pars_fragment.glsl
THREE.ShaderChunk[ 'uv_pars_fragment' ] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n varying vec2 vUv;\n#endif";
// File:src/renderers/shaders/ShaderChunk/uv_pars_vertex.glsl
THREE.ShaderChunk[ 'uv_pars_vertex' ] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n varying vec2 vUv;\n uniform vec4 offsetRepeat;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/uv_vertex.glsl
THREE.ShaderChunk[ 'uv_vertex' ] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n vUv = uv * offsetRepeat.zw + offsetRepeat.xy;\n#endif";
// File:src/renderers/shaders/ShaderChunk/worldpos_vertex.glsl
THREE.ShaderChunk[ 'worldpos_vertex' ] = "#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( PHYSICAL ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )\n #ifdef USE_SKINNING\n vec4 worldPosition = modelMatrix * skinned;\n #else\n vec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );\n #endif\n#endif\n";
// File:src/renderers/shaders/UniformsUtils.js
/**
* Uniform Utilities
*/
THREE.UniformsUtils = {
merge: function ( uniforms ) {
var merged = {};
for ( var u = 0; u < uniforms.length; u ++ ) {
var tmp = this.clone( uniforms[ u ] );
for ( var p in tmp ) {
merged[ p ] = tmp[ p ];
}
}
return merged;
},
clone: function ( uniforms_src ) {
var uniforms_dst = {};
for ( var u in uniforms_src ) {
uniforms_dst[ u ] = {};
for ( var p in uniforms_src[ u ] ) {
var parameter_src = uniforms_src[ u ][ p ];
if ( parameter_src instanceof THREE.Color ||
parameter_src instanceof THREE.Vector2 ||
parameter_src instanceof THREE.Vector3 ||
parameter_src instanceof THREE.Vector4 ||
parameter_src instanceof THREE.Matrix3 ||
parameter_src instanceof THREE.Matrix4 ||
parameter_src instanceof THREE.Texture ) {
uniforms_dst[ u ][ p ] = parameter_src.clone();
} else if ( Array.isArray( parameter_src ) ) {
uniforms_dst[ u ][ p ] = parameter_src.slice();
} else {
uniforms_dst[ u ][ p ] = parameter_src;
}
}
}
return uniforms_dst;
}
};
// File:src/renderers/shaders/UniformsLib.js
/**
* Uniforms library for shared webgl shaders
*/
THREE.UniformsLib = {
common: {
"diffuse": { type: "c", value: new THREE.Color( 0xeeeeee ) },
"opacity": { type: "1f", value: 1.0 },
"map": { type: "t", value: null },
"offsetRepeat": { type: "v4", value: new THREE.Vector4( 0, 0, 1, 1 ) },
"specularMap": { type: "t", value: null },
"alphaMap": { type: "t", value: null },
"envMap": { type: "t", value: null },
"flipEnvMap": { type: "1f", value: - 1 },
"reflectivity": { type: "1f", value: 1.0 },
"refractionRatio": { type: "1f", value: 0.98 }
},
aomap: {
"aoMap": { type: "t", value: null },
"aoMapIntensity": { type: "1f", value: 1 }
},
lightmap: {
"lightMap": { type: "t", value: null },
"lightMapIntensity": { type: "1f", value: 1 }
},
emissivemap: {
"emissiveMap": { type: "t", value: null }
},
bumpmap: {
"bumpMap": { type: "t", value: null },
"bumpScale": { type: "1f", value: 1 }
},
normalmap: {
"normalMap": { type: "t", value: null },
"normalScale": { type: "v2", value: new THREE.Vector2( 1, 1 ) }
},
displacementmap: {
"displacementMap": { type: "t", value: null },
"displacementScale": { type: "1f", value: 1 },
"displacementBias": { type: "1f", value: 0 }
},
roughnessmap: {
"roughnessMap": { type: "t", value: null }
},
metalnessmap: {
"metalnessMap": { type: "t", value: null }
},
fog: {
"fogDensity": { type: "1f", value: 0.00025 },
"fogNear": { type: "1f", value: 1 },
"fogFar": { type: "1f", value: 2000 },
"fogColor": { type: "c", value: new THREE.Color( 0xffffff ) }
},
lights: {
"ambientLightColor": { type: "3fv", value: [] },
"directionalLights": { type: "sa", value: [], properties: {
"direction": { type: "v3" },
"color": { type: "c" },
"shadow": { type: "1i" },
"shadowBias": { type: "1f" },
"shadowRadius": { type: "1f" },
"shadowMapSize": { type: "v2" }
} },
"directionalShadowMap": { type: "tv", value: [] },
"directionalShadowMatrix": { type: "m4v", value: [] },
"spotLights": { type: "sa", value: [], properties: {
"color": { type: "c" },
"position": { type: "v3" },
"direction": { type: "v3" },
"distance": { type: "1f" },
"coneCos": { type: "1f" },
"penumbraCos": { type: "1f" },
"decay": { type: "1f" },
"shadow": { type: "1i" },
"shadowBias": { type: "1f" },
"shadowRadius": { type: "1f" },
"shadowMapSize": { type: "v2" }
} },
"spotShadowMap": { type: "tv", value: [] },
"spotShadowMatrix": { type: "m4v", value: [] },
"pointLights": { type: "sa", value: [], properties: {
"color": { type: "c" },
"position": { type: "v3" },
"decay": { type: "1f" },
"distance": { type: "1f" },
"shadow": { type: "1i" },
"shadowBias": { type: "1f" },
"shadowRadius": { type: "1f" },
"shadowMapSize": { type: "v2" }
} },
"pointShadowMap": { type: "tv", value: [] },
"pointShadowMatrix": { type: "m4v", value: [] },
"hemisphereLights": { type: "sa", value: [], properties: {
"direction": { type: "v3" },
"skyColor": { type: "c" },
"groundColor": { type: "c" }
} }
},
points: {
"diffuse": { type: "c", value: new THREE.Color( 0xeeeeee ) },
"opacity": { type: "1f", value: 1.0 },
"size": { type: "1f", value: 1.0 },
"scale": { type: "1f", value: 1.0 },
"map": { type: "t", value: null },
"offsetRepeat": { type: "v4", value: new THREE.Vector4( 0, 0, 1, 1 ) }
}
};
// File:src/renderers/shaders/ShaderLib/cube_frag.glsl
THREE.ShaderChunk[ 'cube_frag' ] = "uniform samplerCube tCube;\nuniform float tFlip;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n gl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\n #include <logdepthbuf_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/cube_vert.glsl
THREE.ShaderChunk[ 'cube_vert' ] = "varying vec3 vWorldPosition;\n#include <common>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n vWorldPosition = transformDirection( position, modelMatrix );\n #include <begin_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/depth_frag.glsl
THREE.ShaderChunk[ 'depth_frag' ] = "#if DEPTH_PACKING == 3200\n uniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n vec4 diffuseColor = vec4( 1.0 );\n #if DEPTH_PACKING == 3200\n diffuseColor.a = opacity;\n #endif\n #include <map_fragment>\n #include <alphamap_fragment>\n #include <alphatest_fragment>\n #include <logdepthbuf_fragment>\n #if DEPTH_PACKING == 3200\n gl_FragColor = vec4( vec3( gl_FragCoord.z ), opacity );\n #elif DEPTH_PACKING == 3201\n gl_FragColor = packDepthToRGBA( gl_FragCoord.z );\n #endif\n}\n";
// File:src/renderers/shaders/ShaderLib/depth_vert.glsl
THREE.ShaderChunk[ 'depth_vert' ] = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <uv_vertex>\n #include <skinbase_vertex>\n #include <begin_vertex>\n #include <displacementmap_vertex>\n #include <morphtarget_vertex>\n #include <skinning_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/distanceRGBA_frag.glsl
THREE.ShaderChunk[ 'distanceRGBA_frag' ] = "uniform vec3 lightPos;\nvarying vec4 vWorldPosition;\n#include <common>\n#include <packing>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n #include <clipping_planes_fragment>\n gl_FragColor = packDepthToRGBA( length( vWorldPosition.xyz - lightPos.xyz ) / 1000.0 );\n}\n";
// File:src/renderers/shaders/ShaderLib/distanceRGBA_vert.glsl
THREE.ShaderChunk[ 'distanceRGBA_vert' ] = "varying vec4 vWorldPosition;\n#include <common>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <skinbase_vertex>\n #include <begin_vertex>\n #include <morphtarget_vertex>\n #include <skinning_vertex>\n #include <project_vertex>\n #include <worldpos_vertex>\n #include <clipping_planes_vertex>\n vWorldPosition = worldPosition;\n}\n";
// File:src/renderers/shaders/ShaderLib/equirect_frag.glsl
THREE.ShaderChunk[ 'equirect_frag' ] = "uniform sampler2D tEquirect;\nuniform float tFlip;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n vec3 direction = normalize( vWorldPosition );\n vec2 sampleUV;\n sampleUV.y = saturate( tFlip * direction.y * -0.5 + 0.5 );\n sampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\n gl_FragColor = texture2D( tEquirect, sampleUV );\n #include <logdepthbuf_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/equirect_vert.glsl
THREE.ShaderChunk[ 'equirect_vert' ] = "varying vec3 vWorldPosition;\n#include <common>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n vWorldPosition = transformDirection( position, modelMatrix );\n #include <begin_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/linedashed_frag.glsl
THREE.ShaderChunk[ 'linedashed_frag' ] = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n if ( mod( vLineDistance, totalSize ) > dashSize ) {\n discard;\n }\n vec3 outgoingLight = vec3( 0.0 );\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include <logdepthbuf_fragment>\n #include <color_fragment>\n outgoingLight = diffuseColor.rgb;\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include <premultiplied_alpha_fragment>\n #include <tonemapping_fragment>\n #include <encodings_fragment>\n #include <fog_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/linedashed_vert.glsl
THREE.ShaderChunk[ 'linedashed_vert' ] = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <color_vertex>\n vLineDistance = scale * lineDistance;\n vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );\n gl_Position = projectionMatrix * mvPosition;\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshbasic_frag.glsl
THREE.ShaderChunk[ 'meshbasic_frag' ] = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\n#include <common>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include <logdepthbuf_fragment>\n #include <map_fragment>\n #include <color_fragment>\n #include <alphamap_fragment>\n #include <alphatest_fragment>\n #include <specularmap_fragment>\n ReflectedLight reflectedLight;\n reflectedLight.directDiffuse = vec3( 0.0 );\n reflectedLight.directSpecular = vec3( 0.0 );\n reflectedLight.indirectDiffuse = diffuseColor.rgb;\n reflectedLight.indirectSpecular = vec3( 0.0 );\n #include <aomap_fragment>\n vec3 outgoingLight = reflectedLight.indirectDiffuse;\n #include <envmap_fragment>\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include <premultiplied_alpha_fragment>\n #include <tonemapping_fragment>\n #include <encodings_fragment>\n #include <fog_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshbasic_vert.glsl
THREE.ShaderChunk[ 'meshbasic_vert' ] = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <uv_vertex>\n #include <uv2_vertex>\n #include <color_vertex>\n #include <skinbase_vertex>\n #ifdef USE_ENVMAP\n #include <beginnormal_vertex>\n #include <morphnormal_vertex>\n #include <skinnormal_vertex>\n #include <defaultnormal_vertex>\n #endif\n #include <begin_vertex>\n #include <morphtarget_vertex>\n #include <skinning_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <worldpos_vertex>\n #include <clipping_planes_vertex>\n #include <envmap_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshlambert_frag.glsl
THREE.ShaderChunk[ 'meshlambert_frag' ] = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n varying vec3 vLightBack;\n#endif\n#include <common>\n#include <packing>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <bsdfs>\n#include <lights_pars>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n vec4 diffuseColor = vec4( diffuse, opacity );\n ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n vec3 totalEmissiveRadiance = emissive;\n #include <logdepthbuf_fragment>\n #include <map_fragment>\n #include <color_fragment>\n #include <alphamap_fragment>\n #include <alphatest_fragment>\n #include <specularmap_fragment>\n #include <emissivemap_fragment>\n reflectedLight.indirectDiffuse = getAmbientLightIrradiance( ambientLightColor );\n #include <lightmap_fragment>\n reflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n #ifdef DOUBLE_SIDED\n reflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n #else\n reflectedLight.directDiffuse = vLightFront;\n #endif\n reflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n #include <aomap_fragment>\n vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n #include <envmap_fragment>\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include <premultiplied_alpha_fragment>\n #include <tonemapping_fragment>\n #include <encodings_fragment>\n #include <fog_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshlambert_vert.glsl
THREE.ShaderChunk[ 'meshlambert_vert' ] = "#define LAMBERT\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n varying vec3 vLightBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars>\n#include <color_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <uv_vertex>\n #include <uv2_vertex>\n #include <color_vertex>\n #include <beginnormal_vertex>\n #include <morphnormal_vertex>\n #include <skinbase_vertex>\n #include <skinnormal_vertex>\n #include <defaultnormal_vertex>\n #include <begin_vertex>\n #include <morphtarget_vertex>\n #include <skinning_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n #include <worldpos_vertex>\n #include <envmap_vertex>\n #include <lights_lambert_vertex>\n #include <shadowmap_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshphong_frag.glsl
THREE.ShaderChunk[ 'meshphong_frag' ] = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n vec4 diffuseColor = vec4( diffuse, opacity );\n ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n vec3 totalEmissiveRadiance = emissive;\n #include <logdepthbuf_fragment>\n #include <map_fragment>\n #include <color_fragment>\n #include <alphamap_fragment>\n #include <alphatest_fragment>\n #include <specularmap_fragment>\n #include <normal_fragment>\n #include <emissivemap_fragment>\n #include <lights_phong_fragment>\n #include <lights_template>\n #include <aomap_fragment>\n vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n #include <envmap_fragment>\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include <premultiplied_alpha_fragment>\n #include <tonemapping_fragment>\n #include <encodings_fragment>\n #include <fog_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshphong_vert.glsl
THREE.ShaderChunk[ 'meshphong_vert' ] = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <uv_vertex>\n #include <uv2_vertex>\n #include <color_vertex>\n #include <beginnormal_vertex>\n #include <morphnormal_vertex>\n #include <skinbase_vertex>\n #include <skinnormal_vertex>\n #include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n vNormal = normalize( transformedNormal );\n#endif\n #include <begin_vertex>\n #include <displacementmap_vertex>\n #include <morphtarget_vertex>\n #include <skinning_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n vViewPosition = - mvPosition.xyz;\n #include <worldpos_vertex>\n #include <envmap_vertex>\n #include <shadowmap_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshphysical_frag.glsl
THREE.ShaderChunk[ 'meshphysical_frag' ] = "#define PHYSICAL\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\nuniform float envMapIntensity;\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\n#include <common>\n#include <packing>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <cube_uv_reflection_fragment>\n#include <lights_pars>\n#include <lights_physical_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n vec4 diffuseColor = vec4( diffuse, opacity );\n ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n vec3 totalEmissiveRadiance = emissive;\n #include <logdepthbuf_fragment>\n #include <map_fragment>\n #include <color_fragment>\n #include <alphamap_fragment>\n #include <alphatest_fragment>\n #include <specularmap_fragment>\n #include <roughnessmap_fragment>\n #include <metalnessmap_fragment>\n #include <normal_fragment>\n #include <emissivemap_fragment>\n #include <lights_physical_fragment>\n #include <lights_template>\n #include <aomap_fragment>\n vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include <premultiplied_alpha_fragment>\n #include <tonemapping_fragment>\n #include <encodings_fragment>\n #include <fog_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshphysical_vert.glsl
THREE.ShaderChunk[ 'meshphysical_vert' ] = "#define PHYSICAL\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <uv_vertex>\n #include <uv2_vertex>\n #include <color_vertex>\n #include <beginnormal_vertex>\n #include <morphnormal_vertex>\n #include <skinbase_vertex>\n #include <skinnormal_vertex>\n #include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n vNormal = normalize( transformedNormal );\n#endif\n #include <begin_vertex>\n #include <displacementmap_vertex>\n #include <morphtarget_vertex>\n #include <skinning_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n vViewPosition = - mvPosition.xyz;\n #include <worldpos_vertex>\n #include <shadowmap_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/normal_frag.glsl
THREE.ShaderChunk[ 'normal_frag' ] = "uniform float opacity;\nvarying vec3 vNormal;\n#include <common>\n#include <packing>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n gl_FragColor = vec4( packNormalToRGB( vNormal ), opacity );\n #include <logdepthbuf_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/normal_vert.glsl
THREE.ShaderChunk[ 'normal_vert' ] = "varying vec3 vNormal;\n#include <common>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n vNormal = normalize( normalMatrix * normal );\n #include <begin_vertex>\n #include <morphtarget_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/points_frag.glsl
THREE.ShaderChunk[ 'points_frag' ] = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n vec3 outgoingLight = vec3( 0.0 );\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include <logdepthbuf_fragment>\n #include <map_particle_fragment>\n #include <color_fragment>\n #include <alphatest_fragment>\n outgoingLight = diffuseColor.rgb;\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include <premultiplied_alpha_fragment>\n #include <tonemapping_fragment>\n #include <encodings_fragment>\n #include <fog_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/points_vert.glsl
THREE.ShaderChunk[ 'points_vert' ] = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <color_vertex>\n #include <begin_vertex>\n #include <project_vertex>\n #ifdef USE_SIZEATTENUATION\n gl_PointSize = size * ( scale / - mvPosition.z );\n #else\n gl_PointSize = size;\n #endif\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n #include <worldpos_vertex>\n #include <shadowmap_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib.js
/**
* Webgl Shader Library for three.js
*
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
*/
THREE.ShaderLib = {
'basic': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ 'common' ],
THREE.UniformsLib[ 'aomap' ],
THREE.UniformsLib[ 'fog' ]
] ),
vertexShader: THREE.ShaderChunk[ 'meshbasic_vert' ],
fragmentShader: THREE.ShaderChunk[ 'meshbasic_frag' ]
},
'lambert': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ 'common' ],
THREE.UniformsLib[ 'aomap' ],
THREE.UniformsLib[ 'lightmap' ],
THREE.UniformsLib[ 'emissivemap' ],
THREE.UniformsLib[ 'fog' ],
THREE.UniformsLib[ 'lights' ],
{
"emissive" : { type: "c", value: new THREE.Color( 0x000000 ) }
}
] ),
vertexShader: THREE.ShaderChunk[ 'meshlambert_vert' ],
fragmentShader: THREE.ShaderChunk[ 'meshlambert_frag' ]
},
'phong': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ 'common' ],
THREE.UniformsLib[ 'aomap' ],
THREE.UniformsLib[ 'lightmap' ],
THREE.UniformsLib[ 'emissivemap' ],
THREE.UniformsLib[ 'bumpmap' ],
THREE.UniformsLib[ 'normalmap' ],
THREE.UniformsLib[ 'displacementmap' ],
THREE.UniformsLib[ 'fog' ],
THREE.UniformsLib[ 'lights' ],
{
"emissive" : { type: "c", value: new THREE.Color( 0x000000 ) },
"specular" : { type: "c", value: new THREE.Color( 0x111111 ) },
"shininess": { type: "1f", value: 30 }
}
] ),
vertexShader: THREE.ShaderChunk[ 'meshphong_vert' ],
fragmentShader: THREE.ShaderChunk[ 'meshphong_frag' ]
},
'standard': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ 'common' ],
THREE.UniformsLib[ 'aomap' ],
THREE.UniformsLib[ 'lightmap' ],
THREE.UniformsLib[ 'emissivemap' ],
THREE.UniformsLib[ 'bumpmap' ],
THREE.UniformsLib[ 'normalmap' ],
THREE.UniformsLib[ 'displacementmap' ],
THREE.UniformsLib[ 'roughnessmap' ],
THREE.UniformsLib[ 'metalnessmap' ],
THREE.UniformsLib[ 'fog' ],
THREE.UniformsLib[ 'lights' ],
{
"emissive" : { type: "c", value: new THREE.Color( 0x000000 ) },
"roughness": { type: "1f", value: 0.5 },
"metalness": { type: "1f", value: 0 },
"envMapIntensity" : { type: "1f", value: 1 } // temporary
}
] ),
vertexShader: THREE.ShaderChunk[ 'meshphysical_vert' ],
fragmentShader: THREE.ShaderChunk[ 'meshphysical_frag' ]
},
'points': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ 'points' ],
THREE.UniformsLib[ 'fog' ]
] ),
vertexShader: THREE.ShaderChunk[ 'points_vert' ],
fragmentShader: THREE.ShaderChunk[ 'points_frag' ]
},
'dashed': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ 'common' ],
THREE.UniformsLib[ 'fog' ],
{
"scale" : { type: "1f", value: 1 },
"dashSize" : { type: "1f", value: 1 },
"totalSize": { type: "1f", value: 2 }
}
] ),
vertexShader: THREE.ShaderChunk[ 'linedashed_vert' ],
fragmentShader: THREE.ShaderChunk[ 'linedashed_frag' ]
},
'depth': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ 'common' ],
THREE.UniformsLib[ 'displacementmap' ]
] ),
vertexShader: THREE.ShaderChunk[ 'depth_vert' ],
fragmentShader: THREE.ShaderChunk[ 'depth_frag' ]
},
'normal': {
uniforms: {
"opacity" : { type: "1f", value: 1.0 }
},
vertexShader: THREE.ShaderChunk[ 'normal_vert' ],
fragmentShader: THREE.ShaderChunk[ 'normal_frag' ]
},
/* -------------------------------------------------------------------------
// Cube map shader
------------------------------------------------------------------------- */
'cube': {
uniforms: {
"tCube": { type: "t", value: null },
"tFlip": { type: "1f", value: - 1 }
},
vertexShader: THREE.ShaderChunk[ 'cube_vert' ],
fragmentShader: THREE.ShaderChunk[ 'cube_frag' ]
},
/* -------------------------------------------------------------------------
// Cube map shader
------------------------------------------------------------------------- */
'equirect': {
uniforms: {
"tEquirect": { type: "t", value: null },
"tFlip": { type: "1f", value: - 1 }
},
vertexShader: THREE.ShaderChunk[ 'equirect_vert' ],
fragmentShader: THREE.ShaderChunk[ 'equirect_frag' ]
},
'distanceRGBA': {
uniforms: {
"lightPos": { type: "v3", value: new THREE.Vector3() }
},
vertexShader: THREE.ShaderChunk[ 'distanceRGBA_vert' ],
fragmentShader: THREE.ShaderChunk[ 'distanceRGBA_frag' ]
}
};
THREE.ShaderLib[ 'physical' ] = {
uniforms: THREE.UniformsUtils.merge( [
THREE.ShaderLib[ 'standard' ].uniforms,
{
// future
}
] ),
vertexShader: THREE.ShaderChunk[ 'meshphysical_vert' ],
fragmentShader: THREE.ShaderChunk[ 'meshphysical_frag' ]
};
// File:src/renderers/WebGLRenderer.js
/**
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author szimek / https://github.com/szimek/
* @author tschw
*/
THREE.WebGLRenderer = function ( parameters ) {
console.log( 'THREE.WebGLRenderer', THREE.REVISION );
parameters = parameters || {};
var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElement( 'canvas' ),
_context = parameters.context !== undefined ? parameters.context : null,
_alpha = parameters.alpha !== undefined ? parameters.alpha : false,
_depth = parameters.depth !== undefined ? parameters.depth : true,
_stencil = parameters.stencil !== undefined ? parameters.stencil : true,
_antialias = parameters.antialias !== undefined ? parameters.antialias : false,
_premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
_preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false;
var lights = [];
var opaqueObjects = [];
var opaqueObjectsLastIndex = - 1;
var transparentObjects = [];
var transparentObjectsLastIndex = - 1;
var morphInfluences = new Float32Array( 8 );
var sprites = [];
var lensFlares = [];
// public properties
this.domElement = _canvas;
this.context = null;
// clearing
this.autoClear = true;
this.autoClearColor = true;
this.autoClearDepth = true;
this.autoClearStencil = true;
// scene graph
this.sortObjects = true;
// user-defined clipping
this.clippingPlanes = [];
this.localClippingEnabled = false;
// physically based shading
this.gammaFactor = 2.0; // for backwards compatibility
this.gammaInput = false;
this.gammaOutput = false;
// physical lights
this.physicallyCorrectLights = false;
// tone mapping
this.toneMapping = THREE.LinearToneMapping;
this.toneMappingExposure = 1.0;
this.toneMappingWhitePoint = 1.0;
// morphs
this.maxMorphTargets = 8;
this.maxMorphNormals = 4;
// flags
this.autoScaleCubemaps = true;
// internal properties
var _this = this,
// internal state cache
_currentProgram = null,
_currentRenderTarget = null,
_currentFramebuffer = null,
_currentMaterialId = - 1,
_currentGeometryProgram = '',
_currentCamera = null,
_currentScissor = new THREE.Vector4(),
_currentScissorTest = null,
_currentViewport = new THREE.Vector4(),
//
_usedTextureUnits = 0,
//
_clearColor = new THREE.Color( 0x000000 ),
_clearAlpha = 0,
_width = _canvas.width,
_height = _canvas.height,
_pixelRatio = 1,
_scissor = new THREE.Vector4( 0, 0, _width, _height ),
_scissorTest = false,
_viewport = new THREE.Vector4( 0, 0, _width, _height ),
// frustum
_frustum = new THREE.Frustum(),
// clipping
_clippingEnabled = false,
_localClippingEnabled = false,
_clipRenderingShadows = false,
_numClippingPlanes = 0,
_clippingPlanesUniform = {
type: '4fv', value: null, needsUpdate: false },
_globalClippingState = null,
_numGlobalClippingPlanes = 0,
_matrix3 = new THREE.Matrix3(),
_sphere = new THREE.Sphere(),
_plane = new THREE.Plane(),
// camera matrices cache
_projScreenMatrix = new THREE.Matrix4(),
_vector3 = new THREE.Vector3(),
// light arrays cache
_lights = {
hash: '',
ambient: [ 0, 0, 0 ],
directional: [],
directionalShadowMap: [],
directionalShadowMatrix: [],
spot: [],
spotShadowMap: [],
spotShadowMatrix: [],
point: [],
pointShadowMap: [],
pointShadowMatrix: [],
hemi: [],
shadows: []
},
// info
_infoMemory = {
geometries: 0,
textures: 0
},
_infoRender = {
calls: 0,
vertices: 0,
faces: 0,
points: 0
};
this.info = {
render: _infoRender,
memory: _infoMemory,
programs: null
};
// initialize
var _gl;
try {
var attributes = {
alpha: _alpha,
depth: _depth,
stencil: _stencil,
antialias: _antialias,
premultipliedAlpha: _premultipliedAlpha,
preserveDrawingBuffer: _preserveDrawingBuffer
};
_gl = _context || _canvas.getContext( 'webgl', attributes ) || _canvas.getContext( 'experimental-webgl', attributes );
if ( _gl === null ) {
if ( _canvas.getContext( 'webgl' ) !== null ) {
throw 'Error creating WebGL context with your selected attributes.';
} else {
throw 'Error creating WebGL context.';
}
}
// Some experimental-webgl implementations do not have getShaderPrecisionFormat
if ( _gl.getShaderPrecisionFormat === undefined ) {
_gl.getShaderPrecisionFormat = function () {
return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 };
};
}
_canvas.addEventListener( 'webglcontextlost', onContextLost, false );
} catch ( error ) {
console.error( 'THREE.WebGLRenderer: ' + error );
}
var _isWebGL2 = (typeof WebGL2RenderingContext !== 'undefined' && _gl instanceof WebGL2RenderingContext);
var extensions = new THREE.WebGLExtensions( _gl );
extensions.get( 'WEBGL_depth_texture' );
extensions.get( 'OES_texture_float' );
extensions.get( 'OES_texture_float_linear' );
extensions.get( 'OES_texture_half_float' );
extensions.get( 'OES_texture_half_float_linear' );
extensions.get( 'OES_standard_derivatives' );
extensions.get( 'ANGLE_instanced_arrays' );
if ( extensions.get( 'OES_element_index_uint' ) ) {
THREE.BufferGeometry.MaxIndex = 4294967296;
}
var capabilities = new THREE.WebGLCapabilities( _gl, extensions, parameters );
var state = new THREE.WebGLState( _gl, extensions, paramThreeToGL );
var properties = new THREE.WebGLProperties();
var objects = new THREE.WebGLObjects( _gl, properties, this.info );
var programCache = new THREE.WebGLPrograms( this, capabilities );
var lightCache = new THREE.WebGLLights();
this.info.programs = programCache.programs;
var bufferRenderer = new THREE.WebGLBufferRenderer( _gl, extensions, _infoRender );
var indexedBufferRenderer = new THREE.WebGLIndexedBufferRenderer( _gl, extensions, _infoRender );
//
function getTargetPixelRatio() {
return _currentRenderTarget === null ? _pixelRatio : 1;
}
function glClearColor( r, g, b, a ) {
if ( _premultipliedAlpha === true ) {
r *= a; g *= a; b *= a;
}
state.clearColor( r, g, b, a );
}
function setDefaultGLState() {
state.init();
state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ) );
state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ) );
glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha );
}
function resetGLState() {
_currentProgram = null;
_currentCamera = null;
_currentGeometryProgram = '';
_currentMaterialId = - 1;
state.reset();
}
setDefaultGLState();
this.context = _gl;
this.capabilities = capabilities;
this.extensions = extensions;
this.properties = properties;
this.state = state;
// shadow map
var shadowMap = new THREE.WebGLShadowMap( this, _lights, objects );
this.shadowMap = shadowMap;
// Plugins
var spritePlugin = new THREE.SpritePlugin( this, sprites );
var lensFlarePlugin = new THREE.LensFlarePlugin( this, lensFlares );
// API
this.getContext = function () {
return _gl;
};
this.getContextAttributes = function () {
return _gl.getContextAttributes();
};
this.forceContextLoss = function () {
extensions.get( 'WEBGL_lose_context' ).loseContext();
};
this.getMaxAnisotropy = ( function () {
var value;
return function getMaxAnisotropy() {
if ( value !== undefined ) return value;
var extension = extensions.get( 'EXT_texture_filter_anisotropic' );
if ( extension !== null ) {
value = _gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT );
} else {
value = 0;
}
return value;
};
} )();
this.getPrecision = function () {
return capabilities.precision;
};
this.getPixelRatio = function () {
return _pixelRatio;
};
this.setPixelRatio = function ( value ) {
if ( value === undefined ) return;
_pixelRatio = value;
this.setSize( _viewport.z, _viewport.w, false );
};
this.getSize = function () {
return {
width: _width,
height: _height
};
};
this.setSize = function ( width, height, updateStyle ) {
_width = width;
_height = height;
_canvas.width = width * _pixelRatio;
_canvas.height = height * _pixelRatio;
if ( updateStyle !== false ) {
_canvas.style.width = width + 'px';
_canvas.style.height = height + 'px';
}
this.setViewport( 0, 0, width, height );
};
this.setViewport = function ( x, y, width, height ) {
state.viewport( _viewport.set( x, y, width, height ) );
};
this.setScissor = function ( x, y, width, height ) {
state.scissor( _scissor.set( x, y, width, height ) );
};
this.setScissorTest = function ( boolean ) {
state.setScissorTest( _scissorTest = boolean );
};
// Clearing
this.getClearColor = function () {
return _clearColor;
};
this.setClearColor = function ( color, alpha ) {
_clearColor.set( color );
_clearAlpha = alpha !== undefined ? alpha : 1;
glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha );
};
this.getClearAlpha = function () {
return _clearAlpha;
};
this.setClearAlpha = function ( alpha ) {
_clearAlpha = alpha;
glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha );
};
this.clear = function ( color, depth, stencil ) {
var bits = 0;
if ( color === undefined || color ) bits |= _gl.COLOR_BUFFER_BIT;
if ( depth === undefined || depth ) bits |= _gl.DEPTH_BUFFER_BIT;
if ( stencil === undefined || stencil ) bits |= _gl.STENCIL_BUFFER_BIT;
_gl.clear( bits );
};
this.clearColor = function () {
this.clear( true, false, false );
};
this.clearDepth = function () {
this.clear( false, true, false );
};
this.clearStencil = function () {
this.clear( false, false, true );
};
this.clearTarget = function ( renderTarget, color, depth, stencil ) {
this.setRenderTarget( renderTarget );
this.clear( color, depth, stencil );
};
// Reset
this.resetGLState = resetGLState;
this.dispose = function() {
_canvas.removeEventListener( 'webglcontextlost', onContextLost, false );
};
// Events
function onContextLost( event ) {
event.preventDefault();
resetGLState();
setDefaultGLState();
properties.clear();
}
function onTextureDispose( event ) {
var texture = event.target;
texture.removeEventListener( 'dispose', onTextureDispose );
deallocateTexture( texture );
_infoMemory.textures --;
}
function onRenderTargetDispose( event ) {
var renderTarget = event.target;
renderTarget.removeEventListener( 'dispose', onRenderTargetDispose );
deallocateRenderTarget( renderTarget );
_infoMemory.textures --;
}
function onMaterialDispose( event ) {
var material = event.target;
material.removeEventListener( 'dispose', onMaterialDispose );
deallocateMaterial( material );
}
// Buffer deallocation
function deallocateTexture( texture ) {
var textureProperties = properties.get( texture );
if ( texture.image && textureProperties.__image__webglTextureCube ) {
// cube texture
_gl.deleteTexture( textureProperties.__image__webglTextureCube );
} else {
// 2D texture
if ( textureProperties.__webglInit === undefined ) return;
_gl.deleteTexture( textureProperties.__webglTexture );
}
// remove all webgl properties
properties.delete( texture );
}
function deallocateRenderTarget( renderTarget ) {
var renderTargetProperties = properties.get( renderTarget );
var textureProperties = properties.get( renderTarget.texture );
if ( ! renderTarget ) return;
if ( textureProperties.__webglTexture !== undefined ) {
_gl.deleteTexture( textureProperties.__webglTexture );
}
if ( renderTarget.depthTexture ) {
renderTarget.depthTexture.dispose();
}
if ( renderTarget instanceof THREE.WebGLRenderTargetCube ) {
for ( var i = 0; i < 6; i ++ ) {
_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] );
if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] );
}
} else {
_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer );
if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer );
}
properties.delete( renderTarget.texture );
properties.delete( renderTarget );
}
function deallocateMaterial( material ) {
releaseMaterialProgramReference( material );
properties.delete( material );
}
function releaseMaterialProgramReference( material ) {
var programInfo = properties.get( material ).program;
material.program = undefined;
if ( programInfo !== undefined ) {
programCache.releaseProgram( programInfo );
}
}
// Buffer rendering
this.renderBufferImmediate = function ( object, program, material ) {
state.initAttributes();
var buffers = properties.get( object );
if ( object.hasPositions && ! buffers.position ) buffers.position = _gl.createBuffer();
if ( object.hasNormals && ! buffers.normal ) buffers.normal = _gl.createBuffer();
if ( object.hasUvs && ! buffers.uv ) buffers.uv = _gl.createBuffer();
if ( object.hasColors && ! buffers.color ) buffers.color = _gl.createBuffer();
var attributes = program.getAttributes();
if ( object.hasPositions ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.position );
_gl.bufferData( _gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW );
state.enableAttribute( attributes.position );
_gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 );
}
if ( object.hasNormals ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.normal );
if ( material.type !== 'MeshPhongMaterial' && material.type !== 'MeshStandardMaterial' && material.type !== 'MeshPhysicalMaterial' && material.shading === THREE.FlatShading ) {
for ( var i = 0, l = object.count * 3; i < l; i += 9 ) {
var array = object.normalArray;
var nx = ( array[ i + 0 ] + array[ i + 3 ] + array[ i + 6 ] ) / 3;
var ny = ( array[ i + 1 ] + array[ i + 4 ] + array[ i + 7 ] ) / 3;
var nz = ( array[ i + 2 ] + array[ i + 5 ] + array[ i + 8 ] ) / 3;
array[ i + 0 ] = nx;
array[ i + 1 ] = ny;
array[ i + 2 ] = nz;
array[ i + 3 ] = nx;
array[ i + 4 ] = ny;
array[ i + 5 ] = nz;
array[ i + 6 ] = nx;
array[ i + 7 ] = ny;
array[ i + 8 ] = nz;
}
}
_gl.bufferData( _gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW );
state.enableAttribute( attributes.normal );
_gl.vertexAttribPointer( attributes.normal, 3, _gl.FLOAT, false, 0, 0 );
}
if ( object.hasUvs && material.map ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.uv );
_gl.bufferData( _gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW );
state.enableAttribute( attributes.uv );
_gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 0, 0 );
}
if ( object.hasColors && material.vertexColors !== THREE.NoColors ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.color );
_gl.bufferData( _gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW );
state.enableAttribute( attributes.color );
_gl.vertexAttribPointer( attributes.color, 3, _gl.FLOAT, false, 0, 0 );
}
state.disableUnusedAttributes();
_gl.drawArrays( _gl.TRIANGLES, 0, object.count );
object.count = 0;
};
this.renderBufferDirect = function ( camera, fog, geometry, material, object, group ) {
setMaterial( material );
var program = setProgram( camera, fog, material, object );
var updateBuffers = false;
var geometryProgram = geometry.id + '_' + program.id + '_' + material.wireframe;
if ( geometryProgram !== _currentGeometryProgram ) {
_currentGeometryProgram = geometryProgram;
updateBuffers = true;
}
// morph targets
var morphTargetInfluences = object.morphTargetInfluences;
if ( morphTargetInfluences !== undefined ) {
var activeInfluences = [];
for ( var i = 0, l = morphTargetInfluences.length; i < l; i ++ ) {
var influence = morphTargetInfluences[ i ];
activeInfluences.push( [ influence, i ] );
}
activeInfluences.sort( absNumericalSort );
if ( activeInfluences.length > 8 ) {
activeInfluences.length = 8;
}
var morphAttributes = geometry.morphAttributes;
for ( var i = 0, l = activeInfluences.length; i < l; i ++ ) {
var influence = activeInfluences[ i ];
morphInfluences[ i ] = influence[ 0 ];
if ( influence[ 0 ] !== 0 ) {
var index = influence[ 1 ];
if ( material.morphTargets === true && morphAttributes.position ) geometry.addAttribute( 'morphTarget' + i, morphAttributes.position[ index ] );
if ( material.morphNormals === true && morphAttributes.normal ) geometry.addAttribute( 'morphNormal' + i, morphAttributes.normal[ index ] );
} else {
if ( material.morphTargets === true ) geometry.removeAttribute( 'morphTarget' + i );
if ( material.morphNormals === true ) geometry.removeAttribute( 'morphNormal' + i );
}
}
program.getUniforms().setValue(
_gl, 'morphTargetInfluences', morphInfluences );
updateBuffers = true;
}
//
var index = geometry.index;
var position = geometry.attributes.position;
if ( material.wireframe === true ) {
index = objects.getWireframeAttribute( geometry );
}
var renderer;
if ( index !== null ) {
renderer = indexedBufferRenderer;
renderer.setIndex( index );
} else {
renderer = bufferRenderer;
}
if ( updateBuffers ) {
setupVertexAttributes( material, program, geometry );
if ( index !== null ) {
_gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, objects.getAttributeBuffer( index ) );
}
}
//
var dataStart = 0;
var dataCount = Infinity;
if ( index !== null ) {
dataCount = index.count;
} else if ( position !== undefined ) {
dataCount = position.count;
}
var rangeStart = geometry.drawRange.start;
var rangeCount = geometry.drawRange.count;
var groupStart = group !== null ? group.start : 0;
var groupCount = group !== null ? group.count : Infinity;
var drawStart = Math.max( dataStart, rangeStart, groupStart );
var drawEnd = Math.min( dataStart + dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1;
var drawCount = Math.max( 0, drawEnd - drawStart + 1 );
//
if ( object instanceof THREE.Mesh ) {
if ( material.wireframe === true ) {
state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() );
renderer.setMode( _gl.LINES );
} else {
switch ( object.drawMode ) {
case THREE.TrianglesDrawMode:
renderer.setMode( _gl.TRIANGLES );
break;
case THREE.TriangleStripDrawMode:
renderer.setMode( _gl.TRIANGLE_STRIP );
break;
case THREE.TriangleFanDrawMode:
renderer.setMode( _gl.TRIANGLE_FAN );
break;
}
}
} else if ( object instanceof THREE.Line ) {
var lineWidth = material.linewidth;
if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material
state.setLineWidth( lineWidth * getTargetPixelRatio() );
if ( object instanceof THREE.LineSegments ) {
renderer.setMode( _gl.LINES );
} else {
renderer.setMode( _gl.LINE_STRIP );
}
} else if ( object instanceof THREE.Points ) {
renderer.setMode( _gl.POINTS );
}
if ( geometry instanceof THREE.InstancedBufferGeometry ) {
if ( geometry.maxInstancedCount > 0 ) {
renderer.renderInstances( geometry, drawStart, drawCount );
}
} else {
renderer.render( drawStart, drawCount );
}
};
function setupVertexAttributes( material, program, geometry, startIndex ) {
var extension;
if ( geometry instanceof THREE.InstancedBufferGeometry ) {
extension = extensions.get( 'ANGLE_instanced_arrays' );
if ( extension === null ) {
console.error( 'THREE.WebGLRenderer.setupVertexAttributes: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
return;
}
}
if ( startIndex === undefined ) startIndex = 0;
state.initAttributes();
var geometryAttributes = geometry.attributes;
var programAttributes = program.getAttributes();
var materialDefaultAttributeValues = material.defaultAttributeValues;
for ( var name in programAttributes ) {
var programAttribute = programAttributes[ name ];
if ( programAttribute >= 0 ) {
var geometryAttribute = geometryAttributes[ name ];
if ( geometryAttribute !== undefined ) {
var type = _gl.FLOAT;
var array = geometryAttribute.array;
var normalized = geometryAttribute.normalized;
if ( array instanceof Float32Array ) {
type = _gl.FLOAT;
} else if ( array instanceof Float64Array ) {
console.warn("Unsupported data buffer format: Float64Array");
} else if ( array instanceof Uint16Array ) {
type = _gl.UNSIGNED_SHORT;
} else if ( array instanceof Int16Array ) {
type = _gl.SHORT;
} else if ( array instanceof Uint32Array ) {
type = _gl.UNSIGNED_INT;
} else if ( array instanceof Int32Array ) {
type = _gl.INT;
} else if ( array instanceof Int8Array ) {
type = _gl.BYTE;
} else if ( array instanceof Uint8Array ) {
type = _gl.UNSIGNED_BYTE;
}
var size = geometryAttribute.itemSize;
var buffer = objects.getAttributeBuffer( geometryAttribute );
if ( geometryAttribute instanceof THREE.InterleavedBufferAttribute ) {
var data = geometryAttribute.data;
var stride = data.stride;
var offset = geometryAttribute.offset;
if ( data instanceof THREE.InstancedInterleavedBuffer ) {
state.enableAttributeAndDivisor( programAttribute, data.meshPerAttribute, extension );
if ( geometry.maxInstancedCount === undefined ) {
geometry.maxInstancedCount = data.meshPerAttribute * data.count;
}
} else {
state.enableAttribute( programAttribute );
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, buffer );
_gl.vertexAttribPointer( programAttribute, size, type, normalized, stride * data.array.BYTES_PER_ELEMENT, ( startIndex * stride + offset ) * data.array.BYTES_PER_ELEMENT );
} else {
if ( geometryAttribute instanceof THREE.InstancedBufferAttribute ) {
state.enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute, extension );
if ( geometry.maxInstancedCount === undefined ) {
geometry.maxInstancedCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;
}
} else {
state.enableAttribute( programAttribute );
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, buffer );
_gl.vertexAttribPointer( programAttribute, size, type, normalized, 0, startIndex * size * geometryAttribute.array.BYTES_PER_ELEMENT );
}
} else if ( materialDefaultAttributeValues !== undefined ) {
var value = materialDefaultAttributeValues[ name ];
if ( value !== undefined ) {
switch ( value.length ) {
case 2:
_gl.vertexAttrib2fv( programAttribute, value );
break;
case 3:
_gl.vertexAttrib3fv( programAttribute, value );
break;
case 4:
_gl.vertexAttrib4fv( programAttribute, value );
break;
default:
_gl.vertexAttrib1fv( programAttribute, value );
}
}
}
}
}
state.disableUnusedAttributes();
}
// Sorting
function absNumericalSort( a, b ) {
return Math.abs( b[ 0 ] ) - Math.abs( a[ 0 ] );
}
function painterSortStable ( a, b ) {
if ( a.object.renderOrder !== b.object.renderOrder ) {
return a.object.renderOrder - b.object.renderOrder;
} else if ( a.material.id !== b.material.id ) {
return a.material.id - b.material.id;
} else if ( a.z !== b.z ) {
return a.z - b.z;
} else {
return a.id - b.id;
}
}
function reversePainterSortStable ( a, b ) {
if ( a.object.renderOrder !== b.object.renderOrder ) {
return a.object.renderOrder - b.object.renderOrder;
} if ( a.z !== b.z ) {
return b.z - a.z;
} else {
return a.id - b.id;
}
}
// Rendering
this.render = function ( scene, camera, renderTarget, forceClear ) {
if ( camera instanceof THREE.Camera === false ) {
console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' );
return;
}
var fog = scene.fog;
// reset caching for this frame
_currentGeometryProgram = '';
_currentMaterialId = - 1;
_currentCamera = null;
// update scene graph
if ( scene.autoUpdate === true ) scene.updateMatrixWorld();
// update camera matrices and frustum
if ( camera.parent === null ) camera.updateMatrixWorld();
camera.matrixWorldInverse.getInverse( camera.matrixWorld );
_projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
_frustum.setFromMatrix( _projScreenMatrix );
lights.length = 0;
opaqueObjectsLastIndex = - 1;
transparentObjectsLastIndex = - 1;
sprites.length = 0;
lensFlares.length = 0;
setupGlobalClippingPlanes( this.clippingPlanes, camera );
projectObject( scene, camera );
opaqueObjects.length = opaqueObjectsLastIndex + 1;
transparentObjects.length = transparentObjectsLastIndex + 1;
if ( _this.sortObjects === true ) {
opaqueObjects.sort( painterSortStable );
transparentObjects.sort( reversePainterSortStable );
}
//
if ( _clippingEnabled ) {
_clipRenderingShadows = true;
setupClippingPlanes( null );
}
setupShadows( lights );
shadowMap.render( scene, camera );
setupLights( lights, camera );
if ( _clippingEnabled ) {
_clipRenderingShadows = false;
resetGlobalClippingState();
}
//
_infoRender.calls = 0;
_infoRender.vertices = 0;
_infoRender.faces = 0;
_infoRender.points = 0;
if ( renderTarget === undefined ) {
renderTarget = null;
}
this.setRenderTarget( renderTarget );
if ( this.autoClear || forceClear ) {
this.clear( this.autoClearColor, this.autoClearDepth, this.autoClearStencil );
}
//
if ( scene.overrideMaterial ) {
var overrideMaterial = scene.overrideMaterial;
renderObjects( opaqueObjects, camera, fog, overrideMaterial );
renderObjects( transparentObjects, camera, fog, overrideMaterial );
} else {
// opaque pass (front-to-back order)
state.setBlending( THREE.NoBlending );
renderObjects( opaqueObjects, camera, fog );
// transparent pass (back-to-front order)
renderObjects( transparentObjects, camera, fog );
}
// custom render plugins (post pass)
spritePlugin.render( scene, camera );
lensFlarePlugin.render( scene, camera, _currentViewport );
// Generate mipmap if we're using any kind of mipmap filtering
if ( renderTarget ) {
var texture = renderTarget.texture;
if ( texture.generateMipmaps && isPowerOfTwo( renderTarget ) &&
texture.minFilter !== THREE.NearestFilter &&
texture.minFilter !== THREE.LinearFilter ) {
updateRenderTargetMipmap( renderTarget );
}
}
// Ensure depth buffer writing is enabled so it can be cleared on next render
state.setDepthTest( true );
state.setDepthWrite( true );
state.setColorWrite( true );
// _gl.finish();
};
function pushRenderItem( object, geometry, material, z, group ) {
var array, index;
// allocate the next position in the appropriate array
if ( material.transparent ) {
array = transparentObjects;
index = ++ transparentObjectsLastIndex;
} else {
array = opaqueObjects;
index = ++ opaqueObjectsLastIndex;
}
// recycle existing render item or grow the array
var renderItem = array[ index ];
if ( renderItem !== undefined ) {
renderItem.id = object.id;
renderItem.object = object;
renderItem.geometry = geometry;
renderItem.material = material;
renderItem.z = _vector3.z;
renderItem.group = group;
} else {
renderItem = {
id: object.id,
object: object,
geometry: geometry,
material: material,
z: _vector3.z,
group: group
};
// assert( index === array.length );
array.push( renderItem );
}
}
function isObjectViewable( object ) {
var geometry = object.geometry;
if ( geometry.boundingSphere === null )
geometry.computeBoundingSphere();
var sphere = _sphere.
copy( geometry.boundingSphere ).
applyMatrix4( object.matrixWorld );
if ( ! _frustum.intersectsSphere( sphere ) ) return false;
if ( _numClippingPlanes === 0 ) return true;
var planes = _this.clippingPlanes,
center = sphere.center,
negRad = - sphere.radius,
i = 0;
do {
// out when deeper than radius in the negative halfspace
if ( planes[ i ].distanceToPoint( center ) < negRad ) return false;
} while ( ++ i !== _numClippingPlanes );
return true;
}
function projectObject( object, camera ) {
if ( object.visible === false ) return;
if ( object.layers.test( camera.layers ) ) {
if ( object instanceof THREE.Light ) {
lights.push( object );
} else if ( object instanceof THREE.Sprite ) {
if ( object.frustumCulled === false || isObjectViewable( object ) === true ) {
sprites.push( object );
}
} else if ( object instanceof THREE.LensFlare ) {
lensFlares.push( object );
} else if ( object instanceof THREE.ImmediateRenderObject ) {
if ( _this.sortObjects === true ) {
_vector3.setFromMatrixPosition( object.matrixWorld );
_vector3.applyProjection( _projScreenMatrix );
}
pushRenderItem( object, null, object.material, _vector3.z, null );
} else if ( object instanceof THREE.Mesh || object instanceof THREE.Line || object instanceof THREE.Points ) {
if ( object instanceof THREE.SkinnedMesh ) {
object.skeleton.update();
}
if ( object.frustumCulled === false || isObjectViewable( object ) === true ) {
var material = object.material;
if ( material.visible === true ) {
if ( _this.sortObjects === true ) {
_vector3.setFromMatrixPosition( object.matrixWorld );
_vector3.applyProjection( _projScreenMatrix );
}
var geometry = objects.update( object );
if ( material instanceof THREE.MultiMaterial ) {
var groups = geometry.groups;
var materials = material.materials;
for ( var i = 0, l = groups.length; i < l; i ++ ) {
var group = groups[ i ];
var groupMaterial = materials[ group.materialIndex ];
if ( groupMaterial.visible === true ) {
pushRenderItem( object, geometry, groupMaterial, _vector3.z, group );
}
}
} else {
pushRenderItem( object, geometry, material, _vector3.z, null );
}
}
}
}
}
var children = object.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
projectObject( children[ i ], camera );
}
}
function renderObjects( renderList, camera, fog, overrideMaterial ) {
for ( var i = 0, l = renderList.length; i < l; i ++ ) {
var renderItem = renderList[ i ];
var object = renderItem.object;
var geometry = renderItem.geometry;
var material = overrideMaterial === undefined ? renderItem.material : overrideMaterial;
var group = renderItem.group;
object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld );
object.normalMatrix.getNormalMatrix( object.modelViewMatrix );
if ( object instanceof THREE.ImmediateRenderObject ) {
setMaterial( material );
var program = setProgram( camera, fog, material, object );
_currentGeometryProgram = '';
object.render( function ( object ) {
_this.renderBufferImmediate( object, program, material );
} );
} else {
_this.renderBufferDirect( camera, fog, geometry, material, object, group );
}
}
}
function initMaterial( material, fog, object ) {
var materialProperties = properties.get( material );
var parameters = programCache.getParameters(
material, _lights, fog, _numClippingPlanes, object );
var code = programCache.getProgramCode( material, parameters );
var program = materialProperties.program;
var programChange = true;
if ( program === undefined ) {
// new material
material.addEventListener( 'dispose', onMaterialDispose );
} else if ( program.code !== code ) {
// changed glsl or parameters
releaseMaterialProgramReference( material );
} else if ( parameters.shaderID !== undefined ) {
// same glsl and uniform list
return;
} else {
// only rebuild uniform list
programChange = false;
}
if ( programChange ) {
if ( parameters.shaderID ) {
var shader = THREE.ShaderLib[ parameters.shaderID ];
materialProperties.__webglShader = {
name: material.type,
uniforms: THREE.UniformsUtils.clone( shader.uniforms ),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader
};
} else {
materialProperties.__webglShader = {
name: material.type,
uniforms: material.uniforms,
vertexShader: material.vertexShader,
fragmentShader: material.fragmentShader
};
}
material.__webglShader = materialProperties.__webglShader;
program = programCache.acquireProgram( material, parameters, code );
materialProperties.program = program;
material.program = program;
}
var attributes = program.getAttributes();
if ( material.morphTargets ) {
material.numSupportedMorphTargets = 0;
for ( var i = 0; i < _this.maxMorphTargets; i ++ ) {
if ( attributes[ 'morphTarget' + i ] >= 0 ) {
material.numSupportedMorphTargets ++;
}
}
}
if ( material.morphNormals ) {
material.numSupportedMorphNormals = 0;
for ( var i = 0; i < _this.maxMorphNormals; i ++ ) {
if ( attributes[ 'morphNormal' + i ] >= 0 ) {
material.numSupportedMorphNormals ++;
}
}
}
var uniforms = materialProperties.__webglShader.uniforms;
if ( ! ( material instanceof THREE.ShaderMaterial ) &&
! ( material instanceof THREE.RawShaderMaterial ) ||
material.clipping === true ) {
materialProperties.numClippingPlanes = _numClippingPlanes;
uniforms.clippingPlanes = _clippingPlanesUniform;
}
if ( material instanceof THREE.MeshPhongMaterial ||
material instanceof THREE.MeshLambertMaterial ||
material instanceof THREE.MeshStandardMaterial ||
material.lights ) {
// store the light setup it was created for
materialProperties.lightsHash = _lights.hash;
// wire up the material to this renderer's lighting state
uniforms.ambientLightColor.value = _lights.ambient;
uniforms.directionalLights.value = _lights.directional;
uniforms.spotLights.value = _lights.spot;
uniforms.pointLights.value = _lights.point;
uniforms.hemisphereLights.value = _lights.hemi;
uniforms.directionalShadowMap.value = _lights.directionalShadowMap;
uniforms.directionalShadowMatrix.value = _lights.directionalShadowMatrix;
uniforms.spotShadowMap.value = _lights.spotShadowMap;
uniforms.spotShadowMatrix.value = _lights.spotShadowMatrix;
uniforms.pointShadowMap.value = _lights.pointShadowMap;
uniforms.pointShadowMatrix.value = _lights.pointShadowMatrix;
}
var progUniforms = materialProperties.program.getUniforms(),
uniformsList =
THREE.WebGLUniforms.seqWithValue( progUniforms.seq, uniforms );
materialProperties.uniformsList = uniformsList;
materialProperties.dynamicUniforms =
THREE.WebGLUniforms.splitDynamic( uniformsList, uniforms );
}
function setMaterial( material ) {
setMaterialFaces( material );
if ( material.transparent === true ) {
state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha );
} else {
state.setBlending( THREE.NoBlending );
}
state.setDepthFunc( material.depthFunc );
state.setDepthTest( material.depthTest );
state.setDepthWrite( material.depthWrite );
state.setColorWrite( material.colorWrite );
state.setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits );
}
function setMaterialFaces( material ) {
material.side !== THREE.DoubleSide ? state.enable( _gl.CULL_FACE ) : state.disable( _gl.CULL_FACE );
state.setFlipSided( material.side === THREE.BackSide );
}
function setProgram( camera, fog, material, object ) {
_usedTextureUnits = 0;
var materialProperties = properties.get( material );
if ( _clippingEnabled ) {
if ( _localClippingEnabled || camera !== _currentCamera ) {
var useCache =
camera === _currentCamera &&
material.id === _currentMaterialId;
// we might want to call this function with some ClippingGroup
// object instead of the material, once it becomes feasible
// (#8465, #8379)
setClippingState(
material.clippingPlanes, material.clipShadows,
camera, materialProperties, useCache );
}
if ( materialProperties.numClippingPlanes !== undefined &&
materialProperties.numClippingPlanes !== _numClippingPlanes ) {
material.needsUpdate = true;
}
}
if ( materialProperties.program === undefined ) {
material.needsUpdate = true;
}
if ( materialProperties.lightsHash !== undefined &&
materialProperties.lightsHash !== _lights.hash ) {
material.needsUpdate = true;
}
if ( material.needsUpdate ) {
initMaterial( material, fog, object );
material.needsUpdate = false;
}
var refreshProgram = false;
var refreshMaterial = false;
var refreshLights = false;
var program = materialProperties.program,
p_uniforms = program.getUniforms(),
m_uniforms = materialProperties.__webglShader.uniforms;
if ( program.id !== _currentProgram ) {
_gl.useProgram( program.program );
_currentProgram = program.id;
refreshProgram = true;
refreshMaterial = true;
refreshLights = true;
}
if ( material.id !== _currentMaterialId ) {
_currentMaterialId = material.id;
refreshMaterial = true;
}
if ( refreshProgram || camera !== _currentCamera ) {
p_uniforms.set( _gl, camera, 'projectionMatrix' );
if ( capabilities.logarithmicDepthBuffer ) {
p_uniforms.setValue( _gl, 'logDepthBufFC',
2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) );
}
if ( camera !== _currentCamera ) {
_currentCamera = camera;
// lighting uniforms depend on the camera so enforce an update
// now, in case this material supports lights - or later, when
// the next material that does gets activated:
refreshMaterial = true; // set to true on material change
refreshLights = true; // remains set until update done
}
// load material specific uniforms
// (shader material also gets them for the sake of genericity)
if ( material instanceof THREE.ShaderMaterial ||
material instanceof THREE.MeshPhongMaterial ||
material instanceof THREE.MeshStandardMaterial ||
material.envMap ) {
var uCamPos = p_uniforms.map.cameraPosition;
if ( uCamPos !== undefined ) {
uCamPos.setValue( _gl,
_vector3.setFromMatrixPosition( camera.matrixWorld ) );
}
}
if ( material instanceof THREE.MeshPhongMaterial ||
material instanceof THREE.MeshLambertMaterial ||
material instanceof THREE.MeshBasicMaterial ||
material instanceof THREE.MeshStandardMaterial ||
material instanceof THREE.ShaderMaterial ||
material.skinning ) {
p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse );
}
p_uniforms.set( _gl, _this, 'toneMappingExposure' );
p_uniforms.set( _gl, _this, 'toneMappingWhitePoint' );
}
// skinning uniforms must be set even if material didn't change
// auto-setting of texture unit for bone texture must go before other textures
// not sure why, but otherwise weird things happen
if ( material.skinning ) {
p_uniforms.setOptional( _gl, object, 'bindMatrix' );
p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' );
var skeleton = object.skeleton;
if ( skeleton ) {
if ( capabilities.floatVertexTextures && skeleton.useVertexTexture ) {
p_uniforms.set( _gl, skeleton, 'boneTexture' );
p_uniforms.set( _gl, skeleton, 'boneTextureWidth' );
p_uniforms.set( _gl, skeleton, 'boneTextureHeight' );
} else {
p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' );
}
}
}
if ( refreshMaterial ) {
if ( material instanceof THREE.MeshPhongMaterial ||
material instanceof THREE.MeshLambertMaterial ||
material instanceof THREE.MeshStandardMaterial ||
material.lights ) {
// the current material requires lighting info
// note: all lighting uniforms are always set correctly
// they simply reference the renderer's state for their
// values
//
// use the current material's .needsUpdate flags to set
// the GL state when required
markUniformsLightsNeedsUpdate( m_uniforms, refreshLights );
}
// refresh uniforms common to several materials
if ( fog && material.fog ) {
refreshUniformsFog( m_uniforms, fog );
}
if ( material instanceof THREE.MeshBasicMaterial ||
material instanceof THREE.MeshLambertMaterial ||
material instanceof THREE.MeshPhongMaterial ||
material instanceof THREE.MeshStandardMaterial ||
material instanceof THREE.MeshDepthMaterial ) {
refreshUniformsCommon( m_uniforms, material );
}
// refresh single material specific uniforms
if ( material instanceof THREE.LineBasicMaterial ) {
refreshUniformsLine( m_uniforms, material );
} else if ( material instanceof THREE.LineDashedMaterial ) {
refreshUniformsLine( m_uniforms, material );
refreshUniformsDash( m_uniforms, material );
} else if ( material instanceof THREE.PointsMaterial ) {
refreshUniformsPoints( m_uniforms, material );
} else if ( material instanceof THREE.MeshLambertMaterial ) {
refreshUniformsLambert( m_uniforms, material );
} else if ( material instanceof THREE.MeshPhongMaterial ) {
refreshUniformsPhong( m_uniforms, material );
} else if ( material instanceof THREE.MeshPhysicalMaterial ) {
refreshUniformsPhysical( m_uniforms, material );
} else if ( material instanceof THREE.MeshStandardMaterial ) {
refreshUniformsStandard( m_uniforms, material );
} else if ( material instanceof THREE.MeshDepthMaterial ) {
if ( material.displacementMap ) {
m_uniforms.displacementMap.value = material.displacementMap;
m_uniforms.displacementScale.value = material.displacementScale;
m_uniforms.displacementBias.value = material.displacementBias;
}
} else if ( material instanceof THREE.MeshNormalMaterial ) {
m_uniforms.opacity.value = material.opacity;
}
THREE.WebGLUniforms.upload(
_gl, materialProperties.uniformsList, m_uniforms, _this );
}
// common matrices
p_uniforms.set( _gl, object, 'modelViewMatrix' );
p_uniforms.set( _gl, object, 'normalMatrix' );
p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld );
// dynamic uniforms
var dynUniforms = materialProperties.dynamicUniforms;
if ( dynUniforms !== null ) {
THREE.WebGLUniforms.evalDynamic(
dynUniforms, m_uniforms, object, camera );
THREE.WebGLUniforms.upload( _gl, dynUniforms, m_uniforms, _this );
}
return program;
}
// Uniforms (refresh uniforms objects)
function refreshUniformsCommon ( uniforms, material ) {
uniforms.opacity.value = material.opacity;
uniforms.diffuse.value = material.color;
if ( material.emissive ) {
uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity );
}
uniforms.map.value = material.map;
uniforms.specularMap.value = material.specularMap;
uniforms.alphaMap.value = material.alphaMap;
if ( material.aoMap ) {
uniforms.aoMap.value = material.aoMap;
uniforms.aoMapIntensity.value = material.aoMapIntensity;
}
// uv repeat and offset setting priorities
// 1. color map
// 2. specular map
// 3. normal map
// 4. bump map
// 5. alpha map
// 6. emissive map
var uvScaleMap;
if ( material.map ) {
uvScaleMap = material.map;
} else if ( material.specularMap ) {
uvScaleMap = material.specularMap;
} else if ( material.displacementMap ) {
uvScaleMap = material.displacementMap;
} else if ( material.normalMap ) {
uvScaleMap = material.normalMap;
} else if ( material.bumpMap ) {
uvScaleMap = material.bumpMap;
} else if ( material.roughnessMap ) {
uvScaleMap = material.roughnessMap;
} else if ( material.metalnessMap ) {
uvScaleMap = material.metalnessMap;
} else if ( material.alphaMap ) {
uvScaleMap = material.alphaMap;
} else if ( material.emissiveMap ) {
uvScaleMap = material.emissiveMap;
}
if ( uvScaleMap !== undefined ) {
if ( uvScaleMap instanceof THREE.WebGLRenderTarget ) {
uvScaleMap = uvScaleMap.texture;
}
var offset = uvScaleMap.offset;
var repeat = uvScaleMap.repeat;
uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y );
}
uniforms.envMap.value = material.envMap;
uniforms.flipEnvMap.value = ( material.envMap instanceof THREE.WebGLRenderTargetCube ) ? 1 : - 1;
uniforms.reflectivity.value = material.reflectivity;
uniforms.refractionRatio.value = material.refractionRatio;
}
function refreshUniformsLine ( uniforms, material ) {
uniforms.diffuse.value = material.color;
uniforms.opacity.value = material.opacity;
}
function refreshUniformsDash ( uniforms, material ) {
uniforms.dashSize.value = material.dashSize;
uniforms.totalSize.value = material.dashSize + material.gapSize;
uniforms.scale.value = material.scale;
}
function refreshUniformsPoints ( uniforms, material ) {
uniforms.diffuse.value = material.color;
uniforms.opacity.value = material.opacity;
uniforms.size.value = material.size * _pixelRatio;
uniforms.scale.value = _canvas.clientHeight * 0.5;
uniforms.map.value = material.map;
if ( material.map !== null ) {
var offset = material.map.offset;
var repeat = material.map.repeat;
uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y );
}
}
function refreshUniformsFog ( uniforms, fog ) {
uniforms.fogColor.value = fog.color;
if ( fog instanceof THREE.Fog ) {
uniforms.fogNear.value = fog.near;
uniforms.fogFar.value = fog.far;
} else if ( fog instanceof THREE.FogExp2 ) {
uniforms.fogDensity.value = fog.density;
}
}
function refreshUniformsLambert ( uniforms, material ) {
if ( material.lightMap ) {
uniforms.lightMap.value = material.lightMap;
uniforms.lightMapIntensity.value = material.lightMapIntensity;
}
if ( material.emissiveMap ) {
uniforms.emissiveMap.value = material.emissiveMap;
}
}
function refreshUniformsPhong ( uniforms, material ) {
uniforms.specular.value = material.specular;
uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 )
if ( material.lightMap ) {
uniforms.lightMap.value = material.lightMap;
uniforms.lightMapIntensity.value = material.lightMapIntensity;
}
if ( material.emissiveMap ) {
uniforms.emissiveMap.value = material.emissiveMap;
}
if ( material.bumpMap ) {
uniforms.bumpMap.value = material.bumpMap;
uniforms.bumpScale.value = material.bumpScale;
}
if ( material.normalMap ) {
uniforms.normalMap.value = material.normalMap;
uniforms.normalScale.value.copy( material.normalScale );
}
if ( material.displacementMap ) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
}
function refreshUniformsStandard ( uniforms, material ) {
uniforms.roughness.value = material.roughness;
uniforms.metalness.value = material.metalness;
if ( material.roughnessMap ) {
uniforms.roughnessMap.value = material.roughnessMap;
}
if ( material.metalnessMap ) {
uniforms.metalnessMap.value = material.metalnessMap;
}
if ( material.lightMap ) {
uniforms.lightMap.value = material.lightMap;
uniforms.lightMapIntensity.value = material.lightMapIntensity;
}
if ( material.emissiveMap ) {
uniforms.emissiveMap.value = material.emissiveMap;
}
if ( material.bumpMap ) {
uniforms.bumpMap.value = material.bumpMap;
uniforms.bumpScale.value = material.bumpScale;
}
if ( material.normalMap ) {
uniforms.normalMap.value = material.normalMap;
uniforms.normalScale.value.copy( material.normalScale );
}
if ( material.displacementMap ) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
if ( material.envMap ) {
//uniforms.envMap.value = material.envMap; // part of uniforms common
uniforms.envMapIntensity.value = material.envMapIntensity;
}
}
function refreshUniformsPhysical ( uniforms, material ) {
refreshUniformsStandard( uniforms, material );
}
// If uniforms are marked as clean, they don't need to be loaded to the GPU.
function markUniformsLightsNeedsUpdate ( uniforms, value ) {
uniforms.ambientLightColor.needsUpdate = value;
uniforms.directionalLights.needsUpdate = value;
uniforms.pointLights.needsUpdate = value;
uniforms.spotLights.needsUpdate = value;
uniforms.hemisphereLights.needsUpdate = value;
}
// Lighting
function setupShadows ( lights ) {
var lightShadowsLength = 0;
for ( var i = 0, l = lights.length; i < l; i ++ ) {
var light = lights[ i ];
if ( light.castShadow ) {
_lights.shadows[ lightShadowsLength ++ ] = light;
}
}
_lights.shadows.length = lightShadowsLength;
}
function setupLights ( lights, camera ) {
var l, ll, light,
r = 0, g = 0, b = 0,
color,
intensity,
distance,
viewMatrix = camera.matrixWorldInverse,
directionalLength = 0,
pointLength = 0,
spotLength = 0,
hemiLength = 0;
for ( l = 0, ll = lights.length; l < ll; l ++ ) {
light = lights[ l ];
color = light.color;
intensity = light.intensity;
distance = light.distance;
if ( light instanceof THREE.AmbientLight ) {
r += color.r * intensity;
g += color.g * intensity;
b += color.b * intensity;
} else if ( light instanceof THREE.DirectionalLight ) {
var uniforms = lightCache.get( light );
uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
uniforms.direction.setFromMatrixPosition( light.matrixWorld );
_vector3.setFromMatrixPosition( light.target.matrixWorld );
uniforms.direction.sub( _vector3 );
uniforms.direction.transformDirection( viewMatrix );
uniforms.shadow = light.castShadow;
if ( light.castShadow ) {
uniforms.shadowBias = light.shadow.bias;
uniforms.shadowRadius = light.shadow.radius;
uniforms.shadowMapSize = light.shadow.mapSize;
}
_lights.directionalShadowMap[ directionalLength ] = light.shadow.map;
_lights.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix;
_lights.directional[ directionalLength ++ ] = uniforms;
} else if ( light instanceof THREE.SpotLight ) {
var uniforms = lightCache.get( light );
uniforms.position.setFromMatrixPosition( light.matrixWorld );
uniforms.position.applyMatrix4( viewMatrix );
uniforms.color.copy( color ).multiplyScalar( intensity );
uniforms.distance = distance;
uniforms.direction.setFromMatrixPosition( light.matrixWorld );
_vector3.setFromMatrixPosition( light.target.matrixWorld );
uniforms.direction.sub( _vector3 );
uniforms.direction.transformDirection( viewMatrix );
uniforms.coneCos = Math.cos( light.angle );
uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) );
uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay;
uniforms.shadow = light.castShadow;
if ( light.castShadow ) {
uniforms.shadowBias = light.shadow.bias;
uniforms.shadowRadius = light.shadow.radius;
uniforms.shadowMapSize = light.shadow.mapSize;
}
_lights.spotShadowMap[ spotLength ] = light.shadow.map;
_lights.spotShadowMatrix[ spotLength ] = light.shadow.matrix;
_lights.spot[ spotLength ++ ] = uniforms;
} else if ( light instanceof THREE.PointLight ) {
var uniforms = lightCache.get( light );
uniforms.position.setFromMatrixPosition( light.matrixWorld );
uniforms.position.applyMatrix4( viewMatrix );
uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
uniforms.distance = light.distance;
uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay;
uniforms.shadow = light.castShadow;
if ( light.castShadow ) {
uniforms.shadowBias = light.shadow.bias;
uniforms.shadowRadius = light.shadow.radius;
uniforms.shadowMapSize = light.shadow.mapSize;
}
_lights.pointShadowMap[ pointLength ] = light.shadow.map;
if ( _lights.pointShadowMatrix[ pointLength ] === undefined ) {
_lights.pointShadowMatrix[ pointLength ] = new THREE.Matrix4();
}
// for point lights we set the shadow matrix to be a translation-only matrix
// equal to inverse of the light's position
_vector3.setFromMatrixPosition( light.matrixWorld ).negate();
_lights.pointShadowMatrix[ pointLength ].identity().setPosition( _vector3 );
_lights.point[ pointLength ++ ] = uniforms;
} else if ( light instanceof THREE.HemisphereLight ) {
var uniforms = lightCache.get( light );
uniforms.direction.setFromMatrixPosition( light.matrixWorld );
uniforms.direction.transformDirection( viewMatrix );
uniforms.direction.normalize();
uniforms.skyColor.copy( light.color ).multiplyScalar( intensity );
uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity );
_lights.hemi[ hemiLength ++ ] = uniforms;
}
}
_lights.ambient[ 0 ] = r;
_lights.ambient[ 1 ] = g;
_lights.ambient[ 2 ] = b;
_lights.directional.length = directionalLength;
_lights.spot.length = spotLength;
_lights.point.length = pointLength;
_lights.hemi.length = hemiLength;
_lights.hash = directionalLength + ',' + pointLength + ',' + spotLength + ',' + hemiLength + ',' + _lights.shadows.length;
}
// Clipping
function setupGlobalClippingPlanes( planes, camera ) {
_clippingEnabled =
_this.clippingPlanes.length !== 0 ||
_this.localClippingEnabled ||
// enable state of previous frame - the clipping code has to
// run another frame in order to reset the state:
_numGlobalClippingPlanes !== 0 ||
_localClippingEnabled;
_localClippingEnabled = _this.localClippingEnabled;
_globalClippingState = setupClippingPlanes( planes, camera, 0 );
_numGlobalClippingPlanes = planes !== null ? planes.length : 0;
}
function setupClippingPlanes( planes, camera, dstOffset, skipTransform ) {
var nPlanes = planes !== null ? planes.length : 0,
dstArray = null;
if ( nPlanes !== 0 ) {
dstArray = _clippingPlanesUniform.value;
if ( skipTransform !== true || dstArray === null ) {
var flatSize = dstOffset + nPlanes * 4,
viewMatrix = camera.matrixWorldInverse,
viewNormalMatrix = _matrix3.getNormalMatrix( viewMatrix );
if ( dstArray === null || dstArray.length < flatSize ) {
dstArray = new Float32Array( flatSize );
}
for ( var i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) {
var plane = _plane.copy( planes[ i ] ).
applyMatrix4( viewMatrix, viewNormalMatrix );
plane.normal.toArray( dstArray, i4 );
dstArray[ i4 + 3 ] = plane.constant;
}
}
_clippingPlanesUniform.value = dstArray;
_clippingPlanesUniform.needsUpdate = true;
}
_numClippingPlanes = nPlanes;
return dstArray;
}
function resetGlobalClippingState() {
if ( _clippingPlanesUniform.value !== _globalClippingState ) {
_clippingPlanesUniform.value = _globalClippingState;
_clippingPlanesUniform.needsUpdate = _numGlobalClippingPlanes > 0;
}
_numClippingPlanes = _numGlobalClippingPlanes;
}
function setClippingState( planes, clipShadows, camera, cache, fromCache ) {
if ( ! _localClippingEnabled ||
planes === null || planes.length === 0 ||
_clipRenderingShadows && ! clipShadows ) {
// there's no local clipping
if ( _clipRenderingShadows ) {
// there's no global clipping
setupClippingPlanes( null );
} else {
resetGlobalClippingState();
}
} else {
var nGlobal = _clipRenderingShadows ? 0 : _numGlobalClippingPlanes,
lGlobal = nGlobal * 4,
dstArray = cache.clippingState || null;
_clippingPlanesUniform.value = dstArray; // ensure unique state
dstArray = setupClippingPlanes(
planes, camera, lGlobal, fromCache );
for ( var i = 0; i !== lGlobal; ++ i ) {
dstArray[ i ] = _globalClippingState[ i ];
}
cache.clippingState = dstArray;
_numClippingPlanes += nGlobal;
}
}
// GL state setting
this.setFaceCulling = function ( cullFace, frontFaceDirection ) {
if ( cullFace === THREE.CullFaceNone ) {
state.disable( _gl.CULL_FACE );
} else {
if ( frontFaceDirection === THREE.FrontFaceDirectionCW ) {
_gl.frontFace( _gl.CW );
} else {
_gl.frontFace( _gl.CCW );
}
if ( cullFace === THREE.CullFaceBack ) {
_gl.cullFace( _gl.BACK );
} else if ( cullFace === THREE.CullFaceFront ) {
_gl.cullFace( _gl.FRONT );
} else {
_gl.cullFace( _gl.FRONT_AND_BACK );
}
state.enable( _gl.CULL_FACE );
}
};
// Textures
function allocTextureUnit() {
var textureUnit = _usedTextureUnits;
if ( textureUnit >= capabilities.maxTextures ) {
console.warn( 'WebGLRenderer: trying to use ' + textureUnit + ' texture units while this GPU supports only ' + capabilities.maxTextures );
}
_usedTextureUnits += 1;
return textureUnit;
}
function setTextureParameters ( textureType, texture, isPowerOfTwoImage ) {
var extension;
if ( isPowerOfTwoImage ) {
_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, paramThreeToGL( texture.wrapS ) );
_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, paramThreeToGL( texture.wrapT ) );
_gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, paramThreeToGL( texture.magFilter ) );
_gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, paramThreeToGL( texture.minFilter ) );
} else {
_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE );
_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE );
if ( texture.wrapS !== THREE.ClampToEdgeWrapping || texture.wrapT !== THREE.ClampToEdgeWrapping ) {
console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.', texture );
}
_gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) );
_gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) );
if ( texture.minFilter !== THREE.NearestFilter && texture.minFilter !== THREE.LinearFilter ) {
console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.', texture );
}
}
extension = extensions.get( 'EXT_texture_filter_anisotropic' );
if ( extension ) {
if ( texture.type === THREE.FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) return;
if ( texture.type === THREE.HalfFloatType && extensions.get( 'OES_texture_half_float_linear' ) === null ) return;
if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) {
_gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, _this.getMaxAnisotropy() ) );
properties.get( texture ).__currentAnisotropy = texture.anisotropy;
}
}
}
function uploadTexture( textureProperties, texture, slot ) {
if ( textureProperties.__webglInit === undefined ) {
textureProperties.__webglInit = true;
texture.addEventListener( 'dispose', onTextureDispose );
textureProperties.__webglTexture = _gl.createTexture();
_infoMemory.textures ++;
}
state.activeTexture( _gl.TEXTURE0 + slot );
state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );
_gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY );
_gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha );
_gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment );
var image = clampToMaxSize( texture.image, capabilities.maxTextureSize );
if ( textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( image ) === false ) {
image = makePowerOfTwo( image );
}
var isPowerOfTwoImage = isPowerOfTwo( image ),
glFormat = paramThreeToGL( texture.format ),
glType = paramThreeToGL( texture.type );
setTextureParameters( _gl.TEXTURE_2D, texture, isPowerOfTwoImage );
var mipmap, mipmaps = texture.mipmaps;
if ( texture instanceof THREE.DepthTexture ) {
// populate depth texture with dummy data
var internalFormat = _gl.DEPTH_COMPONENT;
if ( texture.type === THREE.FloatType ) {
if ( !_isWebGL2 ) throw new Error('Float Depth Texture only supported in WebGL2.0');
internalFormat = _gl.DEPTH_COMPONENT32F;
} else if ( _isWebGL2 ) {
// WebGL 2.0 requires signed internalformat for glTexImage2D
internalFormat = _gl.DEPTH_COMPONENT16;
}
state.texImage2D( _gl.TEXTURE_2D, 0, internalFormat, image.width, image.height, 0, glFormat, glType, null );
} else if ( texture instanceof THREE.DataTexture ) {
// use manually created mipmaps if available
// if there are no manual mipmaps
// set 0 level mipmap and then use GL to generate other mipmap levels
if ( mipmaps.length > 0 && isPowerOfTwoImage ) {
for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {
mipmap = mipmaps[ i ];
state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
}
texture.generateMipmaps = false;
} else {
state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, image.width, image.height, 0, glFormat, glType, image.data );
}
} else if ( texture instanceof THREE.CompressedTexture ) {
for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {
mipmap = mipmaps[ i ];
if ( texture.format !== THREE.RGBAFormat && texture.format !== THREE.RGBFormat ) {
if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) {
state.compressedTexImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, mipmap.data );
} else {
console.warn( "THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()" );
}
} else {
state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
}
}
} else {
// regular Texture (image, video, canvas)
// use manually created mipmaps if available
// if there are no manual mipmaps
// set 0 level mipmap and then use GL to generate other mipmap levels
if ( mipmaps.length > 0 && isPowerOfTwoImage ) {
for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {
mipmap = mipmaps[ i ];
state.texImage2D( _gl.TEXTURE_2D, i, glFormat, glFormat, glType, mipmap );
}
texture.generateMipmaps = false;
} else {
state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, glFormat, glType, image );
}
}
if ( texture.generateMipmaps && isPowerOfTwoImage ) _gl.generateMipmap( _gl.TEXTURE_2D );
textureProperties.__version = texture.version;
if ( texture.onUpdate ) texture.onUpdate( texture );
}
function setTexture2D( texture, slot ) {
if ( texture instanceof THREE.WebGLRenderTarget ) texture = texture.texture;
var textureProperties = properties.get( texture );
if ( texture.version > 0 && textureProperties.__version !== texture.version ) {
var image = texture.image;
if ( image === undefined ) {
console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined', texture );
return;
}
if ( image.complete === false ) {
console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete', texture );
return;
}
uploadTexture( textureProperties, texture, slot );
return;
}
state.activeTexture( _gl.TEXTURE0 + slot );
state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );
}
function clampToMaxSize ( image, maxSize ) {
if ( image.width > maxSize || image.height > maxSize ) {
// Warning: Scaling through the canvas will only work with images that use
// premultiplied alpha.
var scale = maxSize / Math.max( image.width, image.height );
var canvas = document.createElement( 'canvas' );
canvas.width = Math.floor( image.width * scale );
canvas.height = Math.floor( image.height * scale );
var context = canvas.getContext( '2d' );
context.drawImage( image, 0, 0, image.width, image.height, 0, 0, canvas.width, canvas.height );
console.warn( 'THREE.WebGLRenderer: image is too big (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image );
return canvas;
}
return image;
}
function isPowerOfTwo( image ) {
return THREE.Math.isPowerOfTwo( image.width ) && THREE.Math.isPowerOfTwo( image.height );
}
function textureNeedsPowerOfTwo( texture ) {
if ( texture.wrapS !== THREE.ClampToEdgeWrapping || texture.wrapT !== THREE.ClampToEdgeWrapping ) return true;
if ( texture.minFilter !== THREE.NearestFilter && texture.minFilter !== THREE.LinearFilter ) return true;
return false;
}
function makePowerOfTwo( image ) {
if ( image instanceof HTMLImageElement || image instanceof HTMLCanvasElement ) {
var canvas = document.createElement( 'canvas' );
canvas.width = THREE.Math.nearestPowerOfTwo( image.width );
canvas.height = THREE.Math.nearestPowerOfTwo( image.height );
var context = canvas.getContext( '2d' );
context.drawImage( image, 0, 0, canvas.width, canvas.height );
console.warn( 'THREE.WebGLRenderer: image is not power of two (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image );
return canvas;
}
return image;
}
function setCubeTexture ( texture, slot ) {
var textureProperties = properties.get( texture );
if ( texture.image.length === 6 ) {
if ( texture.version > 0 && textureProperties.__version !== texture.version ) {
if ( ! textureProperties.__image__webglTextureCube ) {
texture.addEventListener( 'dispose', onTextureDispose );
textureProperties.__image__webglTextureCube = _gl.createTexture();
_infoMemory.textures ++;
}
state.activeTexture( _gl.TEXTURE0 + slot );
state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube );
_gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY );
var isCompressed = texture instanceof THREE.CompressedTexture;
var isDataTexture = texture.image[ 0 ] instanceof THREE.DataTexture;
var cubeImage = [];
for ( var i = 0; i < 6; i ++ ) {
if ( _this.autoScaleCubemaps && ! isCompressed && ! isDataTexture ) {
cubeImage[ i ] = clampToMaxSize( texture.image[ i ], capabilities.maxCubemapSize );
} else {
cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ];
}
}
var image = cubeImage[ 0 ],
isPowerOfTwoImage = isPowerOfTwo( image ),
glFormat = paramThreeToGL( texture.format ),
glType = paramThreeToGL( texture.type );
setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, isPowerOfTwoImage );
for ( var i = 0; i < 6; i ++ ) {
if ( ! isCompressed ) {
if ( isDataTexture ) {
state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data );
} else {
state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, glFormat, glType, cubeImage[ i ] );
}
} else {
var mipmap, mipmaps = cubeImage[ i ].mipmaps;
for ( var j = 0, jl = mipmaps.length; j < jl; j ++ ) {
mipmap = mipmaps[ j ];
if ( texture.format !== THREE.RGBAFormat && texture.format !== THREE.RGBFormat ) {
if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) {
state.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, mipmap.data );
} else {
console.warn( "THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setCubeTexture()" );
}
} else {
state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
}
}
}
}
if ( texture.generateMipmaps && isPowerOfTwoImage ) {
_gl.generateMipmap( _gl.TEXTURE_CUBE_MAP );
}
textureProperties.__version = texture.version;
if ( texture.onUpdate ) texture.onUpdate( texture );
} else {
state.activeTexture( _gl.TEXTURE0 + slot );
state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube );
}
}
}
function setCubeTextureDynamic ( texture, slot ) {
state.activeTexture( _gl.TEXTURE0 + slot );
state.bindTexture( _gl.TEXTURE_CUBE_MAP, properties.get( texture ).__webglTexture );
}
var setTextureWarned = false;
this.setTexture = function( texture, slot ) {
if ( ! setTextureWarned ) {
console.warn( "THREE.WebGLRenderer: .setTexture is deprecated, " +
"use setTexture2D instead." );
setTextureWarned = true;
}
setTexture2D( texture, slot );
};
this.allocTextureUnit = allocTextureUnit;
this.setTexture2D = setTexture2D;
this.setTextureCube = function( texture, slot ) {
if ( texture instanceof THREE.CubeTexture ||
( Array.isArray( texture.image ) && texture.image.length === 6 ) ) {
// CompressedTexture can have Array in image :/
setCubeTexture( texture, slot );
} else {
// assumed: texture instanceof THREE.WebGLRenderTargetCube
setCubeTextureDynamic( texture.texture, slot );
}
};
// Render targets
// Setup storage for target texture and bind it to correct framebuffer
function setupFrameBufferTexture ( framebuffer, renderTarget, attachment, textureTarget ) {
var glFormat = paramThreeToGL( renderTarget.texture.format );
var glType = paramThreeToGL( renderTarget.texture.type );
state.texImage2D( textureTarget, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null );
_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
_gl.framebufferTexture2D( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 );
_gl.bindFramebuffer( _gl.FRAMEBUFFER, null );
}
// Setup storage for internal depth/stencil buffers and bind to correct framebuffer
function setupRenderBufferStorage ( renderbuffer, renderTarget ) {
_gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer );
if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) {
_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height );
_gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );
} else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) {
_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height );
_gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );
} else {
// FIXME: We don't support !depth !stencil
_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height );
}
_gl.bindRenderbuffer( _gl.RENDERBUFFER, null );
}
// Setup resources for a Depth Texture for a FBO (needs an extension)
function setupDepthTexture ( framebuffer, renderTarget ) {
var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube );
if ( isCube ) throw new Error('Depth Texture with cube render targets is not supported!');
_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
if ( !( renderTarget.depthTexture instanceof THREE.DepthTexture ) ) {
throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture');
}
// upload an empty depth texture with framebuffer size
if ( !properties.get( renderTarget.depthTexture ).__webglTexture ||
renderTarget.depthTexture.image.width !== renderTarget.width ||
renderTarget.depthTexture.image.height !== renderTarget.height ) {
renderTarget.depthTexture.image.width = renderTarget.width;
renderTarget.depthTexture.image.height = renderTarget.height;
renderTarget.depthTexture.needsUpdate = true;
}
_this.setTexture( renderTarget.depthTexture, 0 );
var webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture;
_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 );
}
// Setup GL resources for a non-texture depth buffer
function setupDepthRenderbuffer( renderTarget ) {
var renderTargetProperties = properties.get( renderTarget );
var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube );
if ( renderTarget.depthTexture ) {
if ( isCube ) throw new Error('target.depthTexture not supported in Cube render targets');
setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget );
} else {
if ( isCube ) {
renderTargetProperties.__webglDepthbuffer = [];
for ( var i = 0; i < 6; i ++ ) {
_gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ i ] );
renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer();
setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget );
}
} else {
_gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer );
renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget );
}
}
_gl.bindFramebuffer( _gl.FRAMEBUFFER, null );
}
// Set up GL resources for the render target
function setupRenderTarget( renderTarget ) {
var renderTargetProperties = properties.get( renderTarget );
var textureProperties = properties.get( renderTarget.texture );
renderTarget.addEventListener( 'dispose', onRenderTargetDispose );
textureProperties.__webglTexture = _gl.createTexture();
_infoMemory.textures ++;
var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube );
var isTargetPowerOfTwo = THREE.Math.isPowerOfTwo( renderTarget.width ) && THREE.Math.isPowerOfTwo( renderTarget.height );
// Setup framebuffer
if ( isCube ) {
renderTargetProperties.__webglFramebuffer = [];
for ( var i = 0; i < 6; i ++ ) {
renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer();
}
} else {
renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();
}
// Setup color buffer
if ( isCube ) {
state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture );
setTextureParameters( _gl.TEXTURE_CUBE_MAP, renderTarget.texture, isTargetPowerOfTwo );
for ( var i = 0; i < 6; i ++ ) {
setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i );
}
if ( renderTarget.texture.generateMipmaps && isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP );
state.bindTexture( _gl.TEXTURE_CUBE_MAP, null );
} else {
state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );
setTextureParameters( _gl.TEXTURE_2D, renderTarget.texture, isTargetPowerOfTwo );
setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D );
if ( renderTarget.texture.generateMipmaps && isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_2D );
state.bindTexture( _gl.TEXTURE_2D, null );
}
// Setup depth and stencil buffers
if ( renderTarget.depthBuffer ) {
setupDepthRenderbuffer( renderTarget );
}
}
this.getCurrentRenderTarget = function() {
return _currentRenderTarget;
};
this.setRenderTarget = function ( renderTarget ) {
_currentRenderTarget = renderTarget;
if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) {
setupRenderTarget( renderTarget );
}
var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube );
var framebuffer;
if ( renderTarget ) {
var renderTargetProperties = properties.get( renderTarget );
if ( isCube ) {
framebuffer = renderTargetProperties.__webglFramebuffer[ renderTarget.activeCubeFace ];
} else {
framebuffer = renderTargetProperties.__webglFramebuffer;
}
_currentScissor.copy( renderTarget.scissor );
_currentScissorTest = renderTarget.scissorTest;
_currentViewport.copy( renderTarget.viewport );
} else {
framebuffer = null;
_currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio );
_currentScissorTest = _scissorTest;
_currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio );
}
if ( _currentFramebuffer !== framebuffer ) {
_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
_currentFramebuffer = framebuffer;
}
state.scissor( _currentScissor );
state.setScissorTest( _currentScissorTest );
state.viewport( _currentViewport );
if ( isCube ) {
var textureProperties = properties.get( renderTarget.texture );
_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + renderTarget.activeCubeFace, textureProperties.__webglTexture, renderTarget.activeMipMapLevel );
}
};
this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer ) {
if ( renderTarget instanceof THREE.WebGLRenderTarget === false ) {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' );
return;
}
var framebuffer = properties.get( renderTarget ).__webglFramebuffer;
if ( framebuffer ) {
var restore = false;
if ( framebuffer !== _currentFramebuffer ) {
_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
restore = true;
}
try {
var texture = renderTarget.texture;
if ( texture.format !== THREE.RGBAFormat && paramThreeToGL( texture.format ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_FORMAT ) ) {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' );
return;
}
if ( texture.type !== THREE.UnsignedByteType &&
paramThreeToGL( texture.type ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_TYPE ) &&
! ( texture.type === THREE.FloatType && extensions.get( 'WEBGL_color_buffer_float' ) ) &&
! ( texture.type === THREE.HalfFloatType && extensions.get( 'EXT_color_buffer_half_float' ) ) ) {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' );
return;
}
if ( _gl.checkFramebufferStatus( _gl.FRAMEBUFFER ) === _gl.FRAMEBUFFER_COMPLETE ) {
// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)
if ( ( x > 0 && x <= ( renderTarget.width - width ) ) && ( y > 0 && y <= ( renderTarget.height - height ) ) ) {
_gl.readPixels( x, y, width, height, paramThreeToGL( texture.format ), paramThreeToGL( texture.type ), buffer );
}
} else {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' );
}
} finally {
if ( restore ) {
_gl.bindFramebuffer( _gl.FRAMEBUFFER, _currentFramebuffer );
}
}
}
};
function updateRenderTargetMipmap( renderTarget ) {
var target = renderTarget instanceof THREE.WebGLRenderTargetCube ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D;
var texture = properties.get( renderTarget.texture ).__webglTexture;
state.bindTexture( target, texture );
_gl.generateMipmap( target );
state.bindTexture( target, null );
}
// Fallback filters for non-power-of-2 textures
function filterFallback ( f ) {
if ( f === THREE.NearestFilter || f === THREE.NearestMipMapNearestFilter || f === THREE.NearestMipMapLinearFilter ) {
return _gl.NEAREST;
}
return _gl.LINEAR;
}
// Map three.js constants to WebGL constants
function paramThreeToGL ( p ) {
var extension;
if ( p === THREE.RepeatWrapping ) return _gl.REPEAT;
if ( p === THREE.ClampToEdgeWrapping ) return _gl.CLAMP_TO_EDGE;
if ( p === THREE.MirroredRepeatWrapping ) return _gl.MIRRORED_REPEAT;
if ( p === THREE.NearestFilter ) return _gl.NEAREST;
if ( p === THREE.NearestMipMapNearestFilter ) return _gl.NEAREST_MIPMAP_NEAREST;
if ( p === THREE.NearestMipMapLinearFilter ) return _gl.NEAREST_MIPMAP_LINEAR;
if ( p === THREE.LinearFilter ) return _gl.LINEAR;
if ( p === THREE.LinearMipMapNearestFilter ) return _gl.LINEAR_MIPMAP_NEAREST;
if ( p === THREE.LinearMipMapLinearFilter ) return _gl.LINEAR_MIPMAP_LINEAR;
if ( p === THREE.UnsignedByteType ) return _gl.UNSIGNED_BYTE;
if ( p === THREE.UnsignedShort4444Type ) return _gl.UNSIGNED_SHORT_4_4_4_4;
if ( p === THREE.UnsignedShort5551Type ) return _gl.UNSIGNED_SHORT_5_5_5_1;
if ( p === THREE.UnsignedShort565Type ) return _gl.UNSIGNED_SHORT_5_6_5;
if ( p === THREE.ByteType ) return _gl.BYTE;
if ( p === THREE.ShortType ) return _gl.SHORT;
if ( p === THREE.UnsignedShortType ) return _gl.UNSIGNED_SHORT;
if ( p === THREE.IntType ) return _gl.INT;
if ( p === THREE.UnsignedIntType ) return _gl.UNSIGNED_INT;
if ( p === THREE.FloatType ) return _gl.FLOAT;
extension = extensions.get( 'OES_texture_half_float' );
if ( extension !== null ) {
if ( p === THREE.HalfFloatType ) return extension.HALF_FLOAT_OES;
}
if ( p === THREE.AlphaFormat ) return _gl.ALPHA;
if ( p === THREE.RGBFormat ) return _gl.RGB;
if ( p === THREE.RGBAFormat ) return _gl.RGBA;
if ( p === THREE.LuminanceFormat ) return _gl.LUMINANCE;
if ( p === THREE.LuminanceAlphaFormat ) return _gl.LUMINANCE_ALPHA;
if ( p === THREE.DepthFormat ) return _gl.DEPTH_COMPONENT;
if ( p === THREE.AddEquation ) return _gl.FUNC_ADD;
if ( p === THREE.SubtractEquation ) return _gl.FUNC_SUBTRACT;
if ( p === THREE.ReverseSubtractEquation ) return _gl.FUNC_REVERSE_SUBTRACT;
if ( p === THREE.ZeroFactor ) return _gl.ZERO;
if ( p === THREE.OneFactor ) return _gl.ONE;
if ( p === THREE.SrcColorFactor ) return _gl.SRC_COLOR;
if ( p === THREE.OneMinusSrcColorFactor ) return _gl.ONE_MINUS_SRC_COLOR;
if ( p === THREE.SrcAlphaFactor ) return _gl.SRC_ALPHA;
if ( p === THREE.OneMinusSrcAlphaFactor ) return _gl.ONE_MINUS_SRC_ALPHA;
if ( p === THREE.DstAlphaFactor ) return _gl.DST_ALPHA;
if ( p === THREE.OneMinusDstAlphaFactor ) return _gl.ONE_MINUS_DST_ALPHA;
if ( p === THREE.DstColorFactor ) return _gl.DST_COLOR;
if ( p === THREE.OneMinusDstColorFactor ) return _gl.ONE_MINUS_DST_COLOR;
if ( p === THREE.SrcAlphaSaturateFactor ) return _gl.SRC_ALPHA_SATURATE;
extension = extensions.get( 'WEBGL_compressed_texture_s3tc' );
if ( extension !== null ) {
if ( p === THREE.RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;
if ( p === THREE.RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;
if ( p === THREE.RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;
if ( p === THREE.RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;
}
extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' );
if ( extension !== null ) {
if ( p === THREE.RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
if ( p === THREE.RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
if ( p === THREE.RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
if ( p === THREE.RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
}
extension = extensions.get( 'WEBGL_compressed_texture_etc1' );
if ( extension !== null ) {
if ( p === THREE.RGB_ETC1_Format ) return extension.COMPRESSED_RGB_ETC1_WEBGL;
}
extension = extensions.get( 'EXT_blend_minmax' );
if ( extension !== null ) {
if ( p === THREE.MinEquation ) return extension.MIN_EXT;
if ( p === THREE.MaxEquation ) return extension.MAX_EXT;
}
return 0;
}
};
// File:src/renderers/WebGLRenderTarget.js
/**
* @author szimek / https://github.com/szimek/
* @author alteredq / http://alteredqualia.com/
* @author Marius Kintel / https://github.com/kintel
*/
/*
In options, we can specify:
* Texture parameters for an auto-generated target texture
* depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
*/
THREE.WebGLRenderTarget = function ( width, height, options ) {
this.uuid = THREE.Math.generateUUID();
this.width = width;
this.height = height;
this.scissor = new THREE.Vector4( 0, 0, width, height );
this.scissorTest = false;
this.viewport = new THREE.Vector4( 0, 0, width, height );
options = options || {};
if ( options.minFilter === undefined ) options.minFilter = THREE.LinearFilter;
this.texture = new THREE.Texture( undefined, undefined, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );
this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true;
this.depthTexture = null;
};
THREE.WebGLRenderTarget.prototype = {
constructor: THREE.WebGLRenderTarget,
setSize: function ( width, height ) {
if ( this.width !== width || this.height !== height ) {
this.width = width;
this.height = height;
this.dispose();
}
this.viewport.set( 0, 0, width, height );
this.scissor.set( 0, 0, width, height );
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.width = source.width;
this.height = source.height;
this.viewport.copy( source.viewport );
this.texture = source.texture.clone();
this.depthBuffer = source.depthBuffer;
this.stencilBuffer = source.stencilBuffer;
this.depthTexture = source.depthTexture;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
};
THREE.EventDispatcher.prototype.apply( THREE.WebGLRenderTarget.prototype );
// File:src/renderers/WebGLRenderTargetCube.js
/**
* @author alteredq / http://alteredqualia.com
*/
THREE.WebGLRenderTargetCube = function ( width, height, options ) {
THREE.WebGLRenderTarget.call( this, width, height, options );
this.activeCubeFace = 0; // PX 0, NX 1, PY 2, NY 3, PZ 4, NZ 5
this.activeMipMapLevel = 0;
};
THREE.WebGLRenderTargetCube.prototype = Object.create( THREE.WebGLRenderTarget.prototype );
THREE.WebGLRenderTargetCube.prototype.constructor = THREE.WebGLRenderTargetCube;
// File:src/renderers/webgl/WebGLBufferRenderer.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLBufferRenderer = function ( _gl, extensions, _infoRender ) {
var mode;
function setMode( value ) {
mode = value;
}
function render( start, count ) {
_gl.drawArrays( mode, start, count );
_infoRender.calls ++;
_infoRender.vertices += count;
if ( mode === _gl.TRIANGLES ) _infoRender.faces += count / 3;
}
function renderInstances( geometry ) {
var extension = extensions.get( 'ANGLE_instanced_arrays' );
if ( extension === null ) {
console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
return;
}
var position = geometry.attributes.position;
var count = 0;
if ( position instanceof THREE.InterleavedBufferAttribute ) {
count = position.data.count;
extension.drawArraysInstancedANGLE( mode, 0, count, geometry.maxInstancedCount );
} else {
count = position.count;
extension.drawArraysInstancedANGLE( mode, 0, count, geometry.maxInstancedCount );
}
_infoRender.calls ++;
_infoRender.vertices += count * geometry.maxInstancedCount;
if ( mode === _gl.TRIANGLES ) _infoRender.faces += geometry.maxInstancedCount * count / 3;
}
this.setMode = setMode;
this.render = render;
this.renderInstances = renderInstances;
};
// File:src/renderers/webgl/WebGLIndexedBufferRenderer.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLIndexedBufferRenderer = function ( _gl, extensions, _infoRender ) {
var mode;
function setMode( value ) {
mode = value;
}
var type, size;
function setIndex( index ) {
if ( index.array instanceof Uint32Array && extensions.get( 'OES_element_index_uint' ) ) {
type = _gl.UNSIGNED_INT;
size = 4;
} else {
type = _gl.UNSIGNED_SHORT;
size = 2;
}
}
function render( start, count ) {
_gl.drawElements( mode, count, type, start * size );
_infoRender.calls ++;
_infoRender.vertices += count;
if ( mode === _gl.TRIANGLES ) _infoRender.faces += count / 3;
}
function renderInstances( geometry, start, count ) {
var extension = extensions.get( 'ANGLE_instanced_arrays' );
if ( extension === null ) {
console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
return;
}
extension.drawElementsInstancedANGLE( mode, count, type, start * size, geometry.maxInstancedCount );
_infoRender.calls ++;
_infoRender.vertices += count * geometry.maxInstancedCount;
if ( mode === _gl.TRIANGLES ) _infoRender.faces += geometry.maxInstancedCount * count / 3;
}
this.setMode = setMode;
this.setIndex = setIndex;
this.render = render;
this.renderInstances = renderInstances;
};
// File:src/renderers/webgl/WebGLExtensions.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLExtensions = function ( gl ) {
var extensions = {};
this.get = function ( name ) {
if ( extensions[ name ] !== undefined ) {
return extensions[ name ];
}
var extension;
switch ( name ) {
case 'WEBGL_depth_texture':
extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' );
case 'EXT_texture_filter_anisotropic':
extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' );
break;
case 'WEBGL_compressed_texture_s3tc':
extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' );
break;
case 'WEBGL_compressed_texture_pvrtc':
extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' );
break;
case 'WEBGL_compressed_texture_etc1':
extension = gl.getExtension( 'WEBGL_compressed_texture_etc1' );
break;
default:
extension = gl.getExtension( name );
}
if ( extension === null ) {
console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' );
}
extensions[ name ] = extension;
return extension;
};
};
// File:src/renderers/webgl/WebGLCapabilities.js
THREE.WebGLCapabilities = function ( gl, extensions, parameters ) {
function getMaxPrecision( precision ) {
if ( precision === 'highp' ) {
if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 &&
gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) {
return 'highp';
}
precision = 'mediump';
}
if ( precision === 'mediump' ) {
if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 &&
gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) {
return 'mediump';
}
}
return 'lowp';
}
this.getMaxPrecision = getMaxPrecision;
this.precision = parameters.precision !== undefined ? parameters.precision : 'highp',
this.logarithmicDepthBuffer = parameters.logarithmicDepthBuffer !== undefined ? parameters.logarithmicDepthBuffer : false;
this.maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS );
this.maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS );
this.maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE );
this.maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE );
this.maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS );
this.maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS );
this.maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS );
this.maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS );
this.vertexTextures = this.maxVertexTextures > 0;
this.floatFragmentTextures = !! extensions.get( 'OES_texture_float' );
this.floatVertexTextures = this.vertexTextures && this.floatFragmentTextures;
var _maxPrecision = getMaxPrecision( this.precision );
if ( _maxPrecision !== this.precision ) {
console.warn( 'THREE.WebGLRenderer:', this.precision, 'not supported, using', _maxPrecision, 'instead.' );
this.precision = _maxPrecision;
}
if ( this.logarithmicDepthBuffer ) {
this.logarithmicDepthBuffer = !! extensions.get( 'EXT_frag_depth' );
}
};
// File:src/renderers/webgl/WebGLGeometries.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLGeometries = function ( gl, properties, info ) {
var geometries = {};
function get( object ) {
var geometry = object.geometry;
if ( geometries[ geometry.id ] !== undefined ) {
return geometries[ geometry.id ];
}
geometry.addEventListener( 'dispose', onGeometryDispose );
var buffergeometry;
if ( geometry instanceof THREE.BufferGeometry ) {
buffergeometry = geometry;
} else if ( geometry instanceof THREE.Geometry ) {
if ( geometry._bufferGeometry === undefined ) {
geometry._bufferGeometry = new THREE.BufferGeometry().setFromObject( object );
}
buffergeometry = geometry._bufferGeometry;
}
geometries[ geometry.id ] = buffergeometry;
info.memory.geometries ++;
return buffergeometry;
}
function onGeometryDispose( event ) {
var geometry = event.target;
var buffergeometry = geometries[ geometry.id ];
if ( buffergeometry.index !== null ) {
deleteAttribute( buffergeometry.index );
}
deleteAttributes( buffergeometry.attributes );
geometry.removeEventListener( 'dispose', onGeometryDispose );
delete geometries[ geometry.id ];
// TODO
var property = properties.get( geometry );
if ( property.wireframe ) {
deleteAttribute( property.wireframe );
}
properties.delete( geometry );
var bufferproperty = properties.get( buffergeometry );
if ( bufferproperty.wireframe ) {
deleteAttribute( bufferproperty.wireframe );
}
properties.delete( buffergeometry );
//
info.memory.geometries --;
}
function getAttributeBuffer( attribute ) {
if ( attribute instanceof THREE.InterleavedBufferAttribute ) {
return properties.get( attribute.data ).__webglBuffer;
}
return properties.get( attribute ).__webglBuffer;
}
function deleteAttribute( attribute ) {
var buffer = getAttributeBuffer( attribute );
if ( buffer !== undefined ) {
gl.deleteBuffer( buffer );
removeAttributeBuffer( attribute );
}
}
function deleteAttributes( attributes ) {
for ( var name in attributes ) {
deleteAttribute( attributes[ name ] );
}
}
function removeAttributeBuffer( attribute ) {
if ( attribute instanceof THREE.InterleavedBufferAttribute ) {
properties.delete( attribute.data );
} else {
properties.delete( attribute );
}
}
this.get = get;
};
// File:src/renderers/webgl/WebGLLights.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLLights = function () {
var lights = {};
this.get = function ( light ) {
if ( lights[ light.id ] !== undefined ) {
return lights[ light.id ];
}
var uniforms;
switch ( light.type ) {
case 'DirectionalLight':
uniforms = {
direction: new THREE.Vector3(),
color: new THREE.Color(),
shadow: false,
shadowBias: 0,
shadowRadius: 1,
shadowMapSize: new THREE.Vector2()
};
break;
case 'SpotLight':
uniforms = {
position: new THREE.Vector3(),
direction: new THREE.Vector3(),
color: new THREE.Color(),
distance: 0,
coneCos: 0,
penumbraCos: 0,
decay: 0,
shadow: false,
shadowBias: 0,
shadowRadius: 1,
shadowMapSize: new THREE.Vector2()
};
break;
case 'PointLight':
uniforms = {
position: new THREE.Vector3(),
color: new THREE.Color(),
distance: 0,
decay: 0,
shadow: false,
shadowBias: 0,
shadowRadius: 1,
shadowMapSize: new THREE.Vector2()
};
break;
case 'HemisphereLight':
uniforms = {
direction: new THREE.Vector3(),
skyColor: new THREE.Color(),
groundColor: new THREE.Color()
};
break;
}
lights[ light.id ] = uniforms;
return uniforms;
};
};
// File:src/renderers/webgl/WebGLObjects.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLObjects = function ( gl, properties, info ) {
var geometries = new THREE.WebGLGeometries( gl, properties, info );
//
function update( object ) {
// TODO: Avoid updating twice (when using shadowMap). Maybe add frame counter.
var geometry = geometries.get( object );
if ( object.geometry instanceof THREE.Geometry ) {
geometry.updateFromObject( object );
}
var index = geometry.index;
var attributes = geometry.attributes;
if ( index !== null ) {
updateAttribute( index, gl.ELEMENT_ARRAY_BUFFER );
}
for ( var name in attributes ) {
updateAttribute( attributes[ name ], gl.ARRAY_BUFFER );
}
// morph targets
var morphAttributes = geometry.morphAttributes;
for ( var name in morphAttributes ) {
var array = morphAttributes[ name ];
for ( var i = 0, l = array.length; i < l; i ++ ) {
updateAttribute( array[ i ], gl.ARRAY_BUFFER );
}
}
return geometry;
}
function updateAttribute( attribute, bufferType ) {
var data = ( attribute instanceof THREE.InterleavedBufferAttribute ) ? attribute.data : attribute;
var attributeProperties = properties.get( data );
if ( attributeProperties.__webglBuffer === undefined ) {
createBuffer( attributeProperties, data, bufferType );
} else if ( attributeProperties.version !== data.version ) {
updateBuffer( attributeProperties, data, bufferType );
}
}
function createBuffer( attributeProperties, data, bufferType ) {
attributeProperties.__webglBuffer = gl.createBuffer();
gl.bindBuffer( bufferType, attributeProperties.__webglBuffer );
var usage = data.dynamic ? gl.DYNAMIC_DRAW : gl.STATIC_DRAW;
gl.bufferData( bufferType, data.array, usage );
attributeProperties.version = data.version;
}
function updateBuffer( attributeProperties, data, bufferType ) {
gl.bindBuffer( bufferType, attributeProperties.__webglBuffer );
if ( data.dynamic === false || data.updateRange.count === - 1 ) {
// Not using update ranges
gl.bufferSubData( bufferType, 0, data.array );
} else if ( data.updateRange.count === 0 ) {
console.error( 'THREE.WebGLObjects.updateBuffer: dynamic THREE.BufferAttribute marked as needsUpdate but updateRange.count is 0, ensure you are using set methods or updating manually.' );
} else {
gl.bufferSubData( bufferType, data.updateRange.offset * data.array.BYTES_PER_ELEMENT,
data.array.subarray( data.updateRange.offset, data.updateRange.offset + data.updateRange.count ) );
data.updateRange.count = 0; // reset range
}
attributeProperties.version = data.version;
}
function getAttributeBuffer( attribute ) {
if ( attribute instanceof THREE.InterleavedBufferAttribute ) {
return properties.get( attribute.data ).__webglBuffer;
}
return properties.get( attribute ).__webglBuffer;
}
function getWireframeAttribute( geometry ) {
var property = properties.get( geometry );
if ( property.wireframe !== undefined ) {
return property.wireframe;
}
var indices = [];
var index = geometry.index;
var attributes = geometry.attributes;
var position = attributes.position;
// console.time( 'wireframe' );
if ( index !== null ) {
var edges = {};
var array = index.array;
for ( var i = 0, l = array.length; i < l; i += 3 ) {
var a = array[ i + 0 ];
var b = array[ i + 1 ];
var c = array[ i + 2 ];
if ( checkEdge( edges, a, b ) ) indices.push( a, b );
if ( checkEdge( edges, b, c ) ) indices.push( b, c );
if ( checkEdge( edges, c, a ) ) indices.push( c, a );
}
} else {
var array = attributes.position.array;
for ( var i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) {
var a = i + 0;
var b = i + 1;
var c = i + 2;
indices.push( a, b, b, c, c, a );
}
}
// console.timeEnd( 'wireframe' );
var TypeArray = position.count > 65535 ? Uint32Array : Uint16Array;
var attribute = new THREE.BufferAttribute( new TypeArray( indices ), 1 );
updateAttribute( attribute, gl.ELEMENT_ARRAY_BUFFER );
property.wireframe = attribute;
return attribute;
}
function checkEdge( edges, a, b ) {
if ( a > b ) {
var tmp = a;
a = b;
b = tmp;
}
var list = edges[ a ];
if ( list === undefined ) {
edges[ a ] = [ b ];
return true;
} else if ( list.indexOf( b ) === -1 ) {
list.push( b );
return true;
}
return false;
}
this.getAttributeBuffer = getAttributeBuffer;
this.getWireframeAttribute = getWireframeAttribute;
this.update = update;
};
// File:src/renderers/webgl/WebGLProgram.js
THREE.WebGLProgram = ( function () {
var programIdCount = 0;
function getEncodingComponents( encoding ) {
switch ( encoding ) {
case THREE.LinearEncoding:
return [ 'Linear','( value )' ];
case THREE.sRGBEncoding:
return [ 'sRGB','( value )' ];
case THREE.RGBEEncoding:
return [ 'RGBE','( value )' ];
case THREE.RGBM7Encoding:
return [ 'RGBM','( value, 7.0 )' ];
case THREE.RGBM16Encoding:
return [ 'RGBM','( value, 16.0 )' ];
case THREE.RGBDEncoding:
return [ 'RGBD','( value, 256.0 )' ];
case THREE.GammaEncoding:
return [ 'Gamma','( value, float( GAMMA_FACTOR ) )' ];
default:
throw new Error( 'unsupported encoding: ' + encoding );
}
}
function getTexelDecodingFunction( functionName, encoding ) {
var components = getEncodingComponents( encoding );
return "vec4 " + functionName + "( vec4 value ) { return " + components[ 0 ] + "ToLinear" + components[ 1 ] + "; }";
}
function getTexelEncodingFunction( functionName, encoding ) {
var components = getEncodingComponents( encoding );
return "vec4 " + functionName + "( vec4 value ) { return LinearTo" + components[ 0 ] + components[ 1 ] + "; }";
}
function getToneMappingFunction( functionName, toneMapping ) {
var toneMappingName;
switch ( toneMapping ) {
case THREE.LinearToneMapping:
toneMappingName = "Linear";
break;
case THREE.ReinhardToneMapping:
toneMappingName = "Reinhard";
break;
case THREE.Uncharted2ToneMapping:
toneMappingName = "Uncharted2";
break;
case THREE.CineonToneMapping:
toneMappingName = "OptimizedCineon";
break;
default:
throw new Error( 'unsupported toneMapping: ' + toneMapping );
}
return "vec3 " + functionName + "( vec3 color ) { return " + toneMappingName + "ToneMapping( color ); }";
}
function generateExtensions( extensions, parameters, rendererExtensions ) {
extensions = extensions || {};
var chunks = [
( extensions.derivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.normalMap || parameters.flatShading ) ? '#extension GL_OES_standard_derivatives : enable' : '',
( extensions.fragDepth || parameters.logarithmicDepthBuffer ) && rendererExtensions.get( 'EXT_frag_depth' ) ? '#extension GL_EXT_frag_depth : enable' : '',
( extensions.drawBuffers ) && rendererExtensions.get( 'WEBGL_draw_buffers' ) ? '#extension GL_EXT_draw_buffers : require' : '',
( extensions.shaderTextureLOD || parameters.envMap ) && rendererExtensions.get( 'EXT_shader_texture_lod' ) ? '#extension GL_EXT_shader_texture_lod : enable' : '',
];
return chunks.filter( filterEmptyLine ).join( '\n' );
}
function generateDefines( defines ) {
var chunks = [];
for ( var name in defines ) {
var value = defines[ name ];
if ( value === false ) continue;
chunks.push( '#define ' + name + ' ' + value );
}
return chunks.join( '\n' );
}
function fetchAttributeLocations( gl, program, identifiers ) {
var attributes = {};
var n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES );
for ( var i = 0; i < n; i ++ ) {
var info = gl.getActiveAttrib( program, i );
var name = info.name;
// console.log("THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:", name, i );
attributes[ name ] = gl.getAttribLocation( program, name );
}
return attributes;
}
function filterEmptyLine( string ) {
return string !== '';
}
function replaceLightNums( string, parameters ) {
return string
.replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights )
.replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights )
.replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights )
.replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights );
}
function parseIncludes( string ) {
var pattern = /#include +<([\w\d.]+)>/g;
function replace( match, include ) {
var replace = THREE.ShaderChunk[ include ];
if ( replace === undefined ) {
throw new Error( 'Can not resolve #include <' + include + '>' );
}
return parseIncludes( replace );
}
return string.replace( pattern, replace );
}
function unrollLoops( string ) {
var pattern = /for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
function replace( match, start, end, snippet ) {
var unroll = '';
for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) {
unroll += snippet.replace( /\[ i \]/g, '[ ' + i + ' ]' );
}
return unroll;
}
return string.replace( pattern, replace );
}
return function WebGLProgram( renderer, code, material, parameters ) {
var gl = renderer.context;
var extensions = material.extensions;
var defines = material.defines;
var vertexShader = material.__webglShader.vertexShader;
var fragmentShader = material.__webglShader.fragmentShader;
var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';
if ( parameters.shadowMapType === THREE.PCFShadowMap ) {
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';
} else if ( parameters.shadowMapType === THREE.PCFSoftShadowMap ) {
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';
}
var envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
var envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
var envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
if ( parameters.envMap ) {
switch ( material.envMap.mapping ) {
case THREE.CubeReflectionMapping:
case THREE.CubeRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
break;
case THREE.CubeUVReflectionMapping:
case THREE.CubeUVRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
break;
case THREE.EquirectangularReflectionMapping:
case THREE.EquirectangularRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC';
break;
case THREE.SphericalReflectionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_SPHERE';
break;
}
switch ( material.envMap.mapping ) {
case THREE.CubeRefractionMapping:
case THREE.EquirectangularRefractionMapping:
envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
break;
}
switch ( material.combine ) {
case THREE.MultiplyOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
break;
case THREE.MixOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
break;
case THREE.AddOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
break;
}
}
var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0;
// console.log( 'building new program ' );
//
var customExtensions = generateExtensions( extensions, parameters, renderer.extensions );
var customDefines = generateDefines( defines );
//
var program = gl.createProgram();
var prefixVertex, prefixFragment;
if ( material instanceof THREE.RawShaderMaterial ) {
prefixVertex = '';
prefixFragment = '';
} else {
prefixVertex = [
'precision ' + parameters.precision + ' float;',
'precision ' + parameters.precision + ' int;',
'#define SHADER_NAME ' + material.__webglShader.name,
customDefines,
parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '',
'#define GAMMA_FACTOR ' + gammaFactorDefine,
'#define MAX_BONES ' + parameters.maxBones,
parameters.map ? '#define USE_MAP' : '',
parameters.envMap ? '#define USE_ENVMAP' : '',
parameters.envMap ? '#define ' + envMapModeDefine : '',
parameters.lightMap ? '#define USE_LIGHTMAP' : '',
parameters.aoMap ? '#define USE_AOMAP' : '',
parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
parameters.bumpMap ? '#define USE_BUMPMAP' : '',
parameters.normalMap ? '#define USE_NORMALMAP' : '',
parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '',
parameters.specularMap ? '#define USE_SPECULARMAP' : '',
parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
parameters.vertexColors ? '#define USE_COLOR' : '',
parameters.flatShading ? '#define FLAT_SHADED' : '',
parameters.skinning ? '#define USE_SKINNING' : '',
parameters.useVertexTexture ? '#define BONE_TEXTURE' : '',
parameters.morphTargets ? '#define USE_MORPHTARGETS' : '',
parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '',
parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
parameters.flipSided ? '#define FLIP_SIDED' : '',
'#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes,
parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',
parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '',
parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '',
'uniform mat4 modelMatrix;',
'uniform mat4 modelViewMatrix;',
'uniform mat4 projectionMatrix;',
'uniform mat4 viewMatrix;',
'uniform mat3 normalMatrix;',
'uniform vec3 cameraPosition;',
'attribute vec3 position;',
'attribute vec3 normal;',
'attribute vec2 uv;',
'#ifdef USE_COLOR',
' attribute vec3 color;',
'#endif',
'#ifdef USE_MORPHTARGETS',
' attribute vec3 morphTarget0;',
' attribute vec3 morphTarget1;',
' attribute vec3 morphTarget2;',
' attribute vec3 morphTarget3;',
' #ifdef USE_MORPHNORMALS',
' attribute vec3 morphNormal0;',
' attribute vec3 morphNormal1;',
' attribute vec3 morphNormal2;',
' attribute vec3 morphNormal3;',
' #else',
' attribute vec3 morphTarget4;',
' attribute vec3 morphTarget5;',
' attribute vec3 morphTarget6;',
' attribute vec3 morphTarget7;',
' #endif',
'#endif',
'#ifdef USE_SKINNING',
' attribute vec4 skinIndex;',
' attribute vec4 skinWeight;',
'#endif',
'\n'
].filter( filterEmptyLine ).join( '\n' );
prefixFragment = [
customExtensions,
'precision ' + parameters.precision + ' float;',
'precision ' + parameters.precision + ' int;',
'#define SHADER_NAME ' + material.__webglShader.name,
customDefines,
parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest : '',
'#define GAMMA_FACTOR ' + gammaFactorDefine,
( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '',
parameters.map ? '#define USE_MAP' : '',
parameters.envMap ? '#define USE_ENVMAP' : '',
parameters.envMap ? '#define ' + envMapTypeDefine : '',
parameters.envMap ? '#define ' + envMapModeDefine : '',
parameters.envMap ? '#define ' + envMapBlendingDefine : '',
parameters.lightMap ? '#define USE_LIGHTMAP' : '',
parameters.aoMap ? '#define USE_AOMAP' : '',
parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
parameters.bumpMap ? '#define USE_BUMPMAP' : '',
parameters.normalMap ? '#define USE_NORMALMAP' : '',
parameters.specularMap ? '#define USE_SPECULARMAP' : '',
parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
parameters.vertexColors ? '#define USE_COLOR' : '',
parameters.flatShading ? '#define FLAT_SHADED' : '',
parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
parameters.flipSided ? '#define FLIP_SIDED' : '',
'#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes,
parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',
parameters.premultipliedAlpha ? "#define PREMULTIPLIED_ALPHA" : '',
parameters.physicallyCorrectLights ? "#define PHYSICALLY_CORRECT_LIGHTS" : '',
parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '',
parameters.envMap && renderer.extensions.get( 'EXT_shader_texture_lod' ) ? '#define TEXTURE_LOD_EXT' : '',
'uniform mat4 viewMatrix;',
'uniform vec3 cameraPosition;',
( parameters.toneMapping !== THREE.NoToneMapping ) ? "#define TONE_MAPPING" : '',
( parameters.toneMapping !== THREE.NoToneMapping ) ? THREE.ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below
( parameters.toneMapping !== THREE.NoToneMapping ) ? getToneMappingFunction( "toneMapping", parameters.toneMapping ) : '',
( parameters.outputEncoding || parameters.mapEncoding || parameters.envMapEncoding || parameters.emissiveMapEncoding ) ? THREE.ShaderChunk[ 'encodings_pars_fragment' ] : '', // this code is required here because it is used by the various encoding/decoding function defined below
parameters.mapEncoding ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '',
parameters.envMapEncoding ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '',
parameters.emissiveMapEncoding ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '',
parameters.outputEncoding ? getTexelEncodingFunction( "linearToOutputTexel", parameters.outputEncoding ) : '',
parameters.depthPacking ? "#define DEPTH_PACKING " + material.depthPacking : '',
'\n'
].filter( filterEmptyLine ).join( '\n' );
}
vertexShader = parseIncludes( vertexShader, parameters );
vertexShader = replaceLightNums( vertexShader, parameters );
fragmentShader = parseIncludes( fragmentShader, parameters );
fragmentShader = replaceLightNums( fragmentShader, parameters );
if ( material instanceof THREE.ShaderMaterial === false ) {
vertexShader = unrollLoops( vertexShader );
fragmentShader = unrollLoops( fragmentShader );
}
var vertexGlsl = prefixVertex + vertexShader;
var fragmentGlsl = prefixFragment + fragmentShader;
// console.log( '*VERTEX*', vertexGlsl );
// console.log( '*FRAGMENT*', fragmentGlsl );
var glVertexShader = THREE.WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl );
var glFragmentShader = THREE.WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl );
gl.attachShader( program, glVertexShader );
gl.attachShader( program, glFragmentShader );
// Force a particular attribute to index 0.
if ( material.index0AttributeName !== undefined ) {
gl.bindAttribLocation( program, 0, material.index0AttributeName );
} else if ( parameters.morphTargets === true ) {
// programs with morphTargets displace position out of attribute 0
gl.bindAttribLocation( program, 0, 'position' );
}
gl.linkProgram( program );
var programLog = gl.getProgramInfoLog( program );
var vertexLog = gl.getShaderInfoLog( glVertexShader );
var fragmentLog = gl.getShaderInfoLog( glFragmentShader );
var runnable = true;
var haveDiagnostics = true;
// console.log( '**VERTEX**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glVertexShader ) );
// console.log( '**FRAGMENT**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glFragmentShader ) );
if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) {
runnable = false;
console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter( program, gl.VALIDATE_STATUS ), 'gl.getProgramInfoLog', programLog, vertexLog, fragmentLog );
} else if ( programLog !== '' ) {
console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog );
} else if ( vertexLog === '' || fragmentLog === '' ) {
haveDiagnostics = false;
}
if ( haveDiagnostics ) {
this.diagnostics = {
runnable: runnable,
material: material,
programLog: programLog,
vertexShader: {
log: vertexLog,
prefix: prefixVertex
},
fragmentShader: {
log: fragmentLog,
prefix: prefixFragment
}
};
}
// clean up
gl.deleteShader( glVertexShader );
gl.deleteShader( glFragmentShader );
// set up caching for uniform locations
var cachedUniforms;
this.getUniforms = function() {
if ( cachedUniforms === undefined ) {
cachedUniforms =
new THREE.WebGLUniforms( gl, program, renderer );
}
return cachedUniforms;
};
// set up caching for attribute locations
var cachedAttributes;
this.getAttributes = function() {
if ( cachedAttributes === undefined ) {
cachedAttributes = fetchAttributeLocations( gl, program );
}
return cachedAttributes;
};
// free resource
this.destroy = function() {
gl.deleteProgram( program );
this.program = undefined;
};
// DEPRECATED
Object.defineProperties( this, {
uniforms: {
get: function() {
console.warn( 'THREE.WebGLProgram: .uniforms is now .getUniforms().' );
return this.getUniforms();
}
},
attributes: {
get: function() {
console.warn( 'THREE.WebGLProgram: .attributes is now .getAttributes().' );
return this.getAttributes();
}
}
} );
//
this.id = programIdCount ++;
this.code = code;
this.usedTimes = 1;
this.program = program;
this.vertexShader = glVertexShader;
this.fragmentShader = glFragmentShader;
return this;
};
} )();
// File:src/renderers/webgl/WebGLPrograms.js
THREE.WebGLPrograms = function ( renderer, capabilities ) {
var programs = [];
var shaderIDs = {
MeshDepthMaterial: 'depth',
MeshNormalMaterial: 'normal',
MeshBasicMaterial: 'basic',
MeshLambertMaterial: 'lambert',
MeshPhongMaterial: 'phong',
MeshStandardMaterial: 'physical',
MeshPhysicalMaterial: 'physical',
LineBasicMaterial: 'basic',
LineDashedMaterial: 'dashed',
PointsMaterial: 'points'
};
var parameterNames = [
"precision", "supportsVertexTextures", "map", "mapEncoding", "envMap", "envMapMode", "envMapEncoding",
"lightMap", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "displacementMap", "specularMap",
"roughnessMap", "metalnessMap",
"alphaMap", "combine", "vertexColors", "fog", "useFog", "fogExp",
"flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning",
"maxBones", "useVertexTexture", "morphTargets", "morphNormals",
"maxMorphTargets", "maxMorphNormals", "premultipliedAlpha",
"numDirLights", "numPointLights", "numSpotLights", "numHemiLights",
"shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights',
"alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "depthPacking"
];
function allocateBones ( object ) {
if ( capabilities.floatVertexTextures && object && object.skeleton && object.skeleton.useVertexTexture ) {
return 1024;
} else {
// default for when object is not specified
// ( for example when prebuilding shader to be used with multiple objects )
//
// - leave some extra space for other uniforms
// - limit here is ANGLE's 254 max uniform vectors
// (up to 54 should be safe)
var nVertexUniforms = capabilities.maxVertexUniforms;
var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 );
var maxBones = nVertexMatrices;
if ( object !== undefined && object instanceof THREE.SkinnedMesh ) {
maxBones = Math.min( object.skeleton.bones.length, maxBones );
if ( maxBones < object.skeleton.bones.length ) {
console.warn( 'WebGLRenderer: too many bones - ' + object.skeleton.bones.length + ', this GPU supports just ' + maxBones + ' (try OpenGL instead of ANGLE)' );
}
}
return maxBones;
}
}
function getTextureEncodingFromMap( map, gammaOverrideLinear ) {
var encoding;
if ( ! map ) {
encoding = THREE.LinearEncoding;
} else if ( map instanceof THREE.Texture ) {
encoding = map.encoding;
} else if ( map instanceof THREE.WebGLRenderTarget ) {
encoding = map.texture.encoding;
}
// add backwards compatibility for WebGLRenderer.gammaInput/gammaOutput parameter, should probably be removed at some point.
if ( encoding === THREE.LinearEncoding && gammaOverrideLinear ) {
encoding = THREE.GammaEncoding;
}
return encoding;
}
this.getParameters = function ( material, lights, fog, nClipPlanes, object ) {
var shaderID = shaderIDs[ material.type ];
// heuristics to create shader parameters according to lights in the scene
// (not to blow over maxLights budget)
var maxBones = allocateBones( object );
var precision = renderer.getPrecision();
if ( material.precision !== null ) {
precision = capabilities.getMaxPrecision( material.precision );
if ( precision !== material.precision ) {
console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' );
}
}
var parameters = {
shaderID: shaderID,
precision: precision,
supportsVertexTextures: capabilities.vertexTextures,
outputEncoding: getTextureEncodingFromMap( renderer.getCurrentRenderTarget(), renderer.gammaOutput ),
map: !! material.map,
mapEncoding: getTextureEncodingFromMap( material.map, renderer.gammaInput ),
envMap: !! material.envMap,
envMapMode: material.envMap && material.envMap.mapping,
envMapEncoding: getTextureEncodingFromMap( material.envMap, renderer.gammaInput ),
envMapCubeUV: ( !! material.envMap ) && ( ( material.envMap.mapping === THREE.CubeUVReflectionMapping ) || ( material.envMap.mapping === THREE.CubeUVRefractionMapping ) ),
lightMap: !! material.lightMap,
aoMap: !! material.aoMap,
emissiveMap: !! material.emissiveMap,
emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap, renderer.gammaInput ),
bumpMap: !! material.bumpMap,
normalMap: !! material.normalMap,
displacementMap: !! material.displacementMap,
roughnessMap: !! material.roughnessMap,
metalnessMap: !! material.metalnessMap,
specularMap: !! material.specularMap,
alphaMap: !! material.alphaMap,
combine: material.combine,
vertexColors: material.vertexColors,
fog: fog,
useFog: material.fog,
fogExp: fog instanceof THREE.FogExp2,
flatShading: material.shading === THREE.FlatShading,
sizeAttenuation: material.sizeAttenuation,
logarithmicDepthBuffer: capabilities.logarithmicDepthBuffer,
skinning: material.skinning,
maxBones: maxBones,
useVertexTexture: capabilities.floatVertexTextures && object && object.skeleton && object.skeleton.useVertexTexture,
morphTargets: material.morphTargets,
morphNormals: material.morphNormals,
maxMorphTargets: renderer.maxMorphTargets,
maxMorphNormals: renderer.maxMorphNormals,
numDirLights: lights.directional.length,
numPointLights: lights.point.length,
numSpotLights: lights.spot.length,
numHemiLights: lights.hemi.length,
numClippingPlanes: nClipPlanes,
shadowMapEnabled: renderer.shadowMap.enabled && object.receiveShadow && lights.shadows.length > 0,
shadowMapType: renderer.shadowMap.type,
toneMapping: renderer.toneMapping,
physicallyCorrectLights: renderer.physicallyCorrectLights,
premultipliedAlpha: material.premultipliedAlpha,
alphaTest: material.alphaTest,
doubleSided: material.side === THREE.DoubleSide,
flipSided: material.side === THREE.BackSide,
depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false
};
return parameters;
};
this.getProgramCode = function ( material, parameters ) {
var array = [];
if ( parameters.shaderID ) {
array.push( parameters.shaderID );
} else {
array.push( material.fragmentShader );
array.push( material.vertexShader );
}
if ( material.defines !== undefined ) {
for ( var name in material.defines ) {
array.push( name );
array.push( material.defines[ name ] );
}
}
for ( var i = 0; i < parameterNames.length; i ++ ) {
array.push( parameters[ parameterNames[ i ] ] );
}
return array.join();
};
this.acquireProgram = function ( material, parameters, code ) {
var program;
// Check if code has been already compiled
for ( var p = 0, pl = programs.length; p < pl; p ++ ) {
var programInfo = programs[ p ];
if ( programInfo.code === code ) {
program = programInfo;
++ program.usedTimes;
break;
}
}
if ( program === undefined ) {
program = new THREE.WebGLProgram( renderer, code, material, parameters );
programs.push( program );
}
return program;
};
this.releaseProgram = function( program ) {
if ( -- program.usedTimes === 0 ) {
// Remove from unordered set
var i = programs.indexOf( program );
programs[ i ] = programs[ programs.length - 1 ];
programs.pop();
// Free WebGL resources
program.destroy();
}
};
// Exposed for resource monitoring & error feedback via renderer.info:
this.programs = programs;
};
// File:src/renderers/webgl/WebGLProperties.js
/**
* @author fordacious / fordacious.github.io
*/
THREE.WebGLProperties = function () {
var properties = {};
this.get = function ( object ) {
var uuid = object.uuid;
var map = properties[ uuid ];
if ( map === undefined ) {
map = {};
properties[ uuid ] = map;
}
return map;
};
this.delete = function ( object ) {
delete properties[ object.uuid ];
};
this.clear = function () {
properties = {};
};
};
// File:src/renderers/webgl/WebGLShader.js
THREE.WebGLShader = ( function () {
function addLineNumbers( string ) {
var lines = string.split( '\n' );
for ( var i = 0; i < lines.length; i ++ ) {
lines[ i ] = ( i + 1 ) + ': ' + lines[ i ];
}
return lines.join( '\n' );
}
return function WebGLShader( gl, type, string ) {
var shader = gl.createShader( type );
gl.shaderSource( shader, string );
gl.compileShader( shader );
if ( gl.getShaderParameter( shader, gl.COMPILE_STATUS ) === false ) {
console.error( 'THREE.WebGLShader: Shader couldn\'t compile.' );
}
if ( gl.getShaderInfoLog( shader ) !== '' ) {
console.warn( 'THREE.WebGLShader: gl.getShaderInfoLog()', type === gl.VERTEX_SHADER ? 'vertex' : 'fragment', gl.getShaderInfoLog( shader ), addLineNumbers( string ) );
}
// --enable-privileged-webgl-extension
// console.log( type, gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );
return shader;
};
} )();
// File:src/renderers/webgl/WebGLShadowMap.js
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLShadowMap = function ( _renderer, _lights, _objects ) {
var _gl = _renderer.context,
_state = _renderer.state,
_frustum = new THREE.Frustum(),
_projScreenMatrix = new THREE.Matrix4(),
_lightShadows = _lights.shadows,
_shadowMapSize = new THREE.Vector2(),
_lookTarget = new THREE.Vector3(),
_lightPositionWorld = new THREE.Vector3(),
_renderList = [],
_MorphingFlag = 1,
_SkinningFlag = 2,
_NumberOfMaterialVariants = ( _MorphingFlag | _SkinningFlag ) + 1,
_depthMaterials = new Array( _NumberOfMaterialVariants ),
_distanceMaterials = new Array( _NumberOfMaterialVariants ),
_materialCache = {};
var cubeDirections = [
new THREE.Vector3( 1, 0, 0 ), new THREE.Vector3( - 1, 0, 0 ), new THREE.Vector3( 0, 0, 1 ),
new THREE.Vector3( 0, 0, - 1 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, - 1, 0 )
];
var cubeUps = [
new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 1, 0 ),
new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 0, 1 ), new THREE.Vector3( 0, 0, - 1 )
];
var cube2DViewPorts = [
new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4(),
new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4()
];
// init
var depthMaterialTemplate = new THREE.MeshDepthMaterial();
depthMaterialTemplate.depthPacking = THREE.RGBADepthPacking;
depthMaterialTemplate.clipping = true;
var distanceShader = THREE.ShaderLib[ "distanceRGBA" ];
var distanceUniforms = THREE.UniformsUtils.clone( distanceShader.uniforms );
for ( var i = 0; i !== _NumberOfMaterialVariants; ++ i ) {
var useMorphing = ( i & _MorphingFlag ) !== 0;
var useSkinning = ( i & _SkinningFlag ) !== 0;
var depthMaterial = depthMaterialTemplate.clone();
depthMaterial.morphTargets = useMorphing;
depthMaterial.skinning = useSkinning;
_depthMaterials[ i ] = depthMaterial;
var distanceMaterial = new THREE.ShaderMaterial( {
defines: {
'USE_SHADOWMAP': ''
},
uniforms: distanceUniforms,
vertexShader: distanceShader.vertexShader,
fragmentShader: distanceShader.fragmentShader,
morphTargets: useMorphing,
skinning: useSkinning,
clipping: true
} );
_distanceMaterials[ i ] = distanceMaterial;
}
//
var scope = this;
this.enabled = false;
this.autoUpdate = true;
this.needsUpdate = false;
this.type = THREE.PCFShadowMap;
this.cullFace = THREE.CullFaceFront;
this.render = function ( scene, camera ) {
if ( scope.enabled === false ) return;
if ( scope.autoUpdate === false && scope.needsUpdate === false ) return;
if ( _lightShadows.length === 0 ) return;
// Set GL state for depth map.
_state.clearColor( 1, 1, 1, 1 );
_state.disable( _gl.BLEND );
_state.enable( _gl.CULL_FACE );
_gl.frontFace( _gl.CCW );
_gl.cullFace( scope.cullFace === THREE.CullFaceFront ? _gl.FRONT : _gl.BACK );
_state.setDepthTest( true );
_state.setScissorTest( false );
// render depth map
var faceCount, isPointLight;
for ( var i = 0, il = _lightShadows.length; i < il; i ++ ) {
var light = _lightShadows[ i ];
var shadow = light.shadow;
var shadowCamera = shadow.camera;
_shadowMapSize.copy( shadow.mapSize );
if ( light instanceof THREE.PointLight ) {
faceCount = 6;
isPointLight = true;
var vpWidth = _shadowMapSize.x;
var vpHeight = _shadowMapSize.y;
// These viewports map a cube-map onto a 2D texture with the
// following orientation:
//
// xzXZ
// y Y
//
// X - Positive x direction
// x - Negative x direction
// Y - Positive y direction
// y - Negative y direction
// Z - Positive z direction
// z - Negative z direction
// positive X
cube2DViewPorts[ 0 ].set( vpWidth * 2, vpHeight, vpWidth, vpHeight );
// negative X
cube2DViewPorts[ 1 ].set( 0, vpHeight, vpWidth, vpHeight );
// positive Z
cube2DViewPorts[ 2 ].set( vpWidth * 3, vpHeight, vpWidth, vpHeight );
// negative Z
cube2DViewPorts[ 3 ].set( vpWidth, vpHeight, vpWidth, vpHeight );
// positive Y
cube2DViewPorts[ 4 ].set( vpWidth * 3, 0, vpWidth, vpHeight );
// negative Y
cube2DViewPorts[ 5 ].set( vpWidth, 0, vpWidth, vpHeight );
_shadowMapSize.x *= 4.0;
_shadowMapSize.y *= 2.0;
} else {
faceCount = 1;
isPointLight = false;
}
if ( shadow.map === null ) {
var pars = { minFilter: THREE.NearestFilter, magFilter: THREE.NearestFilter, format: THREE.RGBAFormat };
shadow.map = new THREE.WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
shadowCamera.updateProjectionMatrix();
}
if ( shadow instanceof THREE.SpotLightShadow ) {
shadow.update( light );
}
var shadowMap = shadow.map;
var shadowMatrix = shadow.matrix;
_lightPositionWorld.setFromMatrixPosition( light.matrixWorld );
shadowCamera.position.copy( _lightPositionWorld );
_renderer.setRenderTarget( shadowMap );
_renderer.clear();
// render shadow map for each cube face (if omni-directional) or
// run a single pass if not
for ( var face = 0; face < faceCount; face ++ ) {
if ( isPointLight ) {
_lookTarget.copy( shadowCamera.position );
_lookTarget.add( cubeDirections[ face ] );
shadowCamera.up.copy( cubeUps[ face ] );
shadowCamera.lookAt( _lookTarget );
var vpDimensions = cube2DViewPorts[ face ];
_state.viewport( vpDimensions );
} else {
_lookTarget.setFromMatrixPosition( light.target.matrixWorld );
shadowCamera.lookAt( _lookTarget );
}
shadowCamera.updateMatrixWorld();
shadowCamera.matrixWorldInverse.getInverse( shadowCamera.matrixWorld );
// compute shadow matrix
shadowMatrix.set(
0.5, 0.0, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0
);
shadowMatrix.multiply( shadowCamera.projectionMatrix );
shadowMatrix.multiply( shadowCamera.matrixWorldInverse );
// update camera matrices and frustum
_projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse );
_frustum.setFromMatrix( _projScreenMatrix );
// set object matrices & frustum culling
_renderList.length = 0;
projectObject( scene, camera, shadowCamera );
// render shadow map
// render regular objects
for ( var j = 0, jl = _renderList.length; j < jl; j ++ ) {
var object = _renderList[ j ];
var geometry = _objects.update( object );
var material = object.material;
if ( material instanceof THREE.MultiMaterial ) {
var groups = geometry.groups;
var materials = material.materials;
for ( var k = 0, kl = groups.length; k < kl; k ++ ) {
var group = groups[ k ];
var groupMaterial = materials[ group.materialIndex ];
if ( groupMaterial.visible === true ) {
var depthMaterial = getDepthMaterial( object, groupMaterial, isPointLight, _lightPositionWorld );
_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group );
}
}
} else {
var depthMaterial = getDepthMaterial( object, material, isPointLight, _lightPositionWorld );
_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null );
}
}
}
}
// Restore GL state.
var clearColor = _renderer.getClearColor(),
clearAlpha = _renderer.getClearAlpha();
_renderer.setClearColor( clearColor, clearAlpha );
_state.enable( _gl.BLEND );
if ( scope.cullFace === THREE.CullFaceFront ) {
_gl.cullFace( _gl.BACK );
}
scope.needsUpdate = false;
};
function getDepthMaterial( object, material, isPointLight, lightPositionWorld ) {
var geometry = object.geometry;
var result = null;
var materialVariants = _depthMaterials;
var customMaterial = object.customDepthMaterial;
if ( isPointLight ) {
materialVariants = _distanceMaterials;
customMaterial = object.customDistanceMaterial;
}
if ( ! customMaterial ) {
var useMorphing = geometry.morphTargets !== undefined &&
geometry.morphTargets.length > 0 && material.morphTargets;
var useSkinning = object instanceof THREE.SkinnedMesh && material.skinning;
var variantIndex = 0;
if ( useMorphing ) variantIndex |= _MorphingFlag;
if ( useSkinning ) variantIndex |= _SkinningFlag;
result = materialVariants[ variantIndex ];
} else {
result = customMaterial;
}
if ( _renderer.localClippingEnabled &&
material.clipShadows === true &&
material.clippingPlanes.length !== 0 ) {
// in this case we need a unique material instance reflecting the
// appropriate state
var keyA = result.uuid, keyB = material.uuid;
var materialsForVariant = _materialCache[ keyA ];
if ( materialsForVariant === undefined ) {
materialsForVariant = {};
_materialCache[ keyA ] = materialsForVariant;
}
var cachedMaterial = materialsForVariant[ keyB ];
if ( cachedMaterial === undefined ) {
cachedMaterial = result.clone();
materialsForVariant[ keyB ] = cachedMaterial;
}
result = cachedMaterial;
}
result.visible = material.visible;
result.wireframe = material.wireframe;
result.side = material.side;
result.clipShadows = material.clipShadows;
result.clippingPlanes = material.clippingPlanes;
result.wireframeLinewidth = material.wireframeLinewidth;
result.linewidth = material.linewidth;
if ( isPointLight && result.uniforms.lightPos !== undefined ) {
result.uniforms.lightPos.value.copy( lightPositionWorld );
}
return result;
}
function projectObject( object, camera, shadowCamera ) {
if ( object.visible === false ) return;
if ( object.layers.test( camera.layers ) && ( object instanceof THREE.Mesh || object instanceof THREE.Line || object instanceof THREE.Points ) ) {
if ( object.castShadow && ( object.frustumCulled === false || _frustum.intersectsObject( object ) === true ) ) {
var material = object.material;
if ( material.visible === true ) {
object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld );
_renderList.push( object );
}
}
}
var children = object.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
projectObject( children[ i ], camera, shadowCamera );
}
}
};
// File:src/renderers/webgl/WebGLState.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLState = function ( gl, extensions, paramThreeToGL ) {
var _this = this;
var color = new THREE.Vector4();
var maxVertexAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS );
var newAttributes = new Uint8Array( maxVertexAttributes );
var enabledAttributes = new Uint8Array( maxVertexAttributes );
var attributeDivisors = new Uint8Array( maxVertexAttributes );
var capabilities = {};
var compressedTextureFormats = null;
var currentBlending = null;
var currentBlendEquation = null;
var currentBlendSrc = null;
var currentBlendDst = null;
var currentBlendEquationAlpha = null;
var currentBlendSrcAlpha = null;
var currentBlendDstAlpha = null;
var currentPremultipledAlpha = false;
var currentDepthFunc = null;
var currentDepthWrite = null;
var currentColorWrite = null;
var currentStencilWrite = null;
var currentStencilFunc = null;
var currentStencilRef = null;
var currentStencilMask = null;
var currentStencilFail = null;
var currentStencilZFail = null;
var currentStencilZPass = null;
var currentFlipSided = null;
var currentLineWidth = null;
var currentPolygonOffsetFactor = null;
var currentPolygonOffsetUnits = null;
var currentScissorTest = null;
var maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS );
var currentTextureSlot = undefined;
var currentBoundTextures = {};
var currentClearColor = new THREE.Vector4();
var currentClearDepth = null;
var currentClearStencil = null;
var currentScissor = new THREE.Vector4();
var currentViewport = new THREE.Vector4();
this.init = function () {
this.clearColor( 0, 0, 0, 1 );
this.clearDepth( 1 );
this.clearStencil( 0 );
this.enable( gl.DEPTH_TEST );
gl.depthFunc( gl.LEQUAL );
gl.frontFace( gl.CCW );
gl.cullFace( gl.BACK );
this.enable( gl.CULL_FACE );
this.enable( gl.BLEND );
gl.blendEquation( gl.FUNC_ADD );
gl.blendFunc( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA );
};
this.initAttributes = function () {
for ( var i = 0, l = newAttributes.length; i < l; i ++ ) {
newAttributes[ i ] = 0;
}
};
this.enableAttribute = function ( attribute ) {
newAttributes[ attribute ] = 1;
if ( enabledAttributes[ attribute ] === 0 ) {
gl.enableVertexAttribArray( attribute );
enabledAttributes[ attribute ] = 1;
}
if ( attributeDivisors[ attribute ] !== 0 ) {
var extension = extensions.get( 'ANGLE_instanced_arrays' );
extension.vertexAttribDivisorANGLE( attribute, 0 );
attributeDivisors[ attribute ] = 0;
}
};
this.enableAttributeAndDivisor = function ( attribute, meshPerAttribute, extension ) {
newAttributes[ attribute ] = 1;
if ( enabledAttributes[ attribute ] === 0 ) {
gl.enableVertexAttribArray( attribute );
enabledAttributes[ attribute ] = 1;
}
if ( attributeDivisors[ attribute ] !== meshPerAttribute ) {
extension.vertexAttribDivisorANGLE( attribute, meshPerAttribute );
attributeDivisors[ attribute ] = meshPerAttribute;
}
};
this.disableUnusedAttributes = function () {
for ( var i = 0, l = enabledAttributes.length; i < l; i ++ ) {
if ( enabledAttributes[ i ] !== newAttributes[ i ] ) {
gl.disableVertexAttribArray( i );
enabledAttributes[ i ] = 0;
}
}
};
this.enable = function ( id ) {
if ( capabilities[ id ] !== true ) {
gl.enable( id );
capabilities[ id ] = true;
}
};
this.disable = function ( id ) {
if ( capabilities[ id ] !== false ) {
gl.disable( id );
capabilities[ id ] = false;
}
};
this.getCompressedTextureFormats = function () {
if ( compressedTextureFormats === null ) {
compressedTextureFormats = [];
if ( extensions.get( 'WEBGL_compressed_texture_pvrtc' ) ||
extensions.get( 'WEBGL_compressed_texture_s3tc' ) ||
extensions.get( 'WEBGL_compressed_texture_etc1' ) ) {
var formats = gl.getParameter( gl.COMPRESSED_TEXTURE_FORMATS );
for ( var i = 0; i < formats.length; i ++ ) {
compressedTextureFormats.push( formats[ i ] );
}
}
}
return compressedTextureFormats;
};
this.setBlending = function ( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) {
if ( blending === THREE.NoBlending ) {
this.disable( gl.BLEND );
} else {
this.enable( gl.BLEND );
}
if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) {
if ( blending === THREE.AdditiveBlending ) {
if ( premultipliedAlpha ) {
gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
gl.blendFuncSeparate( gl.ONE, gl.ONE, gl.ONE, gl.ONE );
} else {
gl.blendEquation( gl.FUNC_ADD );
gl.blendFunc( gl.SRC_ALPHA, gl.ONE );
}
} else if ( blending === THREE.SubtractiveBlending ) {
if ( premultipliedAlpha ) {
gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
gl.blendFuncSeparate( gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA );
} else {
gl.blendEquation( gl.FUNC_ADD );
gl.blendFunc( gl.ZERO, gl.ONE_MINUS_SRC_COLOR );
}
} else if ( blending === THREE.MultiplyBlending ) {
if ( premultipliedAlpha ) {
gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
gl.blendFuncSeparate( gl.ZERO, gl.ZERO, gl.SRC_COLOR, gl.SRC_ALPHA );
} else {
gl.blendEquation( gl.FUNC_ADD );
gl.blendFunc( gl.ZERO, gl.SRC_COLOR );
}
} else {
if ( premultipliedAlpha ) {
gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA );
} else {
gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA );
}
}
currentBlending = blending;
currentPremultipledAlpha = premultipliedAlpha;
}
if ( blending === THREE.CustomBlending ) {
blendEquationAlpha = blendEquationAlpha || blendEquation;
blendSrcAlpha = blendSrcAlpha || blendSrc;
blendDstAlpha = blendDstAlpha || blendDst;
if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) {
gl.blendEquationSeparate( paramThreeToGL( blendEquation ), paramThreeToGL( blendEquationAlpha ) );
currentBlendEquation = blendEquation;
currentBlendEquationAlpha = blendEquationAlpha;
}
if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) {
gl.blendFuncSeparate( paramThreeToGL( blendSrc ), paramThreeToGL( blendDst ), paramThreeToGL( blendSrcAlpha ), paramThreeToGL( blendDstAlpha ) );
currentBlendSrc = blendSrc;
currentBlendDst = blendDst;
currentBlendSrcAlpha = blendSrcAlpha;
currentBlendDstAlpha = blendDstAlpha;
}
} else {
currentBlendEquation = null;
currentBlendSrc = null;
currentBlendDst = null;
currentBlendEquationAlpha = null;
currentBlendSrcAlpha = null;
currentBlendDstAlpha = null;
}
};
this.setDepthFunc = function ( depthFunc ) {
if ( currentDepthFunc !== depthFunc ) {
if ( depthFunc ) {
switch ( depthFunc ) {
case THREE.NeverDepth:
gl.depthFunc( gl.NEVER );
break;
case THREE.AlwaysDepth:
gl.depthFunc( gl.ALWAYS );
break;
case THREE.LessDepth:
gl.depthFunc( gl.LESS );
break;
case THREE.LessEqualDepth:
gl.depthFunc( gl.LEQUAL );
break;
case THREE.EqualDepth:
gl.depthFunc( gl.EQUAL );
break;
case THREE.GreaterEqualDepth:
gl.depthFunc( gl.GEQUAL );
break;
case THREE.GreaterDepth:
gl.depthFunc( gl.GREATER );
break;
case THREE.NotEqualDepth:
gl.depthFunc( gl.NOTEQUAL );
break;
default:
gl.depthFunc( gl.LEQUAL );
}
} else {
gl.depthFunc( gl.LEQUAL );
}
currentDepthFunc = depthFunc;
}
};
this.setDepthTest = function ( depthTest ) {
if ( depthTest ) {
this.enable( gl.DEPTH_TEST );
} else {
this.disable( gl.DEPTH_TEST );
}
};
this.setDepthWrite = function ( depthWrite ) {
// TODO: Rename to setDepthMask
if ( currentDepthWrite !== depthWrite ) {
gl.depthMask( depthWrite );
currentDepthWrite = depthWrite;
}
};
this.setColorWrite = function ( colorWrite ) {
// TODO: Rename to setColorMask
if ( currentColorWrite !== colorWrite ) {
gl.colorMask( colorWrite, colorWrite, colorWrite, colorWrite );
currentColorWrite = colorWrite;
}
};
this.setStencilFunc = function ( stencilFunc, stencilRef, stencilMask ) {
if ( currentStencilFunc !== stencilFunc ||
currentStencilRef !== stencilRef ||
currentStencilMask !== stencilMask ) {
gl.stencilFunc( stencilFunc, stencilRef, stencilMask );
currentStencilFunc = stencilFunc;
currentStencilRef = stencilRef;
currentStencilMask = stencilMask;
}
};
this.setStencilOp = function ( stencilFail, stencilZFail, stencilZPass ) {
if ( currentStencilFail !== stencilFail ||
currentStencilZFail !== stencilZFail ||
currentStencilZPass !== stencilZPass ) {
gl.stencilOp( stencilFail, stencilZFail, stencilZPass );
currentStencilFail = stencilFail;
currentStencilZFail = stencilZFail;
currentStencilZPass = stencilZPass;
}
};
this.setStencilTest = function ( stencilTest ) {
if ( stencilTest ) {
this.enable( gl.STENCIL_TEST );
} else {
this.disable( gl.STENCIL_TEST );
}
};
this.setStencilWrite = function ( stencilWrite ) {
// TODO: Rename to setStencilMask
if ( currentStencilWrite !== stencilWrite ) {
gl.stencilMask( stencilWrite );
currentStencilWrite = stencilWrite;
}
};
this.setFlipSided = function ( flipSided ) {
if ( currentFlipSided !== flipSided ) {
if ( flipSided ) {
gl.frontFace( gl.CW );
} else {
gl.frontFace( gl.CCW );
}
currentFlipSided = flipSided;
}
};
this.setLineWidth = function ( width ) {
if ( width !== currentLineWidth ) {
gl.lineWidth( width );
currentLineWidth = width;
}
};
this.setPolygonOffset = function ( polygonOffset, factor, units ) {
if ( polygonOffset ) {
this.enable( gl.POLYGON_OFFSET_FILL );
} else {
this.disable( gl.POLYGON_OFFSET_FILL );
}
if ( polygonOffset && ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) ) {
gl.polygonOffset( factor, units );
currentPolygonOffsetFactor = factor;
currentPolygonOffsetUnits = units;
}
};
this.getScissorTest = function () {
return currentScissorTest;
};
this.setScissorTest = function ( scissorTest ) {
currentScissorTest = scissorTest;
if ( scissorTest ) {
this.enable( gl.SCISSOR_TEST );
} else {
this.disable( gl.SCISSOR_TEST );
}
};
// texture
this.activeTexture = function ( webglSlot ) {
if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1;
if ( currentTextureSlot !== webglSlot ) {
gl.activeTexture( webglSlot );
currentTextureSlot = webglSlot;
}
};
this.bindTexture = function ( webglType, webglTexture ) {
if ( currentTextureSlot === undefined ) {
_this.activeTexture();
}
var boundTexture = currentBoundTextures[ currentTextureSlot ];
if ( boundTexture === undefined ) {
boundTexture = { type: undefined, texture: undefined };
currentBoundTextures[ currentTextureSlot ] = boundTexture;
}
if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) {
gl.bindTexture( webglType, webglTexture );
boundTexture.type = webglType;
boundTexture.texture = webglTexture;
}
};
this.compressedTexImage2D = function () {
try {
gl.compressedTexImage2D.apply( gl, arguments );
} catch ( error ) {
console.error( error );
}
};
this.texImage2D = function () {
try {
gl.texImage2D.apply( gl, arguments );
} catch ( error ) {
console.error( error );
}
};
// clear values
this.clearColor = function ( r, g, b, a ) {
color.set( r, g, b, a );
if ( currentClearColor.equals( color ) === false ) {
gl.clearColor( r, g, b, a );
currentClearColor.copy( color );
}
};
this.clearDepth = function ( depth ) {
if ( currentClearDepth !== depth ) {
gl.clearDepth( depth );
currentClearDepth = depth;
}
};
this.clearStencil = function ( stencil ) {
if ( currentClearStencil !== stencil ) {
gl.clearStencil( stencil );
currentClearStencil = stencil;
}
};
//
this.scissor = function ( scissor ) {
if ( currentScissor.equals( scissor ) === false ) {
gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w );
currentScissor.copy( scissor );
}
};
this.viewport = function ( viewport ) {
if ( currentViewport.equals( viewport ) === false ) {
gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w );
currentViewport.copy( viewport );
}
};
//
this.reset = function () {
for ( var i = 0; i < enabledAttributes.length; i ++ ) {
if ( enabledAttributes[ i ] === 1 ) {
gl.disableVertexAttribArray( i );
enabledAttributes[ i ] = 0;
}
}
capabilities = {};
compressedTextureFormats = null;
currentTextureSlot = undefined;
currentBoundTextures = {};
currentBlending = null;
currentColorWrite = null;
currentDepthWrite = null;
currentStencilWrite = null;
currentFlipSided = null;
};
};
// File:src/renderers/webgl/WebGLUniforms.js
/**
*
* Uniforms of a program.
* Those form a tree structure with a special top-level container for the root,
* which you get by calling 'new WebGLUniforms( gl, program, renderer )'.
*
*
* Properties of inner nodes including the top-level container:
*
* .seq - array of nested uniforms
* .map - nested uniforms by name
*
*
* Methods of all nodes except the top-level container:
*
* .setValue( gl, value, [renderer] )
*
* uploads a uniform value(s)
* the 'renderer' parameter is needed for sampler uniforms
*
*
* Static methods of the top-level container (renderer factorizations):
*
* .upload( gl, seq, values, renderer )
*
* sets uniforms in 'seq' to 'values[id].value'
*
* .seqWithValue( seq, values ) : filteredSeq
*
* filters 'seq' entries with corresponding entry in values
*
* .splitDynamic( seq, values ) : filteredSeq
*
* filters 'seq' entries with dynamic entry and removes them from 'seq'
*
*
* Methods of the top-level container (renderer factorizations):
*
* .setValue( gl, name, value )
*
* sets uniform with name 'name' to 'value'
*
* .set( gl, obj, prop )
*
* sets uniform from object and property with same name than uniform
*
* .setOptional( gl, obj, prop )
*
* like .set for an optional property of the object
*
*
* @author tschw
*
*/
THREE.WebGLUniforms = ( function() { // scope
// --- Base for inner nodes (including the root) ---
var UniformContainer = function() {
this.seq = [];
this.map = {};
},
// --- Utilities ---
// Array Caches (provide typed arrays for temporary by size)
arrayCacheF32 = [],
arrayCacheI32 = [],
uncacheTemporaryArrays = function() {
arrayCacheF32.length = 0;
arrayCacheI32.length = 0;
},
// Flattening for arrays of vectors and matrices
flatten = function( array, nBlocks, blockSize ) {
var firstElem = array[ 0 ];
if ( firstElem <= 0 || firstElem > 0 ) return array;
// unoptimized: ! isNaN( firstElem )
// see http://jacksondunstan.com/articles/983
var n = nBlocks * blockSize,
r = arrayCacheF32[ n ];
if ( r === undefined ) {
r = new Float32Array( n );
arrayCacheF32[ n ] = r;
}
if ( nBlocks !== 0 ) {
firstElem.toArray( r, 0 );
for ( var i = 1, offset = 0; i !== nBlocks; ++ i ) {
offset += blockSize;
array[ i ].toArray( r, offset );
}
}
return r;
},
// Texture unit allocation
allocTexUnits = function( renderer, n ) {
var r = arrayCacheI32[ n ];
if ( r === undefined ) {
r = new Int32Array( n );
arrayCacheI32[ n ] = r;
}
for ( var i = 0; i !== n; ++ i )
r[ i ] = renderer.allocTextureUnit();
return r;
},
// --- Setters ---
// Note: Defining these methods externally, because they come in a bunch
// and this way their names minify.
// Single scalar
setValue1f = function( gl, v ) { gl.uniform1f( this.addr, v ); },
setValue1i = function( gl, v ) { gl.uniform1i( this.addr, v ); },
// Single float vector (from flat array or THREE.VectorN)
setValue2fv = function( gl, v ) {
if ( v.x === undefined ) gl.uniform2fv( this.addr, v );
else gl.uniform2f( this.addr, v.x, v.y );
},
setValue3fv = function( gl, v ) {
if ( v.x !== undefined )
gl.uniform3f( this.addr, v.x, v.y, v.z );
else if ( v.r !== undefined )
gl.uniform3f( this.addr, v.r, v.g, v.b );
else
gl.uniform3fv( this.addr, v );
},
setValue4fv = function( gl, v ) {
if ( v.x === undefined ) gl.uniform4fv( this.addr, v );
else gl.uniform4f( this.addr, v.x, v.y, v.z, v.w );
},
// Single matrix (from flat array or MatrixN)
setValue2fm = function( gl, v ) {
gl.uniformMatrix2fv( this.addr, false, v.elements || v );
},
setValue3fm = function( gl, v ) {
gl.uniformMatrix3fv( this.addr, false, v.elements || v );
},
setValue4fm = function( gl, v ) {
gl.uniformMatrix4fv( this.addr, false, v.elements || v );
},
// Single texture (2D / Cube)
setValueT1 = function( gl, v, renderer ) {
var unit = renderer.allocTextureUnit();
gl.uniform1i( this.addr, unit );
if ( v ) renderer.setTexture2D( v, unit );
},
setValueT6 = function( gl, v, renderer ) {
var unit = renderer.allocTextureUnit();
gl.uniform1i( this.addr, unit );
if ( v ) renderer.setTextureCube( v, unit );
},
// Integer / Boolean vectors or arrays thereof (always flat arrays)
setValue2iv = function( gl, v ) { gl.uniform2iv( this.addr, v ); },
setValue3iv = function( gl, v ) { gl.uniform3iv( this.addr, v ); },
setValue4iv = function( gl, v ) { gl.uniform4iv( this.addr, v ); },
// Helper to pick the right setter for the singular case
getSingularSetter = function( type ) {
switch ( type ) {
case 0x1406: return setValue1f; // FLOAT
case 0x8b50: return setValue2fv; // _VEC2
case 0x8b51: return setValue3fv; // _VEC3
case 0x8b52: return setValue4fv; // _VEC4
case 0x8b5a: return setValue2fm; // _MAT2
case 0x8b5b: return setValue3fm; // _MAT3
case 0x8b5c: return setValue4fm; // _MAT4
case 0x8b5e: return setValueT1; // SAMPLER_2D
case 0x8b60: return setValueT6; // SAMPLER_CUBE
case 0x1404: case 0x8b56: return setValue1i; // INT, BOOL
case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2
case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3
case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4
}
},
// Array of scalars
setValue1fv = function( gl, v ) { gl.uniform1fv( this.addr, v ); },
setValue1iv = function( gl, v ) { gl.uniform1iv( this.addr, v ); },
// Array of vectors (flat or from THREE classes)
setValueV2a = function( gl, v ) {
gl.uniform2fv( this.addr, flatten( v, this.size, 2 ) );
},
setValueV3a = function( gl, v ) {
gl.uniform3fv( this.addr, flatten( v, this.size, 3 ) );
},
setValueV4a = function( gl, v ) {
gl.uniform4fv( this.addr, flatten( v, this.size, 4 ) );
},
// Array of matrices (flat or from THREE clases)
setValueM2a = function( gl, v ) {
gl.uniformMatrix2fv( this.addr, false, flatten( v, this.size, 4 ) );
},
setValueM3a = function( gl, v ) {
gl.uniformMatrix3fv( this.addr, false, flatten( v, this.size, 9 ) );
},
setValueM4a = function( gl, v ) {
gl.uniformMatrix4fv( this.addr, false, flatten( v, this.size, 16 ) );
},
// Array of textures (2D / Cube)
setValueT1a = function( gl, v, renderer ) {
var n = v.length,
units = allocTexUnits( renderer, n );
gl.uniform1iv( this.addr, units );
for ( var i = 0; i !== n; ++ i ) {
var tex = v[ i ];
if ( tex ) renderer.setTexture2D( tex, units[ i ] );
}
},
setValueT6a = function( gl, v, renderer ) {
var n = v.length,
units = allocTexUnits( renderer, n );
gl.uniform1iv( this.addr, units );
for ( var i = 0; i !== n; ++ i ) {
var tex = v[ i ];
if ( tex ) renderer.setTextureCube( tex, units[ i ] );
}
},
// Helper to pick the right setter for a pure (bottom-level) array
getPureArraySetter = function( type ) {
switch ( type ) {
case 0x1406: return setValue1fv; // FLOAT
case 0x8b50: return setValueV2a; // _VEC2
case 0x8b51: return setValueV3a; // _VEC3
case 0x8b52: return setValueV4a; // _VEC4
case 0x8b5a: return setValueM2a; // _MAT2
case 0x8b5b: return setValueM3a; // _MAT3
case 0x8b5c: return setValueM4a; // _MAT4
case 0x8b5e: return setValueT1a; // SAMPLER_2D
case 0x8b60: return setValueT6a; // SAMPLER_CUBE
case 0x1404: case 0x8b56: return setValue1iv; // INT, BOOL
case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2
case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3
case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4
}
},
// --- Uniform Classes ---
SingleUniform = function SingleUniform( id, activeInfo, addr ) {
this.id = id;
this.addr = addr;
this.setValue = getSingularSetter( activeInfo.type );
// this.path = activeInfo.name; // DEBUG
},
PureArrayUniform = function( id, activeInfo, addr ) {
this.id = id;
this.addr = addr;
this.size = activeInfo.size;
this.setValue = getPureArraySetter( activeInfo.type );
// this.path = activeInfo.name; // DEBUG
},
StructuredUniform = function( id ) {
this.id = id;
UniformContainer.call( this ); // mix-in
};
StructuredUniform.prototype.setValue = function( gl, value ) {
// Note: Don't need an extra 'renderer' parameter, since samplers
// are not allowed in structured uniforms.
var seq = this.seq;
for ( var i = 0, n = seq.length; i !== n; ++ i ) {
var u = seq[ i ];
u.setValue( gl, value[ u.id ] );
}
};
// --- Top-level ---
// Parser - builds up the property tree from the path strings
var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g,
// extracts
// - the identifier (member name or array index)
// - followed by an optional right bracket (found when array index)
// - followed by an optional left bracket or dot (type of subscript)
//
// Note: These portions can be read in a non-overlapping fashion and
// allow straightforward parsing of the hierarchy that WebGL encodes
// in the uniform names.
addUniform = function( container, uniformObject ) {
container.seq.push( uniformObject );
container.map[ uniformObject.id ] = uniformObject;
},
parseUniform = function( activeInfo, addr, container ) {
var path = activeInfo.name,
pathLength = path.length;
// reset RegExp object, because of the early exit of a previous run
RePathPart.lastIndex = 0;
for (; ;) {
var match = RePathPart.exec( path ),
matchEnd = RePathPart.lastIndex,
id = match[ 1 ],
idIsIndex = match[ 2 ] === ']',
subscript = match[ 3 ];
if ( idIsIndex ) id = id | 0; // convert to integer
if ( subscript === undefined ||
subscript === '[' && matchEnd + 2 === pathLength ) {
// bare name or "pure" bottom-level array "[0]" suffix
addUniform( container, subscript === undefined ?
new SingleUniform( id, activeInfo, addr ) :
new PureArrayUniform( id, activeInfo, addr ) );
break;
} else {
// step into inner node / create it in case it doesn't exist
var map = container.map,
next = map[ id ];
if ( next === undefined ) {
next = new StructuredUniform( id );
addUniform( container, next );
}
container = next;
}
}
},
// Root Container
WebGLUniforms = function WebGLUniforms( gl, program, renderer ) {
UniformContainer.call( this );
this.renderer = renderer;
var n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS );
for ( var i = 0; i !== n; ++ i ) {
var info = gl.getActiveUniform( program, i ),
path = info.name,
addr = gl.getUniformLocation( program, path );
parseUniform( info, addr, this );
}
};
WebGLUniforms.prototype.setValue = function( gl, name, value ) {
var u = this.map[ name ];
if ( u !== undefined ) u.setValue( gl, value, this.renderer );
};
WebGLUniforms.prototype.set = function( gl, object, name ) {
var u = this.map[ name ];
if ( u !== undefined ) u.setValue( gl, object[ name ], this.renderer );
};
WebGLUniforms.prototype.setOptional = function( gl, object, name ) {
var v = object[ name ];
if ( v !== undefined ) this.setValue( gl, name, v );
};
// Static interface
WebGLUniforms.upload = function( gl, seq, values, renderer ) {
for ( var i = 0, n = seq.length; i !== n; ++ i ) {
var u = seq[ i ],
v = values[ u.id ];
if ( v.needsUpdate !== false ) {
// note: always updating when .needsUpdate is undefined
u.setValue( gl, v.value, renderer );
}
}
};
WebGLUniforms.seqWithValue = function( seq, values ) {
var r = [];
for ( var i = 0, n = seq.length; i !== n; ++ i ) {
var u = seq[ i ];
if ( u.id in values ) r.push( u );
}
return r;
};
WebGLUniforms.splitDynamic = function( seq, values ) {
var r = null,
n = seq.length,
w = 0;
for ( var i = 0; i !== n; ++ i ) {
var u = seq[ i ],
v = values[ u.id ];
if ( v && v.dynamic === true ) {
if ( r === null ) r = [];
r.push( u );
} else {
// in-place compact 'seq', removing the matches
if ( w < i ) seq[ w ] = u;
++ w;
}
}
if ( w < n ) seq.length = w;
return r;
};
WebGLUniforms.evalDynamic = function( seq, values, object, camera ) {
for ( var i = 0, n = seq.length; i !== n; ++ i ) {
var v = values[ seq[ i ].id ],
f = v.onUpdateCallback;
if ( f !== undefined ) f.call( v, object, camera );
}
};
return WebGLUniforms;
} )();
// File:src/renderers/webgl/plugins/LensFlarePlugin.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.LensFlarePlugin = function ( renderer, flares ) {
var gl = renderer.context;
var state = renderer.state;
var vertexBuffer, elementBuffer;
var shader, program, attributes, uniforms;
var tempTexture, occlusionTexture;
function init() {
var vertices = new Float32Array( [
- 1, - 1, 0, 0,
1, - 1, 1, 0,
1, 1, 1, 1,
- 1, 1, 0, 1
] );
var faces = new Uint16Array( [
0, 1, 2,
0, 2, 3
] );
// buffers
vertexBuffer = gl.createBuffer();
elementBuffer = gl.createBuffer();
gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW );
// textures
tempTexture = gl.createTexture();
occlusionTexture = gl.createTexture();
state.bindTexture( gl.TEXTURE_2D, tempTexture );
gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGB, 16, 16, 0, gl.RGB, gl.UNSIGNED_BYTE, null );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST );
state.bindTexture( gl.TEXTURE_2D, occlusionTexture );
gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGBA, 16, 16, 0, gl.RGBA, gl.UNSIGNED_BYTE, null );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST );
shader = {
vertexShader: [
"uniform lowp int renderType;",
"uniform vec3 screenPosition;",
"uniform vec2 scale;",
"uniform float rotation;",
"uniform sampler2D occlusionMap;",
"attribute vec2 position;",
"attribute vec2 uv;",
"varying vec2 vUV;",
"varying float vVisibility;",
"void main() {",
"vUV = uv;",
"vec2 pos = position;",
"if ( renderType == 2 ) {",
"vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.5, 0.1 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.9, 0.1 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.9, 0.9 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.1, 0.9 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.5, 0.5 ) );",
"vVisibility = visibility.r / 9.0;",
"vVisibility *= 1.0 - visibility.g / 9.0;",
"vVisibility *= visibility.b / 9.0;",
"vVisibility *= 1.0 - visibility.a / 9.0;",
"pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;",
"pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;",
"}",
"gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );",
"}"
].join( "\n" ),
fragmentShader: [
"uniform lowp int renderType;",
"uniform sampler2D map;",
"uniform float opacity;",
"uniform vec3 color;",
"varying vec2 vUV;",
"varying float vVisibility;",
"void main() {",
// pink square
"if ( renderType == 0 ) {",
"gl_FragColor = vec4( 1.0, 0.0, 1.0, 0.0 );",
// restore
"} else if ( renderType == 1 ) {",
"gl_FragColor = texture2D( map, vUV );",
// flare
"} else {",
"vec4 texture = texture2D( map, vUV );",
"texture.a *= opacity * vVisibility;",
"gl_FragColor = texture;",
"gl_FragColor.rgb *= color;",
"}",
"}"
].join( "\n" )
};
program = createProgram( shader );
attributes = {
vertex: gl.getAttribLocation ( program, "position" ),
uv: gl.getAttribLocation ( program, "uv" )
};
uniforms = {
renderType: gl.getUniformLocation( program, "renderType" ),
map: gl.getUniformLocation( program, "map" ),
occlusionMap: gl.getUniformLocation( program, "occlusionMap" ),
opacity: gl.getUniformLocation( program, "opacity" ),
color: gl.getUniformLocation( program, "color" ),
scale: gl.getUniformLocation( program, "scale" ),
rotation: gl.getUniformLocation( program, "rotation" ),
screenPosition: gl.getUniformLocation( program, "screenPosition" )
};
}
/*
* Render lens flares
* Method: renders 16x16 0xff00ff-colored points scattered over the light source area,
* reads these back and calculates occlusion.
*/
this.render = function ( scene, camera, viewport ) {
if ( flares.length === 0 ) return;
var tempPosition = new THREE.Vector3();
var invAspect = viewport.w / viewport.z,
halfViewportWidth = viewport.z * 0.5,
halfViewportHeight = viewport.w * 0.5;
var size = 16 / viewport.w,
scale = new THREE.Vector2( size * invAspect, size );
var screenPosition = new THREE.Vector3( 1, 1, 0 ),
screenPositionPixels = new THREE.Vector2( 1, 1 );
var validArea = new THREE.Box2();
validArea.min.set( 0, 0 );
validArea.max.set( viewport.z - 16, viewport.w - 16 );
if ( program === undefined ) {
init();
}
gl.useProgram( program );
state.initAttributes();
state.enableAttribute( attributes.vertex );
state.enableAttribute( attributes.uv );
state.disableUnusedAttributes();
// loop through all lens flares to update their occlusion and positions
// setup gl and common used attribs/uniforms
gl.uniform1i( uniforms.occlusionMap, 0 );
gl.uniform1i( uniforms.map, 1 );
gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
gl.vertexAttribPointer( attributes.vertex, 2, gl.FLOAT, false, 2 * 8, 0 );
gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
state.disable( gl.CULL_FACE );
state.setDepthWrite( false );
for ( var i = 0, l = flares.length; i < l; i ++ ) {
size = 16 / viewport.w;
scale.set( size * invAspect, size );
// calc object screen position
var flare = flares[ i ];
tempPosition.set( flare.matrixWorld.elements[ 12 ], flare.matrixWorld.elements[ 13 ], flare.matrixWorld.elements[ 14 ] );
tempPosition.applyMatrix4( camera.matrixWorldInverse );
tempPosition.applyProjection( camera.projectionMatrix );
// setup arrays for gl programs
screenPosition.copy( tempPosition );
// horizontal and vertical coordinate of the lower left corner of the pixels to copy
screenPositionPixels.x = viewport.x + ( screenPosition.x * halfViewportWidth ) + halfViewportWidth - 8;
screenPositionPixels.y = viewport.y + ( screenPosition.y * halfViewportHeight ) + halfViewportHeight - 8;
// screen cull
if ( validArea.containsPoint( screenPositionPixels ) === true ) {
// save current RGB to temp texture
state.activeTexture( gl.TEXTURE0 );
state.bindTexture( gl.TEXTURE_2D, null );
state.activeTexture( gl.TEXTURE1 );
state.bindTexture( gl.TEXTURE_2D, tempTexture );
gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGB, screenPositionPixels.x, screenPositionPixels.y, 16, 16, 0 );
// render pink quad
gl.uniform1i( uniforms.renderType, 0 );
gl.uniform2f( uniforms.scale, scale.x, scale.y );
gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z );
state.disable( gl.BLEND );
state.enable( gl.DEPTH_TEST );
gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );
// copy result to occlusionMap
state.activeTexture( gl.TEXTURE0 );
state.bindTexture( gl.TEXTURE_2D, occlusionTexture );
gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGBA, screenPositionPixels.x, screenPositionPixels.y, 16, 16, 0 );
// restore graphics
gl.uniform1i( uniforms.renderType, 1 );
state.disable( gl.DEPTH_TEST );
state.activeTexture( gl.TEXTURE1 );
state.bindTexture( gl.TEXTURE_2D, tempTexture );
gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );
// update object positions
flare.positionScreen.copy( screenPosition );
if ( flare.customUpdateCallback ) {
flare.customUpdateCallback( flare );
} else {
flare.updateLensFlares();
}
// render flares
gl.uniform1i( uniforms.renderType, 2 );
state.enable( gl.BLEND );
for ( var j = 0, jl = flare.lensFlares.length; j < jl; j ++ ) {
var sprite = flare.lensFlares[ j ];
if ( sprite.opacity > 0.001 && sprite.scale > 0.001 ) {
screenPosition.x = sprite.x;
screenPosition.y = sprite.y;
screenPosition.z = sprite.z;
size = sprite.size * sprite.scale / viewport.w;
scale.x = size * invAspect;
scale.y = size;
gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z );
gl.uniform2f( uniforms.scale, scale.x, scale.y );
gl.uniform1f( uniforms.rotation, sprite.rotation );
gl.uniform1f( uniforms.opacity, sprite.opacity );
gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b );
state.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst );
renderer.setTexture2D( sprite.texture, 1 );
gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );
}
}
}
}
// restore gl
state.enable( gl.CULL_FACE );
state.enable( gl.DEPTH_TEST );
state.setDepthWrite( true );
renderer.resetGLState();
};
function createProgram ( shader ) {
var program = gl.createProgram();
var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER );
var vertexShader = gl.createShader( gl.VERTEX_SHADER );
var prefix = "precision " + renderer.getPrecision() + " float;\n";
gl.shaderSource( fragmentShader, prefix + shader.fragmentShader );
gl.shaderSource( vertexShader, prefix + shader.vertexShader );
gl.compileShader( fragmentShader );
gl.compileShader( vertexShader );
gl.attachShader( program, fragmentShader );
gl.attachShader( program, vertexShader );
gl.linkProgram( program );
return program;
}
};
// File:src/renderers/webgl/plugins/SpritePlugin.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.SpritePlugin = function ( renderer, sprites ) {
var gl = renderer.context;
var state = renderer.state;
var vertexBuffer, elementBuffer;
var program, attributes, uniforms;
var texture;
// decompose matrixWorld
var spritePosition = new THREE.Vector3();
var spriteRotation = new THREE.Quaternion();
var spriteScale = new THREE.Vector3();
function init() {
var vertices = new Float32Array( [
- 0.5, - 0.5, 0, 0,
0.5, - 0.5, 1, 0,
0.5, 0.5, 1, 1,
- 0.5, 0.5, 0, 1
] );
var faces = new Uint16Array( [
0, 1, 2,
0, 2, 3
] );
vertexBuffer = gl.createBuffer();
elementBuffer = gl.createBuffer();
gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW );
program = createProgram();
attributes = {
position: gl.getAttribLocation ( program, 'position' ),
uv: gl.getAttribLocation ( program, 'uv' )
};
uniforms = {
uvOffset: gl.getUniformLocation( program, 'uvOffset' ),
uvScale: gl.getUniformLocation( program, 'uvScale' ),
rotation: gl.getUniformLocation( program, 'rotation' ),
scale: gl.getUniformLocation( program, 'scale' ),
color: gl.getUniformLocation( program, 'color' ),
map: gl.getUniformLocation( program, 'map' ),
opacity: gl.getUniformLocation( program, 'opacity' ),
modelViewMatrix: gl.getUniformLocation( program, 'modelViewMatrix' ),
projectionMatrix: gl.getUniformLocation( program, 'projectionMatrix' ),
fogType: gl.getUniformLocation( program, 'fogType' ),
fogDensity: gl.getUniformLocation( program, 'fogDensity' ),
fogNear: gl.getUniformLocation( program, 'fogNear' ),
fogFar: gl.getUniformLocation( program, 'fogFar' ),
fogColor: gl.getUniformLocation( program, 'fogColor' ),
alphaTest: gl.getUniformLocation( program, 'alphaTest' )
};
var canvas = document.createElement( 'canvas' );
canvas.width = 8;
canvas.height = 8;
var context = canvas.getContext( '2d' );
context.fillStyle = 'white';
context.fillRect( 0, 0, 8, 8 );
texture = new THREE.Texture( canvas );
texture.needsUpdate = true;
}
this.render = function ( scene, camera ) {
if ( sprites.length === 0 ) return;
// setup gl
if ( program === undefined ) {
init();
}
gl.useProgram( program );
state.initAttributes();
state.enableAttribute( attributes.position );
state.enableAttribute( attributes.uv );
state.disableUnusedAttributes();
state.disable( gl.CULL_FACE );
state.enable( gl.BLEND );
gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
gl.vertexAttribPointer( attributes.position, 2, gl.FLOAT, false, 2 * 8, 0 );
gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
gl.uniformMatrix4fv( uniforms.projectionMatrix, false, camera.projectionMatrix.elements );
state.activeTexture( gl.TEXTURE0 );
gl.uniform1i( uniforms.map, 0 );
var oldFogType = 0;
var sceneFogType = 0;
var fog = scene.fog;
if ( fog ) {
gl.uniform3f( uniforms.fogColor, fog.color.r, fog.color.g, fog.color.b );
if ( fog instanceof THREE.Fog ) {
gl.uniform1f( uniforms.fogNear, fog.near );
gl.uniform1f( uniforms.fogFar, fog.far );
gl.uniform1i( uniforms.fogType, 1 );
oldFogType = 1;
sceneFogType = 1;
} else if ( fog instanceof THREE.FogExp2 ) {
gl.uniform1f( uniforms.fogDensity, fog.density );
gl.uniform1i( uniforms.fogType, 2 );
oldFogType = 2;
sceneFogType = 2;
}
} else {
gl.uniform1i( uniforms.fogType, 0 );
oldFogType = 0;
sceneFogType = 0;
}
// update positions and sort
for ( var i = 0, l = sprites.length; i < l; i ++ ) {
var sprite = sprites[ i ];
sprite.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, sprite.matrixWorld );
sprite.z = - sprite.modelViewMatrix.elements[ 14 ];
}
sprites.sort( painterSortStable );
// render all sprites
var scale = [];
for ( var i = 0, l = sprites.length; i < l; i ++ ) {
var sprite = sprites[ i ];
var material = sprite.material;
gl.uniform1f( uniforms.alphaTest, material.alphaTest );
gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, sprite.modelViewMatrix.elements );
sprite.matrixWorld.decompose( spritePosition, spriteRotation, spriteScale );
scale[ 0 ] = spriteScale.x;
scale[ 1 ] = spriteScale.y;
var fogType = 0;
if ( scene.fog && material.fog ) {
fogType = sceneFogType;
}
if ( oldFogType !== fogType ) {
gl.uniform1i( uniforms.fogType, fogType );
oldFogType = fogType;
}
if ( material.map !== null ) {
gl.uniform2f( uniforms.uvOffset, material.map.offset.x, material.map.offset.y );
gl.uniform2f( uniforms.uvScale, material.map.repeat.x, material.map.repeat.y );
} else {
gl.uniform2f( uniforms.uvOffset, 0, 0 );
gl.uniform2f( uniforms.uvScale, 1, 1 );
}
gl.uniform1f( uniforms.opacity, material.opacity );
gl.uniform3f( uniforms.color, material.color.r, material.color.g, material.color.b );
gl.uniform1f( uniforms.rotation, material.rotation );
gl.uniform2fv( uniforms.scale, scale );
state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst );
state.setDepthTest( material.depthTest );
state.setDepthWrite( material.depthWrite );
if ( material.map ) {
renderer.setTexture2D( material.map, 0 );
} else {
renderer.setTexture2D( texture, 0 );
}
gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );
}
// restore gl
state.enable( gl.CULL_FACE );
renderer.resetGLState();
};
function createProgram () {
var program = gl.createProgram();
var vertexShader = gl.createShader( gl.VERTEX_SHADER );
var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER );
gl.shaderSource( vertexShader, [
'precision ' + renderer.getPrecision() + ' float;',
'uniform mat4 modelViewMatrix;',
'uniform mat4 projectionMatrix;',
'uniform float rotation;',
'uniform vec2 scale;',
'uniform vec2 uvOffset;',
'uniform vec2 uvScale;',
'attribute vec2 position;',
'attribute vec2 uv;',
'varying vec2 vUV;',
'void main() {',
'vUV = uvOffset + uv * uvScale;',
'vec2 alignedPosition = position * scale;',
'vec2 rotatedPosition;',
'rotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;',
'rotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;',
'vec4 finalPosition;',
'finalPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );',
'finalPosition.xy += rotatedPosition;',
'finalPosition = projectionMatrix * finalPosition;',
'gl_Position = finalPosition;',
'}'
].join( '\n' ) );
gl.shaderSource( fragmentShader, [
'precision ' + renderer.getPrecision() + ' float;',
'uniform vec3 color;',
'uniform sampler2D map;',
'uniform float opacity;',
'uniform int fogType;',
'uniform vec3 fogColor;',
'uniform float fogDensity;',
'uniform float fogNear;',
'uniform float fogFar;',
'uniform float alphaTest;',
'varying vec2 vUV;',
'void main() {',
'vec4 texture = texture2D( map, vUV );',
'if ( texture.a < alphaTest ) discard;',
'gl_FragColor = vec4( color * texture.xyz, texture.a * opacity );',
'if ( fogType > 0 ) {',
'float depth = gl_FragCoord.z / gl_FragCoord.w;',
'float fogFactor = 0.0;',
'if ( fogType == 1 ) {',
'fogFactor = smoothstep( fogNear, fogFar, depth );',
'} else {',
'const float LOG2 = 1.442695;',
'fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );',
'fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );',
'}',
'gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );',
'}',
'}'
].join( '\n' ) );
gl.compileShader( vertexShader );
gl.compileShader( fragmentShader );
gl.attachShader( program, vertexShader );
gl.attachShader( program, fragmentShader );
gl.linkProgram( program );
return program;
}
function painterSortStable ( a, b ) {
if ( a.renderOrder !== b.renderOrder ) {
return a.renderOrder - b.renderOrder;
} else if ( a.z !== b.z ) {
return b.z - a.z;
} else {
return b.id - a.id;
}
}
};
// File:src/Three.Legacy.js
/**
* @author mrdoob / http://mrdoob.com/
*/
Object.defineProperties( THREE.Box2.prototype, {
empty: {
value: function () {
console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' );
return this.isEmpty();
}
},
isIntersectionBox: {
value: function ( box ) {
console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' );
return this.intersectsBox( box );
}
}
} );
Object.defineProperties( THREE.Box3.prototype, {
empty: {
value: function () {
console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' );
return this.isEmpty();
}
},
isIntersectionBox: {
value: function ( box ) {
console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' );
return this.intersectsBox( box );
}
},
isIntersectionSphere: {
value: function ( sphere ) {
console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
return this.intersectsSphere( sphere );
}
}
} );
Object.defineProperties( THREE.Matrix3.prototype, {
multiplyVector3: {
value: function ( vector ) {
console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' );
return vector.applyMatrix3( this );
}
},
multiplyVector3Array: {
value: function ( a ) {
console.warn( 'THREE.Matrix3: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' );
return this.applyToVector3Array( a );
}
}
} );
Object.defineProperties( THREE.Matrix4.prototype, {
extractPosition: {
value: function ( m ) {
console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' );
return this.copyPosition( m );
}
},
setRotationFromQuaternion: {
value: function ( q ) {
console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' );
return this.makeRotationFromQuaternion( q );
}
},
multiplyVector3: {
value: function ( vector ) {
console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) or vector.applyProjection( matrix ) instead.' );
return vector.applyProjection( this );
}
},
multiplyVector4: {
value: function ( vector ) {
console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
return vector.applyMatrix4( this );
}
},
multiplyVector3Array: {
value: function ( a ) {
console.warn( 'THREE.Matrix4: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' );
return this.applyToVector3Array( a );
}
},
rotateAxis: {
value: function ( v ) {
console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' );
v.transformDirection( this );
}
},
crossVector: {
value: function ( vector ) {
console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
return vector.applyMatrix4( this );
}
},
translate: {
value: function ( v ) {
console.error( 'THREE.Matrix4: .translate() has been removed.' );
}
},
rotateX: {
value: function ( angle ) {
console.error( 'THREE.Matrix4: .rotateX() has been removed.' );
}
},
rotateY: {
value: function ( angle ) {
console.error( 'THREE.Matrix4: .rotateY() has been removed.' );
}
},
rotateZ: {
value: function ( angle ) {
console.error( 'THREE.Matrix4: .rotateZ() has been removed.' );
}
},
rotateByAxis: {
value: function ( axis, angle ) {
console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' );
}
}
} );
Object.defineProperties( THREE.Plane.prototype, {
isIntersectionLine: {
value: function ( line ) {
console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' );
return this.intersectsLine( line );
}
}
} );
Object.defineProperties( THREE.Quaternion.prototype, {
multiplyVector3: {
value: function ( vector ) {
console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' );
return vector.applyQuaternion( this );
}
}
} );
Object.defineProperties( THREE.Ray.prototype, {
isIntersectionBox: {
value: function ( box ) {
console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' );
return this.intersectsBox( box );
}
},
isIntersectionPlane: {
value: function ( plane ) {
console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' );
return this.intersectsPlane( plane );
}
},
isIntersectionSphere: {
value: function ( sphere ) {
console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
return this.intersectsSphere( sphere );
}
}
} );
Object.defineProperties( THREE.Vector3.prototype, {
setEulerFromRotationMatrix: {
value: function () {
console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' );
}
},
setEulerFromQuaternion: {
value: function () {
console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' );
}
},
getPositionFromMatrix: {
value: function ( m ) {
console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' );
return this.setFromMatrixPosition( m );
}
},
getScaleFromMatrix: {
value: function ( m ) {
console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' );
return this.setFromMatrixScale( m );
}
},
getColumnFromMatrix: {
value: function ( index, matrix ) {
console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' );
return this.setFromMatrixColumn( index, matrix );
}
}
} );
//
THREE.Face4 = function ( a, b, c, d, normal, color, materialIndex ) {
console.warn( 'THREE.Face4 has been removed. A THREE.Face3 will be created instead.' );
return new THREE.Face3( a, b, c, normal, color, materialIndex );
};
THREE.Vertex = function ( x, y, z ) {
console.warn( 'THREE.Vertex has been removed. Use THREE.Vector3 instead.' );
return new THREE.Vector3( x, y, z );
};
//
Object.defineProperties( THREE.Object3D.prototype, {
eulerOrder: {
get: function () {
console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
return this.rotation.order;
},
set: function ( value ) {
console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
this.rotation.order = value;
}
},
getChildByName: {
value: function ( name ) {
console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' );
return this.getObjectByName( name );
}
},
renderDepth: {
set: function ( value ) {
console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' );
}
},
translate: {
value: function ( distance, axis ) {
console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' );
return this.translateOnAxis( axis, distance );
}
},
useQuaternion: {
get: function () {
console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );
},
set: function ( value ) {
console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );
}
}
} );
//
Object.defineProperties( THREE, {
PointCloud: {
value: function ( geometry, material ) {
console.warn( 'THREE.PointCloud has been renamed to THREE.Points.' );
return new THREE.Points( geometry, material );
}
},
ParticleSystem: {
value: function ( geometry, material ) {
console.warn( 'THREE.ParticleSystem has been renamed to THREE.Points.' );
return new THREE.Points( geometry, material );
}
}
} );
//
Object.defineProperties( THREE.Light.prototype, {
onlyShadow: {
set: function ( value ) {
console.warn( 'THREE.Light: .onlyShadow has been removed.' );
}
},
shadowCameraFov: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' );
this.shadow.camera.fov = value;
}
},
shadowCameraLeft: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' );
this.shadow.camera.left = value;
}
},
shadowCameraRight: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' );
this.shadow.camera.right = value;
}
},
shadowCameraTop: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' );
this.shadow.camera.top = value;
}
},
shadowCameraBottom: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' );
this.shadow.camera.bottom = value;
}
},
shadowCameraNear: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' );
this.shadow.camera.near = value;
}
},
shadowCameraFar: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' );
this.shadow.camera.far = value;
}
},
shadowCameraVisible: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' );
}
},
shadowBias: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' );
this.shadow.bias = value;
}
},
shadowDarkness: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowDarkness has been removed.' );
}
},
shadowMapWidth: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' );
this.shadow.mapSize.width = value;
}
},
shadowMapHeight: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' );
this.shadow.mapSize.height = value;
}
}
} );
//
Object.defineProperties( THREE.BufferAttribute.prototype, {
length: {
get: function () {
console.warn( 'THREE.BufferAttribute: .length has been deprecated. Please use .count.' );
return this.array.length;
}
}
} );
Object.defineProperties( THREE.BufferGeometry.prototype, {
drawcalls: {
get: function () {
console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' );
return this.groups;
}
},
offsets: {
get: function () {
console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' );
return this.groups;
}
},
addIndex: {
value: function ( index ) {
console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' );
this.setIndex( index );
}
},
addDrawCall: {
value: function ( start, count, indexOffset ) {
if ( indexOffset !== undefined ) {
console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' );
}
console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' );
this.addGroup( start, count );
}
},
clearDrawCalls: {
value: function () {
console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' );
this.clearGroups();
}
},
computeTangents: {
value: function () {
console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' );
}
},
computeOffsets: {
value: function () {
console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' );
}
}
} );
//
Object.defineProperties( THREE.Material.prototype, {
wrapAround: {
get: function () {
console.warn( 'THREE.' + this.type + ': .wrapAround has been removed.' );
},
set: function ( value ) {
console.warn( 'THREE.' + this.type + ': .wrapAround has been removed.' );
}
},
wrapRGB: {
get: function () {
console.warn( 'THREE.' + this.type + ': .wrapRGB has been removed.' );
return new THREE.Color();
}
}
} );
Object.defineProperties( THREE, {
PointCloudMaterial: {
value: function ( parameters ) {
console.warn( 'THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.' );
return new THREE.PointsMaterial( parameters );
}
},
ParticleBasicMaterial: {
value: function ( parameters ) {
console.warn( 'THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.' );
return new THREE.PointsMaterial( parameters );
}
},
ParticleSystemMaterial:{
value: function ( parameters ) {
console.warn( 'THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.' );
return new THREE.PointsMaterial( parameters );
}
}
} );
Object.defineProperties( THREE.MeshPhongMaterial.prototype, {
metal: {
get: function () {
console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' );
return false;
},
set: function ( value ) {
console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' );
}
}
} );
Object.defineProperties( THREE.ShaderMaterial.prototype, {
derivatives: {
get: function () {
console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
return this.extensions.derivatives;
},
set: function ( value ) {
console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
this.extensions.derivatives = value;
}
}
} );
//
Object.defineProperties( THREE.WebGLRenderer.prototype, {
supportsFloatTextures: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' );
return this.extensions.get( 'OES_texture_float' );
}
},
supportsHalfFloatTextures: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' );
return this.extensions.get( 'OES_texture_half_float' );
}
},
supportsStandardDerivatives: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' );
return this.extensions.get( 'OES_standard_derivatives' );
}
},
supportsCompressedTextureS3TC: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' );
return this.extensions.get( 'WEBGL_compressed_texture_s3tc' );
}
},
supportsCompressedTexturePVRTC: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' );
return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' );
}
},
supportsBlendMinMax: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' );
return this.extensions.get( 'EXT_blend_minmax' );
}
},
supportsVertexTextures: {
value: function () {
return this.capabilities.vertexTextures;
}
},
supportsInstancedArrays: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' );
return this.extensions.get( 'ANGLE_instanced_arrays' );
}
},
enableScissorTest: {
value: function ( boolean ) {
console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' );
this.setScissorTest( boolean );
}
},
initMaterial: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' );
}
},
addPrePlugin: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' );
}
},
addPostPlugin: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' );
}
},
updateShadowMap: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' );
}
},
shadowMapEnabled: {
get: function () {
return this.shadowMap.enabled;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' );
this.shadowMap.enabled = value;
}
},
shadowMapType: {
get: function () {
return this.shadowMap.type;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' );
this.shadowMap.type = value;
}
},
shadowMapCullFace: {
get: function () {
return this.shadowMap.cullFace;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace is now .shadowMap.cullFace.' );
this.shadowMap.cullFace = value;
}
}
} );
//
Object.defineProperties( THREE.WebGLRenderTarget.prototype, {
wrapS: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
return this.texture.wrapS;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
this.texture.wrapS = value;
}
},
wrapT: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
return this.texture.wrapT;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
this.texture.wrapT = value;
}
},
magFilter: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
return this.texture.magFilter;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
this.texture.magFilter = value;
}
},
minFilter: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
return this.texture.minFilter;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
this.texture.minFilter = value;
}
},
anisotropy: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
return this.texture.anisotropy;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
this.texture.anisotropy = value;
}
},
offset: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
return this.texture.offset;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
this.texture.offset = value;
}
},
repeat: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
return this.texture.repeat;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
this.texture.repeat = value;
}
},
format: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
return this.texture.format;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
this.texture.format = value;
}
},
type: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
return this.texture.type;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
this.texture.type = value;
}
},
generateMipmaps: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
return this.texture.generateMipmaps;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
this.texture.generateMipmaps = value;
}
}
} );
//
Object.defineProperties( THREE.Audio.prototype, {
load: {
value: function ( file ) {
console.warn( 'THREE.Audio: .load has been deprecated. Please use THREE.AudioLoader.' );
var scope = this;
var audioLoader = new THREE.AudioLoader();
audioLoader.load( file, function ( buffer ) {
scope.setBuffer( buffer );
} );
return this;
}
}
} );
//
THREE.GeometryUtils = {
merge: function ( geometry1, geometry2, materialIndexOffset ) {
console.warn( 'THREE.GeometryUtils: .merge() has been moved to Geometry. Use geometry.merge( geometry2, matrix, materialIndexOffset ) instead.' );
var matrix;
if ( geometry2 instanceof THREE.Mesh ) {
geometry2.matrixAutoUpdate && geometry2.updateMatrix();
matrix = geometry2.matrix;
geometry2 = geometry2.geometry;
}
geometry1.merge( geometry2, matrix, materialIndexOffset );
},
center: function ( geometry ) {
console.warn( 'THREE.GeometryUtils: .center() has been moved to Geometry. Use geometry.center() instead.' );
return geometry.center();
}
};
THREE.ImageUtils = {
crossOrigin: undefined,
loadTexture: function ( url, mapping, onLoad, onError ) {
console.warn( 'THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.' );
var loader = new THREE.TextureLoader();
loader.setCrossOrigin( this.crossOrigin );
var texture = loader.load( url, onLoad, undefined, onError );
if ( mapping ) texture.mapping = mapping;
return texture;
},
loadTextureCube: function ( urls, mapping, onLoad, onError ) {
console.warn( 'THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.' );
var loader = new THREE.CubeTextureLoader();
loader.setCrossOrigin( this.crossOrigin );
var texture = loader.load( urls, onLoad, undefined, onError );
if ( mapping ) texture.mapping = mapping;
return texture;
},
loadCompressedTexture: function () {
console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' );
},
loadCompressedTextureCube: function () {
console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' );
}
};
//
THREE.Projector = function () {
console.error( 'THREE.Projector has been moved to /examples/js/renderers/Projector.js.' );
this.projectVector = function ( vector, camera ) {
console.warn( 'THREE.Projector: .projectVector() is now vector.project().' );
vector.project( camera );
};
this.unprojectVector = function ( vector, camera ) {
console.warn( 'THREE.Projector: .unprojectVector() is now vector.unproject().' );
vector.unproject( camera );
};
this.pickingRay = function ( vector, camera ) {
console.error( 'THREE.Projector: .pickingRay() is now raycaster.setFromCamera().' );
};
};
//
THREE.CanvasRenderer = function () {
console.error( 'THREE.CanvasRenderer has been moved to /examples/js/renderers/CanvasRenderer.js' );
this.domElement = document.createElement( 'canvas' );
this.clear = function () {};
this.render = function () {};
this.setClearColor = function () {};
this.setSize = function () {};
};
//
THREE.MeshFaceMaterial = THREE.MultiMaterial;
//
Object.defineProperties( THREE.LOD.prototype, {
objects: {
get: function () {
console.warn( 'THREE.LOD: .objects has been renamed to .levels.' );
return this.levels;
}
}
} );
// File:src/extras/CurveUtils.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*/
THREE.CurveUtils = {
tangentQuadraticBezier: function ( t, p0, p1, p2 ) {
return 2 * ( 1 - t ) * ( p1 - p0 ) + 2 * t * ( p2 - p1 );
},
// Puay Bing, thanks for helping with this derivative!
tangentCubicBezier: function ( t, p0, p1, p2, p3 ) {
return - 3 * p0 * ( 1 - t ) * ( 1 - t ) +
3 * p1 * ( 1 - t ) * ( 1 - t ) - 6 * t * p1 * ( 1 - t ) +
6 * t * p2 * ( 1 - t ) - 3 * t * t * p2 +
3 * t * t * p3;
},
tangentSpline: function ( t, p0, p1, p2, p3 ) {
// To check if my formulas are correct
var h00 = 6 * t * t - 6 * t; // derived from 2t^3 3t^2 + 1
var h10 = 3 * t * t - 4 * t + 1; // t^3 2t^2 + t
var h01 = - 6 * t * t + 6 * t; // 2t3 + 3t2
var h11 = 3 * t * t - 2 * t; // t3 t2
return h00 + h10 + h01 + h11;
},
// Catmull-Rom
interpolate: function( p0, p1, p2, p3, t ) {
var v0 = ( p2 - p0 ) * 0.5;
var v1 = ( p3 - p1 ) * 0.5;
var t2 = t * t;
var t3 = t * t2;
return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1;
}
};
// File:src/extras/SceneUtils.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.SceneUtils = {
createMultiMaterialObject: function ( geometry, materials ) {
var group = new THREE.Group();
for ( var i = 0, l = materials.length; i < l; i ++ ) {
group.add( new THREE.Mesh( geometry, materials[ i ] ) );
}
return group;
},
detach: function ( child, parent, scene ) {
child.applyMatrix( parent.matrixWorld );
parent.remove( child );
scene.add( child );
},
attach: function ( child, scene, parent ) {
var matrixWorldInverse = new THREE.Matrix4();
matrixWorldInverse.getInverse( parent.matrixWorld );
child.applyMatrix( matrixWorldInverse );
scene.remove( child );
parent.add( child );
}
};
// File:src/extras/ShapeUtils.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*/
THREE.ShapeUtils = {
// calculate area of the contour polygon
area: function ( contour ) {
var n = contour.length;
var a = 0.0;
for ( var p = n - 1, q = 0; q < n; p = q ++ ) {
a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y;
}
return a * 0.5;
},
triangulate: ( function () {
/**
* This code is a quick port of code written in C++ which was submitted to
* flipcode.com by John W. Ratcliff // July 22, 2000
* See original code and more information here:
* http://www.flipcode.com/archives/Efficient_Polygon_Triangulation.shtml
*
* ported to actionscript by Zevan Rosser
* www.actionsnippet.com
*
* ported to javascript by Joshua Koo
* http://www.lab4games.net/zz85/blog
*
*/
function snip( contour, u, v, w, n, verts ) {
var p;
var ax, ay, bx, by;
var cx, cy, px, py;
ax = contour[ verts[ u ] ].x;
ay = contour[ verts[ u ] ].y;
bx = contour[ verts[ v ] ].x;
by = contour[ verts[ v ] ].y;
cx = contour[ verts[ w ] ].x;
cy = contour[ verts[ w ] ].y;
if ( Number.EPSILON > ( ( ( bx - ax ) * ( cy - ay ) ) - ( ( by - ay ) * ( cx - ax ) ) ) ) return false;
var aX, aY, bX, bY, cX, cY;
var apx, apy, bpx, bpy, cpx, cpy;
var cCROSSap, bCROSScp, aCROSSbp;
aX = cx - bx; aY = cy - by;
bX = ax - cx; bY = ay - cy;
cX = bx - ax; cY = by - ay;
for ( p = 0; p < n; p ++ ) {
px = contour[ verts[ p ] ].x;
py = contour[ verts[ p ] ].y;
if ( ( ( px === ax ) && ( py === ay ) ) ||
( ( px === bx ) && ( py === by ) ) ||
( ( px === cx ) && ( py === cy ) ) ) continue;
apx = px - ax; apy = py - ay;
bpx = px - bx; bpy = py - by;
cpx = px - cx; cpy = py - cy;
// see if p is inside triangle abc
aCROSSbp = aX * bpy - aY * bpx;
cCROSSap = cX * apy - cY * apx;
bCROSScp = bX * cpy - bY * cpx;
if ( ( aCROSSbp >= - Number.EPSILON ) && ( bCROSScp >= - Number.EPSILON ) && ( cCROSSap >= - Number.EPSILON ) ) return false;
}
return true;
}
// takes in an contour array and returns
return function ( contour, indices ) {
var n = contour.length;
if ( n < 3 ) return null;
var result = [],
verts = [],
vertIndices = [];
/* we want a counter-clockwise polygon in verts */
var u, v, w;
if ( THREE.ShapeUtils.area( contour ) > 0.0 ) {
for ( v = 0; v < n; v ++ ) verts[ v ] = v;
} else {
for ( v = 0; v < n; v ++ ) verts[ v ] = ( n - 1 ) - v;
}
var nv = n;
/* remove nv - 2 vertices, creating 1 triangle every time */
var count = 2 * nv; /* error detection */
for ( v = nv - 1; nv > 2; ) {
/* if we loop, it is probably a non-simple polygon */
if ( ( count -- ) <= 0 ) {
//** Triangulate: ERROR - probable bad polygon!
//throw ( "Warning, unable to triangulate polygon!" );
//return null;
// Sometimes warning is fine, especially polygons are triangulated in reverse.
console.warn( 'THREE.ShapeUtils: Unable to triangulate polygon! in triangulate()' );
if ( indices ) return vertIndices;
return result;
}
/* three consecutive vertices in current polygon, <u,v,w> */
u = v; if ( nv <= u ) u = 0; /* previous */
v = u + 1; if ( nv <= v ) v = 0; /* new v */
w = v + 1; if ( nv <= w ) w = 0; /* next */
if ( snip( contour, u, v, w, nv, verts ) ) {
var a, b, c, s, t;
/* true names of the vertices */
a = verts[ u ];
b = verts[ v ];
c = verts[ w ];
/* output Triangle */
result.push( [ contour[ a ],
contour[ b ],
contour[ c ] ] );
vertIndices.push( [ verts[ u ], verts[ v ], verts[ w ] ] );
/* remove v from the remaining polygon */
for ( s = v, t = v + 1; t < nv; s ++, t ++ ) {
verts[ s ] = verts[ t ];
}
nv --;
/* reset error detection counter */
count = 2 * nv;
}
}
if ( indices ) return vertIndices;
return result;
}
} )(),
triangulateShape: function ( contour, holes ) {
function point_in_segment_2D_colin( inSegPt1, inSegPt2, inOtherPt ) {
// inOtherPt needs to be collinear to the inSegment
if ( inSegPt1.x !== inSegPt2.x ) {
if ( inSegPt1.x < inSegPt2.x ) {
return ( ( inSegPt1.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt2.x ) );
} else {
return ( ( inSegPt2.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt1.x ) );
}
} else {
if ( inSegPt1.y < inSegPt2.y ) {
return ( ( inSegPt1.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt2.y ) );
} else {
return ( ( inSegPt2.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt1.y ) );
}
}
}
function intersect_segments_2D( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1, inSeg2Pt2, inExcludeAdjacentSegs ) {
var seg1dx = inSeg1Pt2.x - inSeg1Pt1.x, seg1dy = inSeg1Pt2.y - inSeg1Pt1.y;
var seg2dx = inSeg2Pt2.x - inSeg2Pt1.x, seg2dy = inSeg2Pt2.y - inSeg2Pt1.y;
var seg1seg2dx = inSeg1Pt1.x - inSeg2Pt1.x;
var seg1seg2dy = inSeg1Pt1.y - inSeg2Pt1.y;
var limit = seg1dy * seg2dx - seg1dx * seg2dy;
var perpSeg1 = seg1dy * seg1seg2dx - seg1dx * seg1seg2dy;
if ( Math.abs( limit ) > Number.EPSILON ) {
// not parallel
var perpSeg2;
if ( limit > 0 ) {
if ( ( perpSeg1 < 0 ) || ( perpSeg1 > limit ) ) return [];
perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
if ( ( perpSeg2 < 0 ) || ( perpSeg2 > limit ) ) return [];
} else {
if ( ( perpSeg1 > 0 ) || ( perpSeg1 < limit ) ) return [];
perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
if ( ( perpSeg2 > 0 ) || ( perpSeg2 < limit ) ) return [];
}
// i.e. to reduce rounding errors
// intersection at endpoint of segment#1?
if ( perpSeg2 === 0 ) {
if ( ( inExcludeAdjacentSegs ) &&
( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return [];
return [ inSeg1Pt1 ];
}
if ( perpSeg2 === limit ) {
if ( ( inExcludeAdjacentSegs ) &&
( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return [];
return [ inSeg1Pt2 ];
}
// intersection at endpoint of segment#2?
if ( perpSeg1 === 0 ) return [ inSeg2Pt1 ];
if ( perpSeg1 === limit ) return [ inSeg2Pt2 ];
// return real intersection point
var factorSeg1 = perpSeg2 / limit;
return [ { x: inSeg1Pt1.x + factorSeg1 * seg1dx,
y: inSeg1Pt1.y + factorSeg1 * seg1dy } ];
} else {
// parallel or collinear
if ( ( perpSeg1 !== 0 ) ||
( seg2dy * seg1seg2dx !== seg2dx * seg1seg2dy ) ) return [];
// they are collinear or degenerate
var seg1Pt = ( ( seg1dx === 0 ) && ( seg1dy === 0 ) ); // segment1 is just a point?
var seg2Pt = ( ( seg2dx === 0 ) && ( seg2dy === 0 ) ); // segment2 is just a point?
// both segments are points
if ( seg1Pt && seg2Pt ) {
if ( ( inSeg1Pt1.x !== inSeg2Pt1.x ) ||
( inSeg1Pt1.y !== inSeg2Pt1.y ) ) return []; // they are distinct points
return [ inSeg1Pt1 ]; // they are the same point
}
// segment#1 is a single point
if ( seg1Pt ) {
if ( ! point_in_segment_2D_colin( inSeg2Pt1, inSeg2Pt2, inSeg1Pt1 ) ) return []; // but not in segment#2
return [ inSeg1Pt1 ];
}
// segment#2 is a single point
if ( seg2Pt ) {
if ( ! point_in_segment_2D_colin( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1 ) ) return []; // but not in segment#1
return [ inSeg2Pt1 ];
}
// they are collinear segments, which might overlap
var seg1min, seg1max, seg1minVal, seg1maxVal;
var seg2min, seg2max, seg2minVal, seg2maxVal;
if ( seg1dx !== 0 ) {
// the segments are NOT on a vertical line
if ( inSeg1Pt1.x < inSeg1Pt2.x ) {
seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.x;
seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.x;
} else {
seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.x;
seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.x;
}
if ( inSeg2Pt1.x < inSeg2Pt2.x ) {
seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.x;
seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.x;
} else {
seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.x;
seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.x;
}
} else {
// the segments are on a vertical line
if ( inSeg1Pt1.y < inSeg1Pt2.y ) {
seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.y;
seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.y;
} else {
seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.y;
seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.y;
}
if ( inSeg2Pt1.y < inSeg2Pt2.y ) {
seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.y;
seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.y;
} else {
seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.y;
seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.y;
}
}
if ( seg1minVal <= seg2minVal ) {
if ( seg1maxVal < seg2minVal ) return [];
if ( seg1maxVal === seg2minVal ) {
if ( inExcludeAdjacentSegs ) return [];
return [ seg2min ];
}
if ( seg1maxVal <= seg2maxVal ) return [ seg2min, seg1max ];
return [ seg2min, seg2max ];
} else {
if ( seg1minVal > seg2maxVal ) return [];
if ( seg1minVal === seg2maxVal ) {
if ( inExcludeAdjacentSegs ) return [];
return [ seg1min ];
}
if ( seg1maxVal <= seg2maxVal ) return [ seg1min, seg1max ];
return [ seg1min, seg2max ];
}
}
}
function isPointInsideAngle( inVertex, inLegFromPt, inLegToPt, inOtherPt ) {
// The order of legs is important
// translation of all points, so that Vertex is at (0,0)
var legFromPtX = inLegFromPt.x - inVertex.x, legFromPtY = inLegFromPt.y - inVertex.y;
var legToPtX = inLegToPt.x - inVertex.x, legToPtY = inLegToPt.y - inVertex.y;
var otherPtX = inOtherPt.x - inVertex.x, otherPtY = inOtherPt.y - inVertex.y;
// main angle >0: < 180 deg.; 0: 180 deg.; <0: > 180 deg.
var from2toAngle = legFromPtX * legToPtY - legFromPtY * legToPtX;
var from2otherAngle = legFromPtX * otherPtY - legFromPtY * otherPtX;
if ( Math.abs( from2toAngle ) > Number.EPSILON ) {
// angle != 180 deg.
var other2toAngle = otherPtX * legToPtY - otherPtY * legToPtX;
// console.log( "from2to: " + from2toAngle + ", from2other: " + from2otherAngle + ", other2to: " + other2toAngle );
if ( from2toAngle > 0 ) {
// main angle < 180 deg.
return ( ( from2otherAngle >= 0 ) && ( other2toAngle >= 0 ) );
} else {
// main angle > 180 deg.
return ( ( from2otherAngle >= 0 ) || ( other2toAngle >= 0 ) );
}
} else {
// angle == 180 deg.
// console.log( "from2to: 180 deg., from2other: " + from2otherAngle );
return ( from2otherAngle > 0 );
}
}
function removeHoles( contour, holes ) {
var shape = contour.concat(); // work on this shape
var hole;
function isCutLineInsideAngles( inShapeIdx, inHoleIdx ) {
// Check if hole point lies within angle around shape point
var lastShapeIdx = shape.length - 1;
var prevShapeIdx = inShapeIdx - 1;
if ( prevShapeIdx < 0 ) prevShapeIdx = lastShapeIdx;
var nextShapeIdx = inShapeIdx + 1;
if ( nextShapeIdx > lastShapeIdx ) nextShapeIdx = 0;
var insideAngle = isPointInsideAngle( shape[ inShapeIdx ], shape[ prevShapeIdx ], shape[ nextShapeIdx ], hole[ inHoleIdx ] );
if ( ! insideAngle ) {
// console.log( "Vertex (Shape): " + inShapeIdx + ", Point: " + hole[inHoleIdx].x + "/" + hole[inHoleIdx].y );
return false;
}
// Check if shape point lies within angle around hole point
var lastHoleIdx = hole.length - 1;
var prevHoleIdx = inHoleIdx - 1;
if ( prevHoleIdx < 0 ) prevHoleIdx = lastHoleIdx;
var nextHoleIdx = inHoleIdx + 1;
if ( nextHoleIdx > lastHoleIdx ) nextHoleIdx = 0;
insideAngle = isPointInsideAngle( hole[ inHoleIdx ], hole[ prevHoleIdx ], hole[ nextHoleIdx ], shape[ inShapeIdx ] );
if ( ! insideAngle ) {
// console.log( "Vertex (Hole): " + inHoleIdx + ", Point: " + shape[inShapeIdx].x + "/" + shape[inShapeIdx].y );
return false;
}
return true;
}
function intersectsShapeEdge( inShapePt, inHolePt ) {
// checks for intersections with shape edges
var sIdx, nextIdx, intersection;
for ( sIdx = 0; sIdx < shape.length; sIdx ++ ) {
nextIdx = sIdx + 1; nextIdx %= shape.length;
intersection = intersect_segments_2D( inShapePt, inHolePt, shape[ sIdx ], shape[ nextIdx ], true );
if ( intersection.length > 0 ) return true;
}
return false;
}
var indepHoles = [];
function intersectsHoleEdge( inShapePt, inHolePt ) {
// checks for intersections with hole edges
var ihIdx, chkHole,
hIdx, nextIdx, intersection;
for ( ihIdx = 0; ihIdx < indepHoles.length; ihIdx ++ ) {
chkHole = holes[ indepHoles[ ihIdx ]];
for ( hIdx = 0; hIdx < chkHole.length; hIdx ++ ) {
nextIdx = hIdx + 1; nextIdx %= chkHole.length;
intersection = intersect_segments_2D( inShapePt, inHolePt, chkHole[ hIdx ], chkHole[ nextIdx ], true );
if ( intersection.length > 0 ) return true;
}
}
return false;
}
var holeIndex, shapeIndex,
shapePt, holePt,
holeIdx, cutKey, failedCuts = [],
tmpShape1, tmpShape2,
tmpHole1, tmpHole2;
for ( var h = 0, hl = holes.length; h < hl; h ++ ) {
indepHoles.push( h );
}
var minShapeIndex = 0;
var counter = indepHoles.length * 2;
while ( indepHoles.length > 0 ) {
counter --;
if ( counter < 0 ) {
console.log( "Infinite Loop! Holes left:" + indepHoles.length + ", Probably Hole outside Shape!" );
break;
}
// search for shape-vertex and hole-vertex,
// which can be connected without intersections
for ( shapeIndex = minShapeIndex; shapeIndex < shape.length; shapeIndex ++ ) {
shapePt = shape[ shapeIndex ];
holeIndex = - 1;
// search for hole which can be reached without intersections
for ( var h = 0; h < indepHoles.length; h ++ ) {
holeIdx = indepHoles[ h ];
// prevent multiple checks
cutKey = shapePt.x + ":" + shapePt.y + ":" + holeIdx;
if ( failedCuts[ cutKey ] !== undefined ) continue;
hole = holes[ holeIdx ];
for ( var h2 = 0; h2 < hole.length; h2 ++ ) {
holePt = hole[ h2 ];
if ( ! isCutLineInsideAngles( shapeIndex, h2 ) ) continue;
if ( intersectsShapeEdge( shapePt, holePt ) ) continue;
if ( intersectsHoleEdge( shapePt, holePt ) ) continue;
holeIndex = h2;
indepHoles.splice( h, 1 );
tmpShape1 = shape.slice( 0, shapeIndex + 1 );
tmpShape2 = shape.slice( shapeIndex );
tmpHole1 = hole.slice( holeIndex );
tmpHole2 = hole.slice( 0, holeIndex + 1 );
shape = tmpShape1.concat( tmpHole1 ).concat( tmpHole2 ).concat( tmpShape2 );
minShapeIndex = shapeIndex;
// Debug only, to show the selected cuts
// glob_CutLines.push( [ shapePt, holePt ] );
break;
}
if ( holeIndex >= 0 ) break; // hole-vertex found
failedCuts[ cutKey ] = true; // remember failure
}
if ( holeIndex >= 0 ) break; // hole-vertex found
}
}
return shape; /* shape with no holes */
}
var i, il, f, face,
key, index,
allPointsMap = {};
// To maintain reference to old shape, one must match coordinates, or offset the indices from original arrays. It's probably easier to do the first.
var allpoints = contour.concat();
for ( var h = 0, hl = holes.length; h < hl; h ++ ) {
Array.prototype.push.apply( allpoints, holes[ h ] );
}
//console.log( "allpoints",allpoints, allpoints.length );
// prepare all points map
for ( i = 0, il = allpoints.length; i < il; i ++ ) {
key = allpoints[ i ].x + ":" + allpoints[ i ].y;
if ( allPointsMap[ key ] !== undefined ) {
console.warn( "THREE.Shape: Duplicate point", key );
}
allPointsMap[ key ] = i;
}
// remove holes by cutting paths to holes and adding them to the shape
var shapeWithoutHoles = removeHoles( contour, holes );
var triangles = THREE.ShapeUtils.triangulate( shapeWithoutHoles, false ); // True returns indices for points of spooled shape
//console.log( "triangles",triangles, triangles.length );
// check all face vertices against all points map
for ( i = 0, il = triangles.length; i < il; i ++ ) {
face = triangles[ i ];
for ( f = 0; f < 3; f ++ ) {
key = face[ f ].x + ":" + face[ f ].y;
index = allPointsMap[ key ];
if ( index !== undefined ) {
face[ f ] = index;
}
}
}
return triangles.concat();
},
isClockWise: function ( pts ) {
return THREE.ShapeUtils.area( pts ) < 0;
},
// Bezier Curves formulas obtained from
// http://en.wikipedia.org/wiki/B%C3%A9zier_curve
// Quad Bezier Functions
b2: ( function () {
function b2p0( t, p ) {
var k = 1 - t;
return k * k * p;
}
function b2p1( t, p ) {
return 2 * ( 1 - t ) * t * p;
}
function b2p2( t, p ) {
return t * t * p;
}
return function ( t, p0, p1, p2 ) {
return b2p0( t, p0 ) + b2p1( t, p1 ) + b2p2( t, p2 );
};
} )(),
// Cubic Bezier Functions
b3: ( function () {
function b3p0( t, p ) {
var k = 1 - t;
return k * k * k * p;
}
function b3p1( t, p ) {
var k = 1 - t;
return 3 * k * k * t * p;
}
function b3p2( t, p ) {
var k = 1 - t;
return 3 * k * t * t * p;
}
function b3p3( t, p ) {
return t * t * t * p;
}
return function ( t, p0, p1, p2, p3 ) {
return b3p0( t, p0 ) + b3p1( t, p1 ) + b3p2( t, p2 ) + b3p3( t, p3 );
};
} )()
};
// File:src/extras/core/Curve.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Extensible curve object
*
* Some common of Curve methods
* .getPoint(t), getTangent(t)
* .getPointAt(u), getTagentAt(u)
* .getPoints(), .getSpacedPoints()
* .getLength()
* .updateArcLengths()
*
* This following classes subclasses THREE.Curve:
*
* -- 2d classes --
* THREE.LineCurve
* THREE.QuadraticBezierCurve
* THREE.CubicBezierCurve
* THREE.SplineCurve
* THREE.ArcCurve
* THREE.EllipseCurve
*
* -- 3d classes --
* THREE.LineCurve3
* THREE.QuadraticBezierCurve3
* THREE.CubicBezierCurve3
* THREE.SplineCurve3
*
* A series of curves can be represented as a THREE.CurvePath
*
**/
/**************************************************************
* Abstract Curve base class
**************************************************************/
THREE.Curve = function () {
};
THREE.Curve.prototype = {
constructor: THREE.Curve,
// Virtual base class method to overwrite and implement in subclasses
// - t [0 .. 1]
getPoint: function ( t ) {
console.warn( "THREE.Curve: Warning, getPoint() not implemented!" );
return null;
},
// Get point at relative position in curve according to arc length
// - u [0 .. 1]
getPointAt: function ( u ) {
var t = this.getUtoTmapping( u );
return this.getPoint( t );
},
// Get sequence of points using getPoint( t )
getPoints: function ( divisions ) {
if ( ! divisions ) divisions = 5;
var d, pts = [];
for ( d = 0; d <= divisions; d ++ ) {
pts.push( this.getPoint( d / divisions ) );
}
return pts;
},
// Get sequence of points using getPointAt( u )
getSpacedPoints: function ( divisions ) {
if ( ! divisions ) divisions = 5;
var d, pts = [];
for ( d = 0; d <= divisions; d ++ ) {
pts.push( this.getPointAt( d / divisions ) );
}
return pts;
},
// Get total curve arc length
getLength: function () {
var lengths = this.getLengths();
return lengths[ lengths.length - 1 ];
},
// Get list of cumulative segment lengths
getLengths: function ( divisions ) {
if ( ! divisions ) divisions = ( this.__arcLengthDivisions ) ? ( this.__arcLengthDivisions ) : 200;
if ( this.cacheArcLengths
&& ( this.cacheArcLengths.length === divisions + 1 )
&& ! this.needsUpdate ) {
//console.log( "cached", this.cacheArcLengths );
return this.cacheArcLengths;
}
this.needsUpdate = false;
var cache = [];
var current, last = this.getPoint( 0 );
var p, sum = 0;
cache.push( 0 );
for ( p = 1; p <= divisions; p ++ ) {
current = this.getPoint ( p / divisions );
sum += current.distanceTo( last );
cache.push( sum );
last = current;
}
this.cacheArcLengths = cache;
return cache; // { sums: cache, sum:sum }; Sum is in the last element.
},
updateArcLengths: function() {
this.needsUpdate = true;
this.getLengths();
},
// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
getUtoTmapping: function ( u, distance ) {
var arcLengths = this.getLengths();
var i = 0, il = arcLengths.length;
var targetArcLength; // The targeted u distance value to get
if ( distance ) {
targetArcLength = distance;
} else {
targetArcLength = u * arcLengths[ il - 1 ];
}
//var time = Date.now();
// binary search for the index with largest value smaller than target u distance
var low = 0, high = il - 1, comparison;
while ( low <= high ) {
i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
comparison = arcLengths[ i ] - targetArcLength;
if ( comparison < 0 ) {
low = i + 1;
} else if ( comparison > 0 ) {
high = i - 1;
} else {
high = i;
break;
// DONE
}
}
i = high;
//console.log('b' , i, low, high, Date.now()- time);
if ( arcLengths[ i ] === targetArcLength ) {
var t = i / ( il - 1 );
return t;
}
// we could get finer grain at lengths, or use simple interpolation between two points
var lengthBefore = arcLengths[ i ];
var lengthAfter = arcLengths[ i + 1 ];
var segmentLength = lengthAfter - lengthBefore;
// determine where we are between the 'before' and 'after' points
var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;
// add that fractional amount to t
var t = ( i + segmentFraction ) / ( il - 1 );
return t;
},
// Returns a unit vector tangent at t
// In case any sub curve does not implement its tangent derivation,
// 2 points a small delta apart will be used to find its gradient
// which seems to give a reasonable approximation
getTangent: function( t ) {
var delta = 0.0001;
var t1 = t - delta;
var t2 = t + delta;
// Capping in case of danger
if ( t1 < 0 ) t1 = 0;
if ( t2 > 1 ) t2 = 1;
var pt1 = this.getPoint( t1 );
var pt2 = this.getPoint( t2 );
var vec = pt2.clone().sub( pt1 );
return vec.normalize();
},
getTangentAt: function ( u ) {
var t = this.getUtoTmapping( u );
return this.getTangent( t );
}
};
// TODO: Transformation for Curves?
/**************************************************************
* 3D Curves
**************************************************************/
// A Factory method for creating new curve subclasses
THREE.Curve.create = function ( constructor, getPointFunc ) {
constructor.prototype = Object.create( THREE.Curve.prototype );
constructor.prototype.constructor = constructor;
constructor.prototype.getPoint = getPointFunc;
return constructor;
};
// File:src/extras/core/CurvePath.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*
**/
/**************************************************************
* Curved Path - a curve path is simply a array of connected
* curves, but retains the api of a curve
**************************************************************/
THREE.CurvePath = function () {
this.curves = [];
this.autoClose = false; // Automatically closes the path
};
THREE.CurvePath.prototype = Object.create( THREE.Curve.prototype );
THREE.CurvePath.prototype.constructor = THREE.CurvePath;
THREE.CurvePath.prototype.add = function ( curve ) {
this.curves.push( curve );
};
/*
THREE.CurvePath.prototype.checkConnection = function() {
// TODO
// If the ending of curve is not connected to the starting
// or the next curve, then, this is not a real path
};
*/
THREE.CurvePath.prototype.closePath = function() {
// TODO Test
// and verify for vector3 (needs to implement equals)
// Add a line curve if start and end of lines are not connected
var startPoint = this.curves[ 0 ].getPoint( 0 );
var endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 );
if ( ! startPoint.equals( endPoint ) ) {
this.curves.push( new THREE.LineCurve( endPoint, startPoint ) );
}
};
// To get accurate point with reference to
// entire path distance at time t,
// following has to be done:
// 1. Length of each sub path have to be known
// 2. Locate and identify type of curve
// 3. Get t for the curve
// 4. Return curve.getPointAt(t')
THREE.CurvePath.prototype.getPoint = function( t ) {
var d = t * this.getLength();
var curveLengths = this.getCurveLengths();
var i = 0;
// To think about boundaries points.
while ( i < curveLengths.length ) {
if ( curveLengths[ i ] >= d ) {
var diff = curveLengths[ i ] - d;
var curve = this.curves[ i ];
var u = 1 - diff / curve.getLength();
return curve.getPointAt( u );
}
i ++;
}
return null;
// loop where sum != 0, sum > d , sum+1 <d
};
/*
THREE.CurvePath.prototype.getTangent = function( t ) {
};
*/
// We cannot use the default THREE.Curve getPoint() with getLength() because in
// THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
// getPoint() depends on getLength
THREE.CurvePath.prototype.getLength = function() {
var lens = this.getCurveLengths();
return lens[ lens.length - 1 ];
};
// Compute lengths and cache them
// We cannot overwrite getLengths() because UtoT mapping uses it.
THREE.CurvePath.prototype.getCurveLengths = function() {
// We use cache values if curves and cache array are same length
if ( this.cacheLengths && this.cacheLengths.length === this.curves.length ) {
return this.cacheLengths;
}
// Get length of sub-curve
// Push sums into cached array
var lengths = [], sums = 0;
for ( var i = 0, l = this.curves.length; i < l; i ++ ) {
sums += this.curves[ i ].getLength();
lengths.push( sums );
}
this.cacheLengths = lengths;
return lengths;
};
/**************************************************************
* Create Geometries Helpers
**************************************************************/
/// Generate geometry from path points (for Line or Points objects)
THREE.CurvePath.prototype.createPointsGeometry = function( divisions ) {
var pts = this.getPoints( divisions );
return this.createGeometry( pts );
};
// Generate geometry from equidistant sampling along the path
THREE.CurvePath.prototype.createSpacedPointsGeometry = function( divisions ) {
var pts = this.getSpacedPoints( divisions );
return this.createGeometry( pts );
};
THREE.CurvePath.prototype.createGeometry = function( points ) {
var geometry = new THREE.Geometry();
for ( var i = 0, l = points.length; i < l; i ++ ) {
var point = points[ i ];
geometry.vertices.push( new THREE.Vector3( point.x, point.y, point.z || 0 ) );
}
return geometry;
};
// File:src/extras/core/Font.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author mrdoob / http://mrdoob.com/
*/
THREE.Font = function ( data ) {
this.data = data;
};
THREE.Font.prototype = {
constructor: THREE.Font,
generateShapes: function ( text, size, divisions ) {
function createPaths( text ) {
var chars = String( text ).split( '' );
var scale = size / data.resolution;
var offset = 0;
var paths = [];
for ( var i = 0; i < chars.length; i ++ ) {
var ret = createPath( chars[ i ], scale, offset );
offset += ret.offset;
paths.push( ret.path );
}
return paths;
}
function createPath( c, scale, offset ) {
var glyph = data.glyphs[ c ] || data.glyphs[ '?' ];
if ( ! glyph ) return;
var path = new THREE.Path();
var pts = [], b2 = THREE.ShapeUtils.b2, b3 = THREE.ShapeUtils.b3;
var x, y, cpx, cpy, cpx0, cpy0, cpx1, cpy1, cpx2, cpy2, laste;
if ( glyph.o ) {
var outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) );
for ( var i = 0, l = outline.length; i < l; ) {
var action = outline[ i ++ ];
switch ( action ) {
case 'm': // moveTo
x = outline[ i ++ ] * scale + offset;
y = outline[ i ++ ] * scale;
path.moveTo( x, y );
break;
case 'l': // lineTo
x = outline[ i ++ ] * scale + offset;
y = outline[ i ++ ] * scale;
path.lineTo( x, y );
break;
case 'q': // quadraticCurveTo
cpx = outline[ i ++ ] * scale + offset;
cpy = outline[ i ++ ] * scale;
cpx1 = outline[ i ++ ] * scale + offset;
cpy1 = outline[ i ++ ] * scale;
path.quadraticCurveTo( cpx1, cpy1, cpx, cpy );
laste = pts[ pts.length - 1 ];
if ( laste ) {
cpx0 = laste.x;
cpy0 = laste.y;
for ( var i2 = 1; i2 <= divisions; i2 ++ ) {
var t = i2 / divisions;
b2( t, cpx0, cpx1, cpx );
b2( t, cpy0, cpy1, cpy );
}
}
break;
case 'b': // bezierCurveTo
cpx = outline[ i ++ ] * scale + offset;
cpy = outline[ i ++ ] * scale;
cpx1 = outline[ i ++ ] * scale + offset;
cpy1 = outline[ i ++ ] * scale;
cpx2 = outline[ i ++ ] * scale + offset;
cpy2 = outline[ i ++ ] * scale;
path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy );
laste = pts[ pts.length - 1 ];
if ( laste ) {
cpx0 = laste.x;
cpy0 = laste.y;
for ( var i2 = 1; i2 <= divisions; i2 ++ ) {
var t = i2 / divisions;
b3( t, cpx0, cpx1, cpx2, cpx );
b3( t, cpy0, cpy1, cpy2, cpy );
}
}
break;
}
}
}
return { offset: glyph.ha * scale, path: path };
}
//
if ( size === undefined ) size = 100;
if ( divisions === undefined ) divisions = 4;
var data = this.data;
var paths = createPaths( text );
var shapes = [];
for ( var p = 0, pl = paths.length; p < pl; p ++ ) {
Array.prototype.push.apply( shapes, paths[ p ].toShapes() );
}
return shapes;
}
};
// File:src/extras/core/Path.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Creates free form 2d path using series of points, lines or curves.
*
**/
THREE.Path = function ( points ) {
THREE.CurvePath.call( this );
this.actions = [];
if ( points ) {
this.fromPoints( points );
}
};
THREE.Path.prototype = Object.create( THREE.CurvePath.prototype );
THREE.Path.prototype.constructor = THREE.Path;
// TODO Clean up PATH API
// Create path using straight lines to connect all points
// - vectors: array of Vector2
THREE.Path.prototype.fromPoints = function ( vectors ) {
this.moveTo( vectors[ 0 ].x, vectors[ 0 ].y );
for ( var i = 1, l = vectors.length; i < l; i ++ ) {
this.lineTo( vectors[ i ].x, vectors[ i ].y );
}
};
// startPath() endPath()?
THREE.Path.prototype.moveTo = function ( x, y ) {
this.actions.push( { action: 'moveTo', args: [ x, y ] } );
};
THREE.Path.prototype.lineTo = function ( x, y ) {
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
var curve = new THREE.LineCurve( new THREE.Vector2( x0, y0 ), new THREE.Vector2( x, y ) );
this.curves.push( curve );
this.actions.push( { action: 'lineTo', args: [ x, y ] } );
};
THREE.Path.prototype.quadraticCurveTo = function( aCPx, aCPy, aX, aY ) {
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
var curve = new THREE.QuadraticBezierCurve(
new THREE.Vector2( x0, y0 ),
new THREE.Vector2( aCPx, aCPy ),
new THREE.Vector2( aX, aY )
);
this.curves.push( curve );
this.actions.push( { action: 'quadraticCurveTo', args: [ aCPx, aCPy, aX, aY ] } );
};
THREE.Path.prototype.bezierCurveTo = function( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
var curve = new THREE.CubicBezierCurve(
new THREE.Vector2( x0, y0 ),
new THREE.Vector2( aCP1x, aCP1y ),
new THREE.Vector2( aCP2x, aCP2y ),
new THREE.Vector2( aX, aY )
);
this.curves.push( curve );
this.actions.push( { action: 'bezierCurveTo', args: [ aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ] } );
};
THREE.Path.prototype.splineThru = function( pts /*Array of Vector*/ ) {
var args = Array.prototype.slice.call( arguments );
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
var npts = [ new THREE.Vector2( x0, y0 ) ];
Array.prototype.push.apply( npts, pts );
var curve = new THREE.SplineCurve( npts );
this.curves.push( curve );
this.actions.push( { action: 'splineThru', args: args } );
};
// FUTURE: Change the API or follow canvas API?
THREE.Path.prototype.arc = function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
this.absarc( aX + x0, aY + y0, aRadius,
aStartAngle, aEndAngle, aClockwise );
};
THREE.Path.prototype.absarc = function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );
};
THREE.Path.prototype.ellipse = function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );
};
THREE.Path.prototype.absellipse = function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
var args = [
aX, aY,
xRadius, yRadius,
aStartAngle, aEndAngle,
aClockwise,
aRotation || 0 // aRotation is optional.
];
var curve = new THREE.EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );
this.curves.push( curve );
var lastPoint = curve.getPoint( 1 );
args.push( lastPoint.x );
args.push( lastPoint.y );
this.actions.push( { action: 'ellipse', args: args } );
};
THREE.Path.prototype.getSpacedPoints = function ( divisions ) {
if ( ! divisions ) divisions = 40;
var points = [];
for ( var i = 0; i < divisions; i ++ ) {
points.push( this.getPoint( i / divisions ) );
//if ( !this.getPoint( i / divisions ) ) throw "DIE";
}
if ( this.autoClose ) {
points.push( points[ 0 ] );
}
return points;
};
/* Return an array of vectors based on contour of the path */
THREE.Path.prototype.getPoints = function( divisions ) {
divisions = divisions || 12;
var b2 = THREE.ShapeUtils.b2;
var b3 = THREE.ShapeUtils.b3;
var points = [];
var cpx, cpy, cpx2, cpy2, cpx1, cpy1, cpx0, cpy0,
laste, tx, ty;
for ( var i = 0, l = this.actions.length; i < l; i ++ ) {
var item = this.actions[ i ];
var action = item.action;
var args = item.args;
switch ( action ) {
case 'moveTo':
points.push( new THREE.Vector2( args[ 0 ], args[ 1 ] ) );
break;
case 'lineTo':
points.push( new THREE.Vector2( args[ 0 ], args[ 1 ] ) );
break;
case 'quadraticCurveTo':
cpx = args[ 2 ];
cpy = args[ 3 ];
cpx1 = args[ 0 ];
cpy1 = args[ 1 ];
if ( points.length > 0 ) {
laste = points[ points.length - 1 ];
cpx0 = laste.x;
cpy0 = laste.y;
} else {
laste = this.actions[ i - 1 ].args;
cpx0 = laste[ laste.length - 2 ];
cpy0 = laste[ laste.length - 1 ];
}
for ( var j = 1; j <= divisions; j ++ ) {
var t = j / divisions;
tx = b2( t, cpx0, cpx1, cpx );
ty = b2( t, cpy0, cpy1, cpy );
points.push( new THREE.Vector2( tx, ty ) );
}
break;
case 'bezierCurveTo':
cpx = args[ 4 ];
cpy = args[ 5 ];
cpx1 = args[ 0 ];
cpy1 = args[ 1 ];
cpx2 = args[ 2 ];
cpy2 = args[ 3 ];
if ( points.length > 0 ) {
laste = points[ points.length - 1 ];
cpx0 = laste.x;
cpy0 = laste.y;
} else {
laste = this.actions[ i - 1 ].args;
cpx0 = laste[ laste.length - 2 ];
cpy0 = laste[ laste.length - 1 ];
}
for ( var j = 1; j <= divisions; j ++ ) {
var t = j / divisions;
tx = b3( t, cpx0, cpx1, cpx2, cpx );
ty = b3( t, cpy0, cpy1, cpy2, cpy );
points.push( new THREE.Vector2( tx, ty ) );
}
break;
case 'splineThru':
laste = this.actions[ i - 1 ].args;
var last = new THREE.Vector2( laste[ laste.length - 2 ], laste[ laste.length - 1 ] );
var spts = [ last ];
var n = divisions * args[ 0 ].length;
spts = spts.concat( args[ 0 ] );
var spline = new THREE.SplineCurve( spts );
for ( var j = 1; j <= n; j ++ ) {
points.push( spline.getPointAt( j / n ) );
}
break;
case 'arc':
var aX = args[ 0 ], aY = args[ 1 ],
aRadius = args[ 2 ],
aStartAngle = args[ 3 ], aEndAngle = args[ 4 ],
aClockwise = !! args[ 5 ];
var deltaAngle = aEndAngle - aStartAngle;
var angle;
var tdivisions = divisions * 2;
for ( var j = 1; j <= tdivisions; j ++ ) {
var t = j / tdivisions;
if ( ! aClockwise ) {
t = 1 - t;
}
angle = aStartAngle + t * deltaAngle;
tx = aX + aRadius * Math.cos( angle );
ty = aY + aRadius * Math.sin( angle );
//console.log('t', t, 'angle', angle, 'tx', tx, 'ty', ty);
points.push( new THREE.Vector2( tx, ty ) );
}
//console.log(points);
break;
case 'ellipse':
var aX = args[ 0 ], aY = args[ 1 ],
xRadius = args[ 2 ],
yRadius = args[ 3 ],
aStartAngle = args[ 4 ], aEndAngle = args[ 5 ],
aClockwise = !! args[ 6 ],
aRotation = args[ 7 ];
var deltaAngle = aEndAngle - aStartAngle;
var angle;
var tdivisions = divisions * 2;
var cos, sin;
if ( aRotation !== 0 ) {
cos = Math.cos( aRotation );
sin = Math.sin( aRotation );
}
for ( var j = 1; j <= tdivisions; j ++ ) {
var t = j / tdivisions;
if ( ! aClockwise ) {
t = 1 - t;
}
angle = aStartAngle + t * deltaAngle;
tx = aX + xRadius * Math.cos( angle );
ty = aY + yRadius * Math.sin( angle );
if ( aRotation !== 0 ) {
var x = tx, y = ty;
// Rotate the point about the center of the ellipse.
tx = ( x - aX ) * cos - ( y - aY ) * sin + aX;
ty = ( x - aX ) * sin + ( y - aY ) * cos + aY;
}
//console.log('t', t, 'angle', angle, 'tx', tx, 'ty', ty);
points.push( new THREE.Vector2( tx, ty ) );
}
//console.log(points);
break;
} // end switch
}
// Normalize to remove the closing point by default.
var lastPoint = points[ points.length - 1 ];
if ( Math.abs( lastPoint.x - points[ 0 ].x ) < Number.EPSILON &&
Math.abs( lastPoint.y - points[ 0 ].y ) < Number.EPSILON )
points.splice( points.length - 1, 1 );
if ( this.autoClose ) {
points.push( points[ 0 ] );
}
return points;
};
//
// Breaks path into shapes
//
// Assumptions (if parameter isCCW==true the opposite holds):
// - solid shapes are defined clockwise (CW)
// - holes are defined counterclockwise (CCW)
//
// If parameter noHoles==true:
// - all subPaths are regarded as solid shapes
// - definition order CW/CCW has no relevance
//
THREE.Path.prototype.toShapes = function( isCCW, noHoles ) {
function extractSubpaths( inActions ) {
var subPaths = [], lastPath = new THREE.Path();
for ( var i = 0, l = inActions.length; i < l; i ++ ) {
var item = inActions[ i ];
var args = item.args;
var action = item.action;
if ( action === 'moveTo' ) {
if ( lastPath.actions.length !== 0 ) {
subPaths.push( lastPath );
lastPath = new THREE.Path();
}
}
lastPath[ action ].apply( lastPath, args );
}
if ( lastPath.actions.length !== 0 ) {
subPaths.push( lastPath );
}
// console.log(subPaths);
return subPaths;
}
function toShapesNoHoles( inSubpaths ) {
var shapes = [];
for ( var i = 0, l = inSubpaths.length; i < l; i ++ ) {
var tmpPath = inSubpaths[ i ];
var tmpShape = new THREE.Shape();
tmpShape.actions = tmpPath.actions;
tmpShape.curves = tmpPath.curves;
shapes.push( tmpShape );
}
//console.log("shape", shapes);
return shapes;
}
function isPointInsidePolygon( inPt, inPolygon ) {
var polyLen = inPolygon.length;
// inPt on polygon contour => immediate success or
// toggling of inside/outside at every single! intersection point of an edge
// with the horizontal line through inPt, left of inPt
// not counting lowerY endpoints of edges and whole edges on that line
var inside = false;
for ( var p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) {
var edgeLowPt = inPolygon[ p ];
var edgeHighPt = inPolygon[ q ];
var edgeDx = edgeHighPt.x - edgeLowPt.x;
var edgeDy = edgeHighPt.y - edgeLowPt.y;
if ( Math.abs( edgeDy ) > Number.EPSILON ) {
// not parallel
if ( edgeDy < 0 ) {
edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx;
edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy;
}
if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) continue;
if ( inPt.y === edgeLowPt.y ) {
if ( inPt.x === edgeLowPt.x ) return true; // inPt is on contour ?
// continue; // no intersection or edgeLowPt => doesn't count !!!
} else {
var perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y );
if ( perpEdge === 0 ) return true; // inPt is on contour ?
if ( perpEdge < 0 ) continue;
inside = ! inside; // true intersection left of inPt
}
} else {
// parallel or collinear
if ( inPt.y !== edgeLowPt.y ) continue; // parallel
// edge lies on the same horizontal line as inPt
if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) ||
( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) return true; // inPt: Point on contour !
// continue;
}
}
return inside;
}
var isClockWise = THREE.ShapeUtils.isClockWise;
var subPaths = extractSubpaths( this.actions );
if ( subPaths.length === 0 ) return [];
if ( noHoles === true ) return toShapesNoHoles( subPaths );
var solid, tmpPath, tmpShape, shapes = [];
if ( subPaths.length === 1 ) {
tmpPath = subPaths[ 0 ];
tmpShape = new THREE.Shape();
tmpShape.actions = tmpPath.actions;
tmpShape.curves = tmpPath.curves;
shapes.push( tmpShape );
return shapes;
}
var holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() );
holesFirst = isCCW ? ! holesFirst : holesFirst;
// console.log("Holes first", holesFirst);
var betterShapeHoles = [];
var newShapes = [];
var newShapeHoles = [];
var mainIdx = 0;
var tmpPoints;
newShapes[ mainIdx ] = undefined;
newShapeHoles[ mainIdx ] = [];
for ( var i = 0, l = subPaths.length; i < l; i ++ ) {
tmpPath = subPaths[ i ];
tmpPoints = tmpPath.getPoints();
solid = isClockWise( tmpPoints );
solid = isCCW ? ! solid : solid;
if ( solid ) {
if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) ) mainIdx ++;
newShapes[ mainIdx ] = { s: new THREE.Shape(), p: tmpPoints };
newShapes[ mainIdx ].s.actions = tmpPath.actions;
newShapes[ mainIdx ].s.curves = tmpPath.curves;
if ( holesFirst ) mainIdx ++;
newShapeHoles[ mainIdx ] = [];
//console.log('cw', i);
} else {
newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } );
//console.log('ccw', i);
}
}
// only Holes? -> probably all Shapes with wrong orientation
if ( ! newShapes[ 0 ] ) return toShapesNoHoles( subPaths );
if ( newShapes.length > 1 ) {
var ambiguous = false;
var toChange = [];
for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {
betterShapeHoles[ sIdx ] = [];
}
for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {
var sho = newShapeHoles[ sIdx ];
for ( var hIdx = 0; hIdx < sho.length; hIdx ++ ) {
var ho = sho[ hIdx ];
var hole_unassigned = true;
for ( var s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) {
if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) {
if ( sIdx !== s2Idx ) toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } );
if ( hole_unassigned ) {
hole_unassigned = false;
betterShapeHoles[ s2Idx ].push( ho );
} else {
ambiguous = true;
}
}
}
if ( hole_unassigned ) {
betterShapeHoles[ sIdx ].push( ho );
}
}
}
// console.log("ambiguous: ", ambiguous);
if ( toChange.length > 0 ) {
// console.log("to change: ", toChange);
if ( ! ambiguous ) newShapeHoles = betterShapeHoles;
}
}
var tmpHoles;
for ( var i = 0, il = newShapes.length; i < il; i ++ ) {
tmpShape = newShapes[ i ].s;
shapes.push( tmpShape );
tmpHoles = newShapeHoles[ i ];
for ( var j = 0, jl = tmpHoles.length; j < jl; j ++ ) {
tmpShape.holes.push( tmpHoles[ j ].h );
}
}
//console.log("shape", shapes);
return shapes;
};
// File:src/extras/core/Shape.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Defines a 2d shape plane using paths.
**/
// STEP 1 Create a path.
// STEP 2 Turn path into shape.
// STEP 3 ExtrudeGeometry takes in Shape/Shapes
// STEP 3a - Extract points from each shape, turn to vertices
// STEP 3b - Triangulate each shape, add faces.
THREE.Shape = function () {
THREE.Path.apply( this, arguments );
this.holes = [];
};
THREE.Shape.prototype = Object.create( THREE.Path.prototype );
THREE.Shape.prototype.constructor = THREE.Shape;
// Convenience method to return ExtrudeGeometry
THREE.Shape.prototype.extrude = function ( options ) {
return new THREE.ExtrudeGeometry( this, options );
};
// Convenience method to return ShapeGeometry
THREE.Shape.prototype.makeGeometry = function ( options ) {
return new THREE.ShapeGeometry( this, options );
};
// Get points of holes
THREE.Shape.prototype.getPointsHoles = function ( divisions ) {
var holesPts = [];
for ( var i = 0, l = this.holes.length; i < l; i ++ ) {
holesPts[ i ] = this.holes[ i ].getPoints( divisions );
}
return holesPts;
};
// Get points of shape and holes (keypoints based on segments parameter)
THREE.Shape.prototype.extractAllPoints = function ( divisions ) {
return {
shape: this.getPoints( divisions ),
holes: this.getPointsHoles( divisions )
};
};
THREE.Shape.prototype.extractPoints = function ( divisions ) {
return this.extractAllPoints( divisions );
};
// File:src/extras/curves/LineCurve.js
/**************************************************************
* Line
**************************************************************/
THREE.LineCurve = function ( v1, v2 ) {
this.v1 = v1;
this.v2 = v2;
};
THREE.LineCurve.prototype = Object.create( THREE.Curve.prototype );
THREE.LineCurve.prototype.constructor = THREE.LineCurve;
THREE.LineCurve.prototype.getPoint = function ( t ) {
var point = this.v2.clone().sub( this.v1 );
point.multiplyScalar( t ).add( this.v1 );
return point;
};
// Line curve is linear, so we can overwrite default getPointAt
THREE.LineCurve.prototype.getPointAt = function ( u ) {
return this.getPoint( u );
};
THREE.LineCurve.prototype.getTangent = function( t ) {
var tangent = this.v2.clone().sub( this.v1 );
return tangent.normalize();
};
// File:src/extras/curves/QuadraticBezierCurve.js
/**************************************************************
* Quadratic Bezier curve
**************************************************************/
THREE.QuadraticBezierCurve = function ( v0, v1, v2 ) {
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
};
THREE.QuadraticBezierCurve.prototype = Object.create( THREE.Curve.prototype );
THREE.QuadraticBezierCurve.prototype.constructor = THREE.QuadraticBezierCurve;
THREE.QuadraticBezierCurve.prototype.getPoint = function ( t ) {
var b2 = THREE.ShapeUtils.b2;
return new THREE.Vector2(
b2( t, this.v0.x, this.v1.x, this.v2.x ),
b2( t, this.v0.y, this.v1.y, this.v2.y )
);
};
THREE.QuadraticBezierCurve.prototype.getTangent = function( t ) {
var tangentQuadraticBezier = THREE.CurveUtils.tangentQuadraticBezier;
return new THREE.Vector2(
tangentQuadraticBezier( t, this.v0.x, this.v1.x, this.v2.x ),
tangentQuadraticBezier( t, this.v0.y, this.v1.y, this.v2.y )
).normalize();
};
// File:src/extras/curves/CubicBezierCurve.js
/**************************************************************
* Cubic Bezier curve
**************************************************************/
THREE.CubicBezierCurve = function ( v0, v1, v2, v3 ) {
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
};
THREE.CubicBezierCurve.prototype = Object.create( THREE.Curve.prototype );
THREE.CubicBezierCurve.prototype.constructor = THREE.CubicBezierCurve;
THREE.CubicBezierCurve.prototype.getPoint = function ( t ) {
var b3 = THREE.ShapeUtils.b3;
return new THREE.Vector2(
b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ),
b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y )
);
};
THREE.CubicBezierCurve.prototype.getTangent = function( t ) {
var tangentCubicBezier = THREE.CurveUtils.tangentCubicBezier;
return new THREE.Vector2(
tangentCubicBezier( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ),
tangentCubicBezier( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y )
).normalize();
};
// File:src/extras/curves/SplineCurve.js
/**************************************************************
* Spline curve
**************************************************************/
THREE.SplineCurve = function ( points /* array of Vector2 */ ) {
this.points = ( points == undefined ) ? [] : points;
};
THREE.SplineCurve.prototype = Object.create( THREE.Curve.prototype );
THREE.SplineCurve.prototype.constructor = THREE.SplineCurve;
THREE.SplineCurve.prototype.getPoint = function ( t ) {
var points = this.points;
var point = ( points.length - 1 ) * t;
var intPoint = Math.floor( point );
var weight = point - intPoint;
var point0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ];
var point1 = points[ intPoint ];
var point2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ];
var point3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ];
var interpolate = THREE.CurveUtils.interpolate;
return new THREE.Vector2(
interpolate( point0.x, point1.x, point2.x, point3.x, weight ),
interpolate( point0.y, point1.y, point2.y, point3.y, weight )
);
};
// File:src/extras/curves/EllipseCurve.js
/**************************************************************
* Ellipse curve
**************************************************************/
THREE.EllipseCurve = function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
this.aX = aX;
this.aY = aY;
this.xRadius = xRadius;
this.yRadius = yRadius;
this.aStartAngle = aStartAngle;
this.aEndAngle = aEndAngle;
this.aClockwise = aClockwise;
this.aRotation = aRotation || 0;
};
THREE.EllipseCurve.prototype = Object.create( THREE.Curve.prototype );
THREE.EllipseCurve.prototype.constructor = THREE.EllipseCurve;
THREE.EllipseCurve.prototype.getPoint = function ( t ) {
var deltaAngle = this.aEndAngle - this.aStartAngle;
if ( deltaAngle < 0 ) deltaAngle += Math.PI * 2;
if ( deltaAngle > Math.PI * 2 ) deltaAngle -= Math.PI * 2;
var angle;
if ( this.aClockwise === true ) {
angle = this.aEndAngle + ( 1 - t ) * ( Math.PI * 2 - deltaAngle );
} else {
angle = this.aStartAngle + t * deltaAngle;
}
var x = this.aX + this.xRadius * Math.cos( angle );
var y = this.aY + this.yRadius * Math.sin( angle );
if ( this.aRotation !== 0 ) {
var cos = Math.cos( this.aRotation );
var sin = Math.sin( this.aRotation );
var tx = x, ty = y;
// Rotate the point about the center of the ellipse.
x = ( tx - this.aX ) * cos - ( ty - this.aY ) * sin + this.aX;
y = ( tx - this.aX ) * sin + ( ty - this.aY ) * cos + this.aY;
}
return new THREE.Vector2( x, y );
};
// File:src/extras/curves/ArcCurve.js
/**************************************************************
* Arc curve
**************************************************************/
THREE.ArcCurve = function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
THREE.EllipseCurve.call( this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );
};
THREE.ArcCurve.prototype = Object.create( THREE.EllipseCurve.prototype );
THREE.ArcCurve.prototype.constructor = THREE.ArcCurve;
// File:src/extras/curves/LineCurve3.js
/**************************************************************
* Line3D
**************************************************************/
THREE.LineCurve3 = THREE.Curve.create(
function ( v1, v2 ) {
this.v1 = v1;
this.v2 = v2;
},
function ( t ) {
var vector = new THREE.Vector3();
vector.subVectors( this.v2, this.v1 ); // diff
vector.multiplyScalar( t );
vector.add( this.v1 );
return vector;
}
);
// File:src/extras/curves/QuadraticBezierCurve3.js
/**************************************************************
* Quadratic Bezier 3D curve
**************************************************************/
THREE.QuadraticBezierCurve3 = THREE.Curve.create(
function ( v0, v1, v2 ) {
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
},
function ( t ) {
var b2 = THREE.ShapeUtils.b2;
return new THREE.Vector3(
b2( t, this.v0.x, this.v1.x, this.v2.x ),
b2( t, this.v0.y, this.v1.y, this.v2.y ),
b2( t, this.v0.z, this.v1.z, this.v2.z )
);
}
);
// File:src/extras/curves/CubicBezierCurve3.js
/**************************************************************
* Cubic Bezier 3D curve
**************************************************************/
THREE.CubicBezierCurve3 = THREE.Curve.create(
function ( v0, v1, v2, v3 ) {
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
},
function ( t ) {
var b3 = THREE.ShapeUtils.b3;
return new THREE.Vector3(
b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ),
b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y ),
b3( t, this.v0.z, this.v1.z, this.v2.z, this.v3.z )
);
}
);
// File:src/extras/curves/SplineCurve3.js
/**************************************************************
* Spline 3D curve
**************************************************************/
THREE.SplineCurve3 = THREE.Curve.create(
function ( points /* array of Vector3 */ ) {
console.warn( 'THREE.SplineCurve3 will be deprecated. Please use THREE.CatmullRomCurve3' );
this.points = ( points == undefined ) ? [] : points;
},
function ( t ) {
var points = this.points;
var point = ( points.length - 1 ) * t;
var intPoint = Math.floor( point );
var weight = point - intPoint;
var point0 = points[ intPoint == 0 ? intPoint : intPoint - 1 ];
var point1 = points[ intPoint ];
var point2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ];
var point3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ];
var interpolate = THREE.CurveUtils.interpolate;
return new THREE.Vector3(
interpolate( point0.x, point1.x, point2.x, point3.x, weight ),
interpolate( point0.y, point1.y, point2.y, point3.y, weight ),
interpolate( point0.z, point1.z, point2.z, point3.z, weight )
);
}
);
// File:src/extras/curves/CatmullRomCurve3.js
/**
* @author zz85 https://github.com/zz85
*
* Centripetal CatmullRom Curve - which is useful for avoiding
* cusps and self-intersections in non-uniform catmull rom curves.
* http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
*
* curve.type accepts centripetal(default), chordal and catmullrom
* curve.tension is used for catmullrom which defaults to 0.5
*/
THREE.CatmullRomCurve3 = ( function() {
var
tmp = new THREE.Vector3(),
px = new CubicPoly(),
py = new CubicPoly(),
pz = new CubicPoly();
/*
Based on an optimized c++ solution in
- http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
- http://ideone.com/NoEbVM
This CubicPoly class could be used for reusing some variables and calculations,
but for three.js curve use, it could be possible inlined and flatten into a single function call
which can be placed in CurveUtils.
*/
function CubicPoly() {
}
/*
* Compute coefficients for a cubic polynomial
* p(s) = c0 + c1*s + c2*s^2 + c3*s^3
* such that
* p(0) = x0, p(1) = x1
* and
* p'(0) = t0, p'(1) = t1.
*/
CubicPoly.prototype.init = function( x0, x1, t0, t1 ) {
this.c0 = x0;
this.c1 = t0;
this.c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1;
this.c3 = 2 * x0 - 2 * x1 + t0 + t1;
};
CubicPoly.prototype.initNonuniformCatmullRom = function( x0, x1, x2, x3, dt0, dt1, dt2 ) {
// compute tangents when parameterized in [t1,t2]
var t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1;
var t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2;
// rescale tangents for parametrization in [0,1]
t1 *= dt1;
t2 *= dt1;
// initCubicPoly
this.init( x1, x2, t1, t2 );
};
// standard Catmull-Rom spline: interpolate between x1 and x2 with previous/following points x1/x4
CubicPoly.prototype.initCatmullRom = function( x0, x1, x2, x3, tension ) {
this.init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) );
};
CubicPoly.prototype.calc = function( t ) {
var t2 = t * t;
var t3 = t2 * t;
return this.c0 + this.c1 * t + this.c2 * t2 + this.c3 * t3;
};
// Subclass Three.js curve
return THREE.Curve.create(
function ( p /* array of Vector3 */ ) {
this.points = p || [];
this.closed = false;
},
function ( t ) {
var points = this.points,
point, intPoint, weight, l;
l = points.length;
if ( l < 2 ) console.log( 'duh, you need at least 2 points' );
point = ( l - ( this.closed ? 0 : 1 ) ) * t;
intPoint = Math.floor( point );
weight = point - intPoint;
if ( this.closed ) {
intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / points.length ) + 1 ) * points.length;
} else if ( weight === 0 && intPoint === l - 1 ) {
intPoint = l - 2;
weight = 1;
}
var p0, p1, p2, p3; // 4 points
if ( this.closed || intPoint > 0 ) {
p0 = points[ ( intPoint - 1 ) % l ];
} else {
// extrapolate first point
tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] );
p0 = tmp;
}
p1 = points[ intPoint % l ];
p2 = points[ ( intPoint + 1 ) % l ];
if ( this.closed || intPoint + 2 < l ) {
p3 = points[ ( intPoint + 2 ) % l ];
} else {
// extrapolate last point
tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] );
p3 = tmp;
}
if ( this.type === undefined || this.type === 'centripetal' || this.type === 'chordal' ) {
// init Centripetal / Chordal Catmull-Rom
var pow = this.type === 'chordal' ? 0.5 : 0.25;
var dt0 = Math.pow( p0.distanceToSquared( p1 ), pow );
var dt1 = Math.pow( p1.distanceToSquared( p2 ), pow );
var dt2 = Math.pow( p2.distanceToSquared( p3 ), pow );
// safety check for repeated points
if ( dt1 < 1e-4 ) dt1 = 1.0;
if ( dt0 < 1e-4 ) dt0 = dt1;
if ( dt2 < 1e-4 ) dt2 = dt1;
px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 );
py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 );
pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 );
} else if ( this.type === 'catmullrom' ) {
var tension = this.tension !== undefined ? this.tension : 0.5;
px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, tension );
py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, tension );
pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, tension );
}
var v = new THREE.Vector3(
px.calc( weight ),
py.calc( weight ),
pz.calc( weight )
);
return v;
}
);
} )();
// File:src/extras/curves/ClosedSplineCurve3.js
/**************************************************************
* Closed Spline 3D curve
**************************************************************/
THREE.ClosedSplineCurve3 = function ( points ) {
console.warn( 'THREE.ClosedSplineCurve3 has been deprecated. Please use THREE.CatmullRomCurve3.' );
THREE.CatmullRomCurve3.call( this, points );
this.type = 'catmullrom';
this.closed = true;
};
THREE.ClosedSplineCurve3.prototype = Object.create( THREE.CatmullRomCurve3.prototype );
// File:src/extras/geometries/BoxGeometry.js
/**
* @author mrdoob / http://mrdoob.com/
* based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Cube.as
*/
THREE.BoxGeometry = function ( width, height, depth, widthSegments, heightSegments, depthSegments ) {
THREE.Geometry.call( this );
this.type = 'BoxGeometry';
this.parameters = {
width: width,
height: height,
depth: depth,
widthSegments: widthSegments,
heightSegments: heightSegments,
depthSegments: depthSegments
};
this.fromBufferGeometry( new THREE.BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) );
this.mergeVertices();
};
THREE.BoxGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.BoxGeometry.prototype.constructor = THREE.BoxGeometry;
THREE.CubeGeometry = THREE.BoxGeometry;
// File:src/extras/geometries/BoxBufferGeometry.js
/**
* @author Mugen87 / https://github.com/Mugen87
*/
THREE.BoxBufferGeometry = function ( width, height, depth, widthSegments, heightSegments, depthSegments ) {
THREE.BufferGeometry.call( this );
this.type = 'BoxBufferGeometry';
this.parameters = {
width: width,
height: height,
depth: depth,
widthSegments: widthSegments,
heightSegments: heightSegments,
depthSegments: depthSegments
};
var scope = this;
// segments
widthSegments = Math.floor( widthSegments ) || 1;
heightSegments = Math.floor( heightSegments ) || 1;
depthSegments = Math.floor( depthSegments ) || 1;
// these are used to calculate buffer length
var vertexCount = calculateVertexCount( widthSegments, heightSegments, depthSegments );
var indexCount = ( vertexCount / 4 ) * 6;
// buffers
var indices = new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount );
var vertices = new Float32Array( vertexCount * 3 );
var normals = new Float32Array( vertexCount * 3 );
var uvs = new Float32Array( vertexCount * 2 );
// offset variables
var vertexBufferOffset = 0;
var uvBufferOffset = 0;
var indexBufferOffset = 0;
var numberOfVertices = 0;
// group variables
var groupStart = 0;
// build each side of the box geometry
buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px
buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx
buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py
buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny
buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz
buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz
// build geometry
this.setIndex( new THREE.BufferAttribute( indices, 1 ) );
this.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) );
this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) );
this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) );
// helper functions
function calculateVertexCount ( w, h, d ) {
var segments = 0;
// calculate the amount of segments for each side
segments += w * h * 2; // xy
segments += w * d * 2; // xz
segments += d * h * 2; // zy
return segments * 4; // four vertices per segments
}
function buildPlane ( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) {
var segmentWidth = width / gridX;
var segmentHeight = height / gridY;
var widthHalf = width / 2;
var heightHalf = height / 2;
var depthHalf = depth / 2;
var gridX1 = gridX + 1;
var gridY1 = gridY + 1;
var vertexCounter = 0;
var groupCount = 0;
var vector = new THREE.Vector3();
// generate vertices, normals and uvs
for ( var iy = 0; iy < gridY1; iy ++ ) {
var y = iy * segmentHeight - heightHalf;
for ( var ix = 0; ix < gridX1; ix ++ ) {
var x = ix * segmentWidth - widthHalf;
// set values to correct vector component
vector[ u ] = x * udir;
vector[ v ] = y * vdir;
vector[ w ] = depthHalf;
// now apply vector to vertex buffer
vertices[ vertexBufferOffset ] = vector.x;
vertices[ vertexBufferOffset + 1 ] = vector.y;
vertices[ vertexBufferOffset + 2 ] = vector.z;
// set values to correct vector component
vector[ u ] = 0;
vector[ v ] = 0;
vector[ w ] = depth > 0 ? 1 : - 1;
// now apply vector to normal buffer
normals[ vertexBufferOffset ] = vector.x;
normals[ vertexBufferOffset + 1 ] = vector.y;
normals[ vertexBufferOffset + 2 ] = vector.z;
// uvs
uvs[ uvBufferOffset ] = ix / gridX;
uvs[ uvBufferOffset + 1 ] = 1 - ( iy / gridY );
// update offsets and counters
vertexBufferOffset += 3;
uvBufferOffset += 2;
vertexCounter += 1;
}
}
// 1. you need three indices to draw a single face
// 2. a single segment consists of two faces
// 3. so we need to generate six (2*3) indices per segment
for ( iy = 0; iy < gridY; iy ++ ) {
for ( ix = 0; ix < gridX; ix ++ ) {
// indices
var a = numberOfVertices + ix + gridX1 * iy;
var b = numberOfVertices + ix + gridX1 * ( iy + 1 );
var c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 );
var d = numberOfVertices + ( ix + 1 ) + gridX1 * iy;
// face one
indices[ indexBufferOffset ] = a;
indices[ indexBufferOffset + 1 ] = b;
indices[ indexBufferOffset + 2 ] = d;
// face two
indices[ indexBufferOffset + 3 ] = b;
indices[ indexBufferOffset + 4 ] = c;
indices[ indexBufferOffset + 5 ] = d;
// update offsets and counters
indexBufferOffset += 6;
groupCount += 6;
}
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, materialIndex );
// calculate new start value for groups
groupStart += groupCount;
// update total number of vertices
numberOfVertices += vertexCounter;
}
};
THREE.BoxBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.BoxBufferGeometry.prototype.constructor = THREE.BoxBufferGeometry;
// File:src/extras/geometries/CircleGeometry.js
/**
* @author hughes
*/
THREE.CircleGeometry = function ( radius, segments, thetaStart, thetaLength ) {
THREE.Geometry.call( this );
this.type = 'CircleGeometry';
this.parameters = {
radius: radius,
segments: segments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
this.fromBufferGeometry( new THREE.CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) );
};
THREE.CircleGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.CircleGeometry.prototype.constructor = THREE.CircleGeometry;
// File:src/extras/geometries/CircleBufferGeometry.js
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
THREE.CircleBufferGeometry = function ( radius, segments, thetaStart, thetaLength ) {
THREE.BufferGeometry.call( this );
this.type = 'CircleBufferGeometry';
this.parameters = {
radius: radius,
segments: segments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
radius = radius || 50;
segments = segments !== undefined ? Math.max( 3, segments ) : 8;
thetaStart = thetaStart !== undefined ? thetaStart : 0;
thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;
var vertices = segments + 2;
var positions = new Float32Array( vertices * 3 );
var normals = new Float32Array( vertices * 3 );
var uvs = new Float32Array( vertices * 2 );
// center data is already zero, but need to set a few extras
normals[ 2 ] = 1.0;
uvs[ 0 ] = 0.5;
uvs[ 1 ] = 0.5;
for ( var s = 0, i = 3, ii = 2 ; s <= segments; s ++, i += 3, ii += 2 ) {
var segment = thetaStart + s / segments * thetaLength;
positions[ i ] = radius * Math.cos( segment );
positions[ i + 1 ] = radius * Math.sin( segment );
normals[ i + 2 ] = 1; // normal z
uvs[ ii ] = ( positions[ i ] / radius + 1 ) / 2;
uvs[ ii + 1 ] = ( positions[ i + 1 ] / radius + 1 ) / 2;
}
var indices = [];
for ( var i = 1; i <= segments; i ++ ) {
indices.push( i, i + 1, 0 );
}
this.setIndex( new THREE.BufferAttribute( new Uint16Array( indices ), 1 ) );
this.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) );
this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) );
this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) );
this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius );
};
THREE.CircleBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.CircleBufferGeometry.prototype.constructor = THREE.CircleBufferGeometry;
// File:src/extras/geometries/CylinderBufferGeometry.js
/**
* @author Mugen87 / https://github.com/Mugen87
*/
THREE.CylinderBufferGeometry = function( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
THREE.BufferGeometry.call( this );
this.type = 'CylinderBufferGeometry';
this.parameters = {
radiusTop: radiusTop,
radiusBottom: radiusBottom,
height: height,
radialSegments: radialSegments,
heightSegments: heightSegments,
openEnded: openEnded,
thetaStart: thetaStart,
thetaLength: thetaLength
};
var scope = this;
radiusTop = radiusTop !== undefined ? radiusTop : 20;
radiusBottom = radiusBottom !== undefined ? radiusBottom : 20;
height = height !== undefined ? height : 100;
radialSegments = Math.floor( radialSegments ) || 8;
heightSegments = Math.floor( heightSegments ) || 1;
openEnded = openEnded !== undefined ? openEnded : false;
thetaStart = thetaStart !== undefined ? thetaStart : 0;
thetaLength = thetaLength !== undefined ? thetaLength : 2 * Math.PI;
// used to calculate buffer length
var vertexCount = calculateVertexCount();
var indexCount = calculateIndexCount();
// buffers
var indices = new THREE.BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ), 1 );
var vertices = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 );
// helper variables
var index = 0, indexOffset = 0, indexArray = [], halfHeight = height / 2;
// group variables
var groupStart = 0;
// generate geometry
generateTorso();
if ( openEnded === false ) {
if ( radiusTop > 0 ) generateCap( true );
if ( radiusBottom > 0 ) generateCap( false );
}
// build geometry
this.setIndex( indices );
this.addAttribute( 'position', vertices );
this.addAttribute( 'normal', normals );
this.addAttribute( 'uv', uvs );
// helper functions
function calculateVertexCount() {
var count = ( radialSegments + 1 ) * ( heightSegments + 1 );
if ( openEnded === false ) {
count += ( ( radialSegments + 1 ) * 2 ) + ( radialSegments * 2 );
}
return count;
}
function calculateIndexCount() {
var count = radialSegments * heightSegments * 2 * 3;
if ( openEnded === false ) {
count += radialSegments * 2 * 3;
}
return count;
}
function generateTorso() {
var x, y;
var normal = new THREE.Vector3();
var vertex = new THREE.Vector3();
var groupCount = 0;
// this will be used to calculate the normal
var tanTheta = ( radiusBottom - radiusTop ) / height;
// generate vertices, normals and uvs
for ( y = 0; y <= heightSegments; y ++ ) {
var indexRow = [];
var v = y / heightSegments;
// calculate the radius of the current row
var radius = v * ( radiusBottom - radiusTop ) + radiusTop;
for ( x = 0; x <= radialSegments; x ++ ) {
var u = x / radialSegments;
// vertex
vertex.x = radius * Math.sin( u * thetaLength + thetaStart );
vertex.y = - v * height + halfHeight;
vertex.z = radius * Math.cos( u * thetaLength + thetaStart );
vertices.setXYZ( index, vertex.x, vertex.y, vertex.z );
// normal
normal.copy( vertex );
// handle special case if radiusTop/radiusBottom is zero
if ( ( radiusTop === 0 && y === 0 ) || ( radiusBottom === 0 && y === heightSegments ) ) {
normal.x = Math.sin( u * thetaLength + thetaStart );
normal.z = Math.cos( u * thetaLength + thetaStart );
}
normal.setY( Math.sqrt( normal.x * normal.x + normal.z * normal.z ) * tanTheta ).normalize();
normals.setXYZ( index, normal.x, normal.y, normal.z );
// uv
uvs.setXY( index, u, 1 - v );
// save index of vertex in respective row
indexRow.push( index );
// increase index
index ++;
}
// now save vertices of the row in our index array
indexArray.push( indexRow );
}
// generate indices
for ( x = 0; x < radialSegments; x ++ ) {
for ( y = 0; y < heightSegments; y ++ ) {
// we use the index array to access the correct indices
var i1 = indexArray[ y ][ x ];
var i2 = indexArray[ y + 1 ][ x ];
var i3 = indexArray[ y + 1 ][ x + 1 ];
var i4 = indexArray[ y ][ x + 1 ];
// face one
indices.setX( indexOffset, i1 ); indexOffset ++;
indices.setX( indexOffset, i2 ); indexOffset ++;
indices.setX( indexOffset, i4 ); indexOffset ++;
// face two
indices.setX( indexOffset, i2 ); indexOffset ++;
indices.setX( indexOffset, i3 ); indexOffset ++;
indices.setX( indexOffset, i4 ); indexOffset ++;
// update counters
groupCount += 6;
}
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, 0 );
// calculate new start value for groups
groupStart += groupCount;
}
function generateCap( top ) {
var x, centerIndexStart, centerIndexEnd;
var uv = new THREE.Vector2();
var vertex = new THREE.Vector3();
var groupCount = 0;
var radius = ( top === true ) ? radiusTop : radiusBottom;
var sign = ( top === true ) ? 1 : - 1;
// save the index of the first center vertex
centerIndexStart = index;
// first we generate the center vertex data of the cap.
// because the geometry needs one set of uvs per face,
// we must generate a center vertex per face/segment
for ( x = 1; x <= radialSegments; x ++ ) {
// vertex
vertices.setXYZ( index, 0, halfHeight * sign, 0 );
// normal
normals.setXYZ( index, 0, sign, 0 );
// uv
if ( top === true ) {
uv.x = x / radialSegments;
uv.y = 0;
} else {
uv.x = ( x - 1 ) / radialSegments;
uv.y = 1;
}
uvs.setXY( index, uv.x, uv.y );
// increase index
index ++;
}
// save the index of the last center vertex
centerIndexEnd = index;
// now we generate the surrounding vertices, normals and uvs
for ( x = 0; x <= radialSegments; x ++ ) {
var u = x / radialSegments;
// vertex
vertex.x = radius * Math.sin( u * thetaLength + thetaStart );
vertex.y = halfHeight * sign;
vertex.z = radius * Math.cos( u * thetaLength + thetaStart );
vertices.setXYZ( index, vertex.x, vertex.y, vertex.z );
// normal
normals.setXYZ( index, 0, sign, 0 );
// uv
uvs.setXY( index, u, ( top === true ) ? 1 : 0 );
// increase index
index ++;
}
// generate indices
for ( x = 0; x < radialSegments; x ++ ) {
var c = centerIndexStart + x;
var i = centerIndexEnd + x;
if ( top === true ) {
// face top
indices.setX( indexOffset, i ); indexOffset ++;
indices.setX( indexOffset, i + 1 ); indexOffset ++;
indices.setX( indexOffset, c ); indexOffset ++;
} else {
// face bottom
indices.setX( indexOffset, i + 1 ); indexOffset ++;
indices.setX( indexOffset, i ); indexOffset ++;
indices.setX( indexOffset, c ); indexOffset ++;
}
// update counters
groupCount += 3;
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 );
// calculate new start value for groups
groupStart += groupCount;
}
};
THREE.CylinderBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.CylinderBufferGeometry.prototype.constructor = THREE.CylinderBufferGeometry;
// File:src/extras/geometries/CylinderGeometry.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.CylinderGeometry = function ( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
THREE.Geometry.call( this );
this.type = 'CylinderGeometry';
this.parameters = {
radiusTop: radiusTop,
radiusBottom: radiusBottom,
height: height,
radialSegments: radialSegments,
heightSegments: heightSegments,
openEnded: openEnded,
thetaStart: thetaStart,
thetaLength: thetaLength
};
this.fromBufferGeometry( new THREE.CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) );
this.mergeVertices();
};
THREE.CylinderGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.CylinderGeometry.prototype.constructor = THREE.CylinderGeometry;
// File:src/extras/geometries/EdgesGeometry.js
/**
* @author WestLangley / http://github.com/WestLangley
*/
THREE.EdgesGeometry = function ( geometry, thresholdAngle ) {
THREE.BufferGeometry.call( this );
thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1;
var thresholdDot = Math.cos( THREE.Math.DEG2RAD * thresholdAngle );
var edge = [ 0, 0 ], hash = {};
function sortFunction( a, b ) {
return a - b;
}
var keys = [ 'a', 'b', 'c' ];
var geometry2;
if ( geometry instanceof THREE.BufferGeometry ) {
geometry2 = new THREE.Geometry();
geometry2.fromBufferGeometry( geometry );
} else {
geometry2 = geometry.clone();
}
geometry2.mergeVertices();
geometry2.computeFaceNormals();
var vertices = geometry2.vertices;
var faces = geometry2.faces;
for ( var i = 0, l = faces.length; i < l; i ++ ) {
var face = faces[ i ];
for ( var j = 0; j < 3; j ++ ) {
edge[ 0 ] = face[ keys[ j ] ];
edge[ 1 ] = face[ keys[ ( j + 1 ) % 3 ] ];
edge.sort( sortFunction );
var key = edge.toString();
if ( hash[ key ] === undefined ) {
hash[ key ] = { vert1: edge[ 0 ], vert2: edge[ 1 ], face1: i, face2: undefined };
} else {
hash[ key ].face2 = i;
}
}
}
var coords = [];
for ( var key in hash ) {
var h = hash[ key ];
if ( h.face2 === undefined || faces[ h.face1 ].normal.dot( faces[ h.face2 ].normal ) <= thresholdDot ) {
var vertex = vertices[ h.vert1 ];
coords.push( vertex.x );
coords.push( vertex.y );
coords.push( vertex.z );
vertex = vertices[ h.vert2 ];
coords.push( vertex.x );
coords.push( vertex.y );
coords.push( vertex.z );
}
}
this.addAttribute( 'position', new THREE.BufferAttribute( new Float32Array( coords ), 3 ) );
};
THREE.EdgesGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.EdgesGeometry.prototype.constructor = THREE.EdgesGeometry;
// File:src/extras/geometries/ExtrudeGeometry.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*
* Creates extruded geometry from a path shape.
*
* parameters = {
*
* curveSegments: <int>, // number of points on the curves
* steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
* amount: <int>, // Depth to extrude the shape
*
* bevelEnabled: <bool>, // turn on bevel
* bevelThickness: <float>, // how deep into the original shape bevel goes
* bevelSize: <float>, // how far from shape outline is bevel
* bevelSegments: <int>, // number of bevel layers
*
* extrudePath: <THREE.CurvePath> // 3d spline path to extrude shape along. (creates Frames if .frames aren't defined)
* frames: <THREE.TubeGeometry.FrenetFrames> // containing arrays of tangents, normals, binormals
*
* uvGenerator: <Object> // object that provides UV generator functions
*
* }
**/
THREE.ExtrudeGeometry = function ( shapes, options ) {
if ( typeof( shapes ) === "undefined" ) {
shapes = [];
return;
}
THREE.Geometry.call( this );
this.type = 'ExtrudeGeometry';
shapes = Array.isArray( shapes ) ? shapes : [ shapes ];
this.addShapeList( shapes, options );
this.computeFaceNormals();
// can't really use automatic vertex normals
// as then front and back sides get smoothed too
// should do separate smoothing just for sides
//this.computeVertexNormals();
//console.log( "took", ( Date.now() - startTime ) );
};
THREE.ExtrudeGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.ExtrudeGeometry.prototype.constructor = THREE.ExtrudeGeometry;
THREE.ExtrudeGeometry.prototype.addShapeList = function ( shapes, options ) {
var sl = shapes.length;
for ( var s = 0; s < sl; s ++ ) {
var shape = shapes[ s ];
this.addShape( shape, options );
}
};
THREE.ExtrudeGeometry.prototype.addShape = function ( shape, options ) {
var amount = options.amount !== undefined ? options.amount : 100;
var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; // 10
var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; // 8
var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;
var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; // false
var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
var steps = options.steps !== undefined ? options.steps : 1;
var extrudePath = options.extrudePath;
var extrudePts, extrudeByPath = false;
// Use default WorldUVGenerator if no UV generators are specified.
var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : THREE.ExtrudeGeometry.WorldUVGenerator;
var splineTube, binormal, normal, position2;
if ( extrudePath ) {
extrudePts = extrudePath.getSpacedPoints( steps );
extrudeByPath = true;
bevelEnabled = false; // bevels not supported for path extrusion
// SETUP TNB variables
// Reuse TNB from TubeGeomtry for now.
// TODO1 - have a .isClosed in spline?
splineTube = options.frames !== undefined ? options.frames : new THREE.TubeGeometry.FrenetFrames( extrudePath, steps, false );
// console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);
binormal = new THREE.Vector3();
normal = new THREE.Vector3();
position2 = new THREE.Vector3();
}
// Safeguards if bevels are not enabled
if ( ! bevelEnabled ) {
bevelSegments = 0;
bevelThickness = 0;
bevelSize = 0;
}
// Variables initialization
var ahole, h, hl; // looping of holes
var scope = this;
var shapesOffset = this.vertices.length;
var shapePoints = shape.extractPoints( curveSegments );
var vertices = shapePoints.shape;
var holes = shapePoints.holes;
var reverse = ! THREE.ShapeUtils.isClockWise( vertices );
if ( reverse ) {
vertices = vertices.reverse();
// Maybe we should also check if holes are in the opposite direction, just to be safe ...
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
if ( THREE.ShapeUtils.isClockWise( ahole ) ) {
holes[ h ] = ahole.reverse();
}
}
reverse = false; // If vertices are in order now, we shouldn't need to worry about them again (hopefully)!
}
var faces = THREE.ShapeUtils.triangulateShape( vertices, holes );
/* Vertices */
var contour = vertices; // vertices has all points but contour has only points of circumference
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
vertices = vertices.concat( ahole );
}
function scalePt2 ( pt, vec, size ) {
if ( ! vec ) console.error( "THREE.ExtrudeGeometry: vec does not exist" );
return vec.clone().multiplyScalar( size ).add( pt );
}
var b, bs, t, z,
vert, vlen = vertices.length,
face, flen = faces.length;
// Find directions for point movement
function getBevelVec( inPt, inPrev, inNext ) {
// computes for inPt the corresponding point inPt' on a new contour
// shifted by 1 unit (length of normalized vector) to the left
// if we walk along contour clockwise, this new contour is outside the old one
//
// inPt' is the intersection of the two lines parallel to the two
// adjacent edges of inPt at a distance of 1 unit on the left side.
var v_trans_x, v_trans_y, shrink_by = 1; // resulting translation vector for inPt
// good reading for geometry algorithms (here: line-line intersection)
// http://geomalgorithms.com/a05-_intersect-1.html
var v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y;
var v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y;
var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y );
// check for collinear edges
var collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x );
if ( Math.abs( collinear0 ) > Number.EPSILON ) {
// not collinear
// length of vectors for normalizing
var v_prev_len = Math.sqrt( v_prev_lensq );
var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y );
// shift adjacent points by unit vectors to the left
var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len );
var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len );
var ptNextShift_x = ( inNext.x - v_next_y / v_next_len );
var ptNextShift_y = ( inNext.y + v_next_x / v_next_len );
// scaling factor for v_prev to intersection point
var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y -
( ptNextShift_y - ptPrevShift_y ) * v_next_x ) /
( v_prev_x * v_next_y - v_prev_y * v_next_x );
// vector from inPt to intersection point
v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x );
v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y );
// Don't normalize!, otherwise sharp corners become ugly
// but prevent crazy spikes
var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y );
if ( v_trans_lensq <= 2 ) {
return new THREE.Vector2( v_trans_x, v_trans_y );
} else {
shrink_by = Math.sqrt( v_trans_lensq / 2 );
}
} else {
// handle special case of collinear edges
var direction_eq = false; // assumes: opposite
if ( v_prev_x > Number.EPSILON ) {
if ( v_next_x > Number.EPSILON ) {
direction_eq = true;
}
} else {
if ( v_prev_x < - Number.EPSILON ) {
if ( v_next_x < - Number.EPSILON ) {
direction_eq = true;
}
} else {
if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) {
direction_eq = true;
}
}
}
if ( direction_eq ) {
// console.log("Warning: lines are a straight sequence");
v_trans_x = - v_prev_y;
v_trans_y = v_prev_x;
shrink_by = Math.sqrt( v_prev_lensq );
} else {
// console.log("Warning: lines are a straight spike");
v_trans_x = v_prev_x;
v_trans_y = v_prev_y;
shrink_by = Math.sqrt( v_prev_lensq / 2 );
}
}
return new THREE.Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by );
}
var contourMovements = [];
for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
if ( j === il ) j = 0;
if ( k === il ) k = 0;
// (j)---(i)---(k)
// console.log('i,j,k', i, j , k)
contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] );
}
var holesMovements = [], oneHoleMovements, verticesMovements = contourMovements.concat();
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
oneHoleMovements = [];
for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
if ( j === il ) j = 0;
if ( k === il ) k = 0;
// (j)---(i)---(k)
oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] );
}
holesMovements.push( oneHoleMovements );
verticesMovements = verticesMovements.concat( oneHoleMovements );
}
// Loop bevelSegments, 1 for the front, 1 for the back
for ( b = 0; b < bevelSegments; b ++ ) {
//for ( b = bevelSegments; b > 0; b -- ) {
t = b / bevelSegments;
z = bevelThickness * ( 1 - t );
//z = bevelThickness * t;
bs = bevelSize * ( Math.sin ( t * Math.PI / 2 ) ); // curved
//bs = bevelSize * t; // linear
// contract shape
for ( i = 0, il = contour.length; i < il; i ++ ) {
vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
v( vert.x, vert.y, - z );
}
// expand holes
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
oneHoleMovements = holesMovements[ h ];
for ( i = 0, il = ahole.length; i < il; i ++ ) {
vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
v( vert.x, vert.y, - z );
}
}
}
bs = bevelSize;
// Back facing vertices
for ( i = 0; i < vlen; i ++ ) {
vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
if ( ! extrudeByPath ) {
v( vert.x, vert.y, 0 );
} else {
// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );
normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x );
binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y );
position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal );
v( position2.x, position2.y, position2.z );
}
}
// Add stepped vertices...
// Including front facing vertices
var s;
for ( s = 1; s <= steps; s ++ ) {
for ( i = 0; i < vlen; i ++ ) {
vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
if ( ! extrudeByPath ) {
v( vert.x, vert.y, amount / steps * s );
} else {
// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );
normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x );
binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y );
position2.copy( extrudePts[ s ] ).add( normal ).add( binormal );
v( position2.x, position2.y, position2.z );
}
}
}
// Add bevel segments planes
//for ( b = 1; b <= bevelSegments; b ++ ) {
for ( b = bevelSegments - 1; b >= 0; b -- ) {
t = b / bevelSegments;
z = bevelThickness * ( 1 - t );
//bs = bevelSize * ( 1-Math.sin ( ( 1 - t ) * Math.PI/2 ) );
bs = bevelSize * Math.sin ( t * Math.PI / 2 );
// contract shape
for ( i = 0, il = contour.length; i < il; i ++ ) {
vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
v( vert.x, vert.y, amount + z );
}
// expand holes
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
oneHoleMovements = holesMovements[ h ];
for ( i = 0, il = ahole.length; i < il; i ++ ) {
vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
if ( ! extrudeByPath ) {
v( vert.x, vert.y, amount + z );
} else {
v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z );
}
}
}
}
/* Faces */
// Top and bottom faces
buildLidFaces();
// Sides faces
buildSideFaces();
///// Internal functions
function buildLidFaces() {
if ( bevelEnabled ) {
var layer = 0; // steps + 1
var offset = vlen * layer;
// Bottom faces
for ( i = 0; i < flen; i ++ ) {
face = faces[ i ];
f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset );
}
layer = steps + bevelSegments * 2;
offset = vlen * layer;
// Top faces
for ( i = 0; i < flen; i ++ ) {
face = faces[ i ];
f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset );
}
} else {
// Bottom faces
for ( i = 0; i < flen; i ++ ) {
face = faces[ i ];
f3( face[ 2 ], face[ 1 ], face[ 0 ] );
}
// Top faces
for ( i = 0; i < flen; i ++ ) {
face = faces[ i ];
f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps );
}
}
}
// Create faces for the z-sides of the shape
function buildSideFaces() {
var layeroffset = 0;
sidewalls( contour, layeroffset );
layeroffset += contour.length;
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
sidewalls( ahole, layeroffset );
//, true
layeroffset += ahole.length;
}
}
function sidewalls( contour, layeroffset ) {
var j, k;
i = contour.length;
while ( -- i >= 0 ) {
j = i;
k = i - 1;
if ( k < 0 ) k = contour.length - 1;
//console.log('b', i,j, i-1, k,vertices.length);
var s = 0, sl = steps + bevelSegments * 2;
for ( s = 0; s < sl; s ++ ) {
var slen1 = vlen * s;
var slen2 = vlen * ( s + 1 );
var a = layeroffset + j + slen1,
b = layeroffset + k + slen1,
c = layeroffset + k + slen2,
d = layeroffset + j + slen2;
f4( a, b, c, d, contour, s, sl, j, k );
}
}
}
function v( x, y, z ) {
scope.vertices.push( new THREE.Vector3( x, y, z ) );
}
function f3( a, b, c ) {
a += shapesOffset;
b += shapesOffset;
c += shapesOffset;
scope.faces.push( new THREE.Face3( a, b, c, null, null, 0 ) );
var uvs = uvgen.generateTopUV( scope, a, b, c );
scope.faceVertexUvs[ 0 ].push( uvs );
}
function f4( a, b, c, d, wallContour, stepIndex, stepsLength, contourIndex1, contourIndex2 ) {
a += shapesOffset;
b += shapesOffset;
c += shapesOffset;
d += shapesOffset;
scope.faces.push( new THREE.Face3( a, b, d, null, null, 1 ) );
scope.faces.push( new THREE.Face3( b, c, d, null, null, 1 ) );
var uvs = uvgen.generateSideWallUV( scope, a, b, c, d );
scope.faceVertexUvs[ 0 ].push( [ uvs[ 0 ], uvs[ 1 ], uvs[ 3 ] ] );
scope.faceVertexUvs[ 0 ].push( [ uvs[ 1 ], uvs[ 2 ], uvs[ 3 ] ] );
}
};
THREE.ExtrudeGeometry.WorldUVGenerator = {
generateTopUV: function ( geometry, indexA, indexB, indexC ) {
var vertices = geometry.vertices;
var a = vertices[ indexA ];
var b = vertices[ indexB ];
var c = vertices[ indexC ];
return [
new THREE.Vector2( a.x, a.y ),
new THREE.Vector2( b.x, b.y ),
new THREE.Vector2( c.x, c.y )
];
},
generateSideWallUV: function ( geometry, indexA, indexB, indexC, indexD ) {
var vertices = geometry.vertices;
var a = vertices[ indexA ];
var b = vertices[ indexB ];
var c = vertices[ indexC ];
var d = vertices[ indexD ];
if ( Math.abs( a.y - b.y ) < 0.01 ) {
return [
new THREE.Vector2( a.x, 1 - a.z ),
new THREE.Vector2( b.x, 1 - b.z ),
new THREE.Vector2( c.x, 1 - c.z ),
new THREE.Vector2( d.x, 1 - d.z )
];
} else {
return [
new THREE.Vector2( a.y, 1 - a.z ),
new THREE.Vector2( b.y, 1 - b.z ),
new THREE.Vector2( c.y, 1 - c.z ),
new THREE.Vector2( d.y, 1 - d.z )
];
}
}
};
// File:src/extras/geometries/ShapeGeometry.js
/**
* @author jonobr1 / http://jonobr1.com
*
* Creates a one-sided polygonal geometry from a path shape. Similar to
* ExtrudeGeometry.
*
* parameters = {
*
* curveSegments: <int>, // number of points on the curves. NOT USED AT THE MOMENT.
*
* material: <int> // material index for front and back faces
* uvGenerator: <Object> // object that provides UV generator functions
*
* }
**/
THREE.ShapeGeometry = function ( shapes, options ) {
THREE.Geometry.call( this );
this.type = 'ShapeGeometry';
if ( Array.isArray( shapes ) === false ) shapes = [ shapes ];
this.addShapeList( shapes, options );
this.computeFaceNormals();
};
THREE.ShapeGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.ShapeGeometry.prototype.constructor = THREE.ShapeGeometry;
/**
* Add an array of shapes to THREE.ShapeGeometry.
*/
THREE.ShapeGeometry.prototype.addShapeList = function ( shapes, options ) {
for ( var i = 0, l = shapes.length; i < l; i ++ ) {
this.addShape( shapes[ i ], options );
}
return this;
};
/**
* Adds a shape to THREE.ShapeGeometry, based on THREE.ExtrudeGeometry.
*/
THREE.ShapeGeometry.prototype.addShape = function ( shape, options ) {
if ( options === undefined ) options = {};
var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
var material = options.material;
var uvgen = options.UVGenerator === undefined ? THREE.ExtrudeGeometry.WorldUVGenerator : options.UVGenerator;
//
var i, l, hole;
var shapesOffset = this.vertices.length;
var shapePoints = shape.extractPoints( curveSegments );
var vertices = shapePoints.shape;
var holes = shapePoints.holes;
var reverse = ! THREE.ShapeUtils.isClockWise( vertices );
if ( reverse ) {
vertices = vertices.reverse();
// Maybe we should also check if holes are in the opposite direction, just to be safe...
for ( i = 0, l = holes.length; i < l; i ++ ) {
hole = holes[ i ];
if ( THREE.ShapeUtils.isClockWise( hole ) ) {
holes[ i ] = hole.reverse();
}
}
reverse = false;
}
var faces = THREE.ShapeUtils.triangulateShape( vertices, holes );
// Vertices
for ( i = 0, l = holes.length; i < l; i ++ ) {
hole = holes[ i ];
vertices = vertices.concat( hole );
}
//
var vert, vlen = vertices.length;
var face, flen = faces.length;
for ( i = 0; i < vlen; i ++ ) {
vert = vertices[ i ];
this.vertices.push( new THREE.Vector3( vert.x, vert.y, 0 ) );
}
for ( i = 0; i < flen; i ++ ) {
face = faces[ i ];
var a = face[ 0 ] + shapesOffset;
var b = face[ 1 ] + shapesOffset;
var c = face[ 2 ] + shapesOffset;
this.faces.push( new THREE.Face3( a, b, c, null, null, material ) );
this.faceVertexUvs[ 0 ].push( uvgen.generateTopUV( this, a, b, c ) );
}
};
// File:src/extras/geometries/LatheBufferGeometry.js
/**
* @author Mugen87 / https://github.com/Mugen87
*/
// points - to create a closed torus, one must use a set of points
// like so: [ a, b, c, d, a ], see first is the same as last.
// segments - the number of circumference segments to create
// phiStart - the starting radian
// phiLength - the radian (0 to 2PI) range of the lathed section
// 2PI is a closed lathe, less than 2PI is a portion.
THREE.LatheBufferGeometry = function ( points, segments, phiStart, phiLength ) {
THREE.BufferGeometry.call( this );
this.type = 'LatheBufferGeometry';
this.parameters = {
points: points,
segments: segments,
phiStart: phiStart,
phiLength: phiLength
};
segments = Math.floor( segments ) || 12;
phiStart = phiStart || 0;
phiLength = phiLength || Math.PI * 2;
// clamp phiLength so it's in range of [ 0, 2PI ]
phiLength = THREE.Math.clamp( phiLength, 0, Math.PI * 2 );
// these are used to calculate buffer length
var vertexCount = ( segments + 1 ) * points.length;
var indexCount = segments * points.length * 2 * 3;
// buffers
var indices = new THREE.BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 );
var vertices = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 );
// helper variables
var index = 0, indexOffset = 0, base;
var inversePointLength = 1.0 / ( points.length - 1 );
var inverseSegments = 1.0 / segments;
var vertex = new THREE.Vector3();
var uv = new THREE.Vector2();
var i, j;
// generate vertices and uvs
for ( i = 0; i <= segments; i ++ ) {
var phi = phiStart + i * inverseSegments * phiLength;
var sin = Math.sin( phi );
var cos = Math.cos( phi );
for ( j = 0; j <= ( points.length - 1 ); j ++ ) {
// vertex
vertex.x = points[ j ].x * sin;
vertex.y = points[ j ].y;
vertex.z = points[ j ].x * cos;
vertices.setXYZ( index, vertex.x, vertex.y, vertex.z );
// uv
uv.x = i / segments;
uv.y = j / ( points.length - 1 );
uvs.setXY( index, uv.x, uv.y );
// increase index
index ++;
}
}
// generate indices
for ( i = 0; i < segments; i ++ ) {
for ( j = 0; j < ( points.length - 1 ); j ++ ) {
base = j + i * points.length;
// indices
var a = base;
var b = base + points.length;
var c = base + points.length + 1;
var d = base + 1;
// face one
indices.setX( indexOffset, a ); indexOffset++;
indices.setX( indexOffset, b ); indexOffset++;
indices.setX( indexOffset, d ); indexOffset++;
// face two
indices.setX( indexOffset, b ); indexOffset++;
indices.setX( indexOffset, c ); indexOffset++;
indices.setX( indexOffset, d ); indexOffset++;
}
}
// build geometry
this.setIndex( indices );
this.addAttribute( 'position', vertices );
this.addAttribute( 'uv', uvs );
// generate normals
this.computeVertexNormals();
// if the geometry is closed, we need to average the normals along the seam.
// because the corresponding vertices are identical (but still have different UVs).
if( phiLength === Math.PI * 2 ) {
var normals = this.attributes.normal.array;
var n1 = new THREE.Vector3();
var n2 = new THREE.Vector3();
var n = new THREE.Vector3();
// this is the buffer offset for the last line of vertices
base = segments * points.length * 3;
for( i = 0, j = 0; i < points.length; i ++, j += 3 ) {
// select the normal of the vertex in the first line
n1.x = normals[ j + 0 ];
n1.y = normals[ j + 1 ];
n1.z = normals[ j + 2 ];
// select the normal of the vertex in the last line
n2.x = normals[ base + j + 0 ];
n2.y = normals[ base + j + 1 ];
n2.z = normals[ base + j + 2 ];
// average normals
n.addVectors( n1, n2 ).normalize();
// assign the new values to both normals
normals[ j + 0 ] = normals[ base + j + 0 ] = n.x;
normals[ j + 1 ] = normals[ base + j + 1 ] = n.y;
normals[ j + 2 ] = normals[ base + j + 2 ] = n.z;
} // next row
}
};
THREE.LatheBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.LatheBufferGeometry.prototype.constructor = THREE.LatheBufferGeometry;
// File:src/extras/geometries/LatheGeometry.js
/**
* @author astrodud / http://astrodud.isgreat.org/
* @author zz85 / https://github.com/zz85
* @author bhouston / http://clara.io
*/
// points - to create a closed torus, one must use a set of points
// like so: [ a, b, c, d, a ], see first is the same as last.
// segments - the number of circumference segments to create
// phiStart - the starting radian
// phiLength - the radian (0 to 2PI) range of the lathed section
// 2PI is a closed lathe, less than 2PI is a portion.
THREE.LatheGeometry = function ( points, segments, phiStart, phiLength ) {
THREE.Geometry.call( this );
this.type = 'LatheGeometry';
this.parameters = {
points: points,
segments: segments,
phiStart: phiStart,
phiLength: phiLength
};
this.fromBufferGeometry( new THREE.LatheBufferGeometry( points, segments, phiStart, phiLength ) );
this.mergeVertices();
};
THREE.LatheGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.LatheGeometry.prototype.constructor = THREE.LatheGeometry;
// File:src/extras/geometries/PlaneGeometry.js
/**
* @author mrdoob / http://mrdoob.com/
* based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Plane.as
*/
THREE.PlaneGeometry = function ( width, height, widthSegments, heightSegments ) {
THREE.Geometry.call( this );
this.type = 'PlaneGeometry';
this.parameters = {
width: width,
height: height,
widthSegments: widthSegments,
heightSegments: heightSegments
};
this.fromBufferGeometry( new THREE.PlaneBufferGeometry( width, height, widthSegments, heightSegments ) );
};
THREE.PlaneGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.PlaneGeometry.prototype.constructor = THREE.PlaneGeometry;
// File:src/extras/geometries/PlaneBufferGeometry.js
/**
* @author mrdoob / http://mrdoob.com/
* based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Plane.as
*/
THREE.PlaneBufferGeometry = function ( width, height, widthSegments, heightSegments ) {
THREE.BufferGeometry.call( this );
this.type = 'PlaneBufferGeometry';
this.parameters = {
width: width,
height: height,
widthSegments: widthSegments,
heightSegments: heightSegments
};
var width_half = width / 2;
var height_half = height / 2;
var gridX = Math.floor( widthSegments ) || 1;
var gridY = Math.floor( heightSegments ) || 1;
var gridX1 = gridX + 1;
var gridY1 = gridY + 1;
var segment_width = width / gridX;
var segment_height = height / gridY;
var vertices = new Float32Array( gridX1 * gridY1 * 3 );
var normals = new Float32Array( gridX1 * gridY1 * 3 );
var uvs = new Float32Array( gridX1 * gridY1 * 2 );
var offset = 0;
var offset2 = 0;
for ( var iy = 0; iy < gridY1; iy ++ ) {
var y = iy * segment_height - height_half;
for ( var ix = 0; ix < gridX1; ix ++ ) {
var x = ix * segment_width - width_half;
vertices[ offset ] = x;
vertices[ offset + 1 ] = - y;
normals[ offset + 2 ] = 1;
uvs[ offset2 ] = ix / gridX;
uvs[ offset2 + 1 ] = 1 - ( iy / gridY );
offset += 3;
offset2 += 2;
}
}
offset = 0;
var indices = new ( ( vertices.length / 3 ) > 65535 ? Uint32Array : Uint16Array )( gridX * gridY * 6 );
for ( var iy = 0; iy < gridY; iy ++ ) {
for ( var ix = 0; ix < gridX; ix ++ ) {
var a = ix + gridX1 * iy;
var b = ix + gridX1 * ( iy + 1 );
var c = ( ix + 1 ) + gridX1 * ( iy + 1 );
var d = ( ix + 1 ) + gridX1 * iy;
indices[ offset ] = a;
indices[ offset + 1 ] = b;
indices[ offset + 2 ] = d;
indices[ offset + 3 ] = b;
indices[ offset + 4 ] = c;
indices[ offset + 5 ] = d;
offset += 6;
}
}
this.setIndex( new THREE.BufferAttribute( indices, 1 ) );
this.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) );
this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) );
this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) );
};
THREE.PlaneBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.PlaneBufferGeometry.prototype.constructor = THREE.PlaneBufferGeometry;
// File:src/extras/geometries/RingBufferGeometry.js
/**
* @author Mugen87 / https://github.com/Mugen87
*/
THREE.RingBufferGeometry = function ( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {
THREE.BufferGeometry.call( this );
this.type = 'RingBufferGeometry';
this.parameters = {
innerRadius: innerRadius,
outerRadius: outerRadius,
thetaSegments: thetaSegments,
phiSegments: phiSegments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
innerRadius = innerRadius || 20;
outerRadius = outerRadius || 50;
thetaStart = thetaStart !== undefined ? thetaStart : 0;
thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;
thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8;
phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1;
// these are used to calculate buffer length
var vertexCount = ( thetaSegments + 1 ) * ( phiSegments + 1 );
var indexCount = thetaSegments * phiSegments * 2 * 3;
// buffers
var indices = new THREE.BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 );
var vertices = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 );
// some helper variables
var index = 0, indexOffset = 0, segment;
var radius = innerRadius;
var radiusStep = ( ( outerRadius - innerRadius ) / phiSegments );
var vertex = new THREE.Vector3();
var uv = new THREE.Vector2();
var j, i;
// generate vertices, normals and uvs
// values are generate from the inside of the ring to the outside
for ( j = 0; j <= phiSegments; j ++ ) {
for ( i = 0; i <= thetaSegments; i ++ ) {
segment = thetaStart + i / thetaSegments * thetaLength;
// vertex
vertex.x = radius * Math.cos( segment );
vertex.y = radius * Math.sin( segment );
vertices.setXYZ( index, vertex.x, vertex.y, vertex.z );
// normal
normals.setXYZ( index, 0, 0, 1 );
// uv
uv.x = ( vertex.x / outerRadius + 1 ) / 2;
uv.y = ( vertex.y / outerRadius + 1 ) / 2;
uvs.setXY( index, uv.x, uv.y );
// increase index
index++;
}
// increase the radius for next row of vertices
radius += radiusStep;
}
// generate indices
for ( j = 0; j < phiSegments; j ++ ) {
var thetaSegmentLevel = j * ( thetaSegments + 1 );
for ( i = 0; i < thetaSegments; i ++ ) {
segment = i + thetaSegmentLevel;
// indices
var a = segment;
var b = segment + thetaSegments + 1;
var c = segment + thetaSegments + 2;
var d = segment + 1;
// face one
indices.setX( indexOffset, a ); indexOffset++;
indices.setX( indexOffset, b ); indexOffset++;
indices.setX( indexOffset, c ); indexOffset++;
// face two
indices.setX( indexOffset, a ); indexOffset++;
indices.setX( indexOffset, c ); indexOffset++;
indices.setX( indexOffset, d ); indexOffset++;
}
}
// build geometry
this.setIndex( indices );
this.addAttribute( 'position', vertices );
this.addAttribute( 'normal', normals );
this.addAttribute( 'uv', uvs );
};
THREE.RingBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.RingBufferGeometry.prototype.constructor = THREE.RingBufferGeometry;
// File:src/extras/geometries/RingGeometry.js
/**
* @author Kaleb Murphy
*/
THREE.RingGeometry = function ( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {
THREE.Geometry.call( this );
this.type = 'RingGeometry';
this.parameters = {
innerRadius: innerRadius,
outerRadius: outerRadius,
thetaSegments: thetaSegments,
phiSegments: phiSegments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
this.fromBufferGeometry( new THREE.RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) );
};
THREE.RingGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.RingGeometry.prototype.constructor = THREE.RingGeometry;
// File:src/extras/geometries/SphereGeometry.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.SphereGeometry = function ( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {
THREE.Geometry.call( this );
this.type = 'SphereGeometry';
this.parameters = {
radius: radius,
widthSegments: widthSegments,
heightSegments: heightSegments,
phiStart: phiStart,
phiLength: phiLength,
thetaStart: thetaStart,
thetaLength: thetaLength
};
this.fromBufferGeometry( new THREE.SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) );
};
THREE.SphereGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.SphereGeometry.prototype.constructor = THREE.SphereGeometry;
// File:src/extras/geometries/SphereBufferGeometry.js
/**
* @author benaadams / https://twitter.com/ben_a_adams
* based on THREE.SphereGeometry
*/
THREE.SphereBufferGeometry = function ( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {
THREE.BufferGeometry.call( this );
this.type = 'SphereBufferGeometry';
this.parameters = {
radius: radius,
widthSegments: widthSegments,
heightSegments: heightSegments,
phiStart: phiStart,
phiLength: phiLength,
thetaStart: thetaStart,
thetaLength: thetaLength
};
radius = radius || 50;
widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 );
heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 );
phiStart = phiStart !== undefined ? phiStart : 0;
phiLength = phiLength !== undefined ? phiLength : Math.PI * 2;
thetaStart = thetaStart !== undefined ? thetaStart : 0;
thetaLength = thetaLength !== undefined ? thetaLength : Math.PI;
var thetaEnd = thetaStart + thetaLength;
var vertexCount = ( ( widthSegments + 1 ) * ( heightSegments + 1 ) );
var positions = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 );
var index = 0, vertices = [], normal = new THREE.Vector3();
for ( var y = 0; y <= heightSegments; y ++ ) {
var verticesRow = [];
var v = y / heightSegments;
for ( var x = 0; x <= widthSegments; x ++ ) {
var u = x / widthSegments;
var px = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
var py = radius * Math.cos( thetaStart + v * thetaLength );
var pz = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
normal.set( px, py, pz ).normalize();
positions.setXYZ( index, px, py, pz );
normals.setXYZ( index, normal.x, normal.y, normal.z );
uvs.setXY( index, u, 1 - v );
verticesRow.push( index );
index ++;
}
vertices.push( verticesRow );
}
var indices = [];
for ( var y = 0; y < heightSegments; y ++ ) {
for ( var x = 0; x < widthSegments; x ++ ) {
var v1 = vertices[ y ][ x + 1 ];
var v2 = vertices[ y ][ x ];
var v3 = vertices[ y + 1 ][ x ];
var v4 = vertices[ y + 1 ][ x + 1 ];
if ( y !== 0 || thetaStart > 0 ) indices.push( v1, v2, v4 );
if ( y !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( v2, v3, v4 );
}
}
this.setIndex( new ( positions.count > 65535 ? THREE.Uint32Attribute : THREE.Uint16Attribute )( indices, 1 ) );
this.addAttribute( 'position', positions );
this.addAttribute( 'normal', normals );
this.addAttribute( 'uv', uvs );
this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius );
};
THREE.SphereBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.SphereBufferGeometry.prototype.constructor = THREE.SphereBufferGeometry;
// File:src/extras/geometries/TextGeometry.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author alteredq / http://alteredqualia.com/
*
* Text = 3D Text
*
* parameters = {
* font: <THREE.Font>, // font
*
* size: <float>, // size of the text
* height: <float>, // thickness to extrude text
* curveSegments: <int>, // number of points on the curves
*
* bevelEnabled: <bool>, // turn on bevel
* bevelThickness: <float>, // how deep into text bevel goes
* bevelSize: <float> // how far from text outline is bevel
* }
*/
THREE.TextGeometry = function ( text, parameters ) {
parameters = parameters || {};
var font = parameters.font;
if ( font instanceof THREE.Font === false ) {
console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' );
return new THREE.Geometry();
}
var shapes = font.generateShapes( text, parameters.size, parameters.curveSegments );
// translate parameters to ExtrudeGeometry API
parameters.amount = parameters.height !== undefined ? parameters.height : 50;
// defaults
if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10;
if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8;
if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false;
THREE.ExtrudeGeometry.call( this, shapes, parameters );
this.type = 'TextGeometry';
};
THREE.TextGeometry.prototype = Object.create( THREE.ExtrudeGeometry.prototype );
THREE.TextGeometry.prototype.constructor = THREE.TextGeometry;
// File:src/extras/geometries/TorusBufferGeometry.js
/**
* @author Mugen87 / https://github.com/Mugen87
*/
THREE.TorusBufferGeometry = function ( radius, tube, radialSegments, tubularSegments, arc ) {
THREE.BufferGeometry.call( this );
this.type = 'TorusBufferGeometry';
this.parameters = {
radius: radius,
tube: tube,
radialSegments: radialSegments,
tubularSegments: tubularSegments,
arc: arc
};
radius = radius || 100;
tube = tube || 40;
radialSegments = Math.floor( radialSegments ) || 8;
tubularSegments = Math.floor( tubularSegments ) || 6;
arc = arc || Math.PI * 2;
// used to calculate buffer length
var vertexCount = ( ( radialSegments + 1 ) * ( tubularSegments + 1 ) );
var indexCount = radialSegments * tubularSegments * 2 * 3;
// buffers
var indices = new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount );
var vertices = new Float32Array( vertexCount * 3 );
var normals = new Float32Array( vertexCount * 3 );
var uvs = new Float32Array( vertexCount * 2 );
// offset variables
var vertexBufferOffset = 0;
var uvBufferOffset = 0;
var indexBufferOffset = 0;
// helper variables
var center = new THREE.Vector3();
var vertex = new THREE.Vector3();
var normal = new THREE.Vector3();
var j, i;
// generate vertices, normals and uvs
for ( j = 0; j <= radialSegments; j ++ ) {
for ( i = 0; i <= tubularSegments; i ++ ) {
var u = i / tubularSegments * arc;
var v = j / radialSegments * Math.PI * 2;
// vertex
vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u );
vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u );
vertex.z = tube * Math.sin( v );
vertices[ vertexBufferOffset ] = vertex.x;
vertices[ vertexBufferOffset + 1 ] = vertex.y;
vertices[ vertexBufferOffset + 2 ] = vertex.z;
// this vector is used to calculate the normal
center.x = radius * Math.cos( u );
center.y = radius * Math.sin( u );
// normal
normal.subVectors( vertex, center ).normalize();
normals[ vertexBufferOffset ] = normal.x;
normals[ vertexBufferOffset + 1 ] = normal.y;
normals[ vertexBufferOffset + 2 ] = normal.z;
// uv
uvs[ uvBufferOffset ] = i / tubularSegments;
uvs[ uvBufferOffset + 1 ] = j / radialSegments;
// update offsets
vertexBufferOffset += 3;
uvBufferOffset += 2;
}
}
// generate indices
for ( j = 1; j <= radialSegments; j ++ ) {
for ( i = 1; i <= tubularSegments; i ++ ) {
// indices
var a = ( tubularSegments + 1 ) * j + i - 1;
var b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1;
var c = ( tubularSegments + 1 ) * ( j - 1 ) + i;
var d = ( tubularSegments + 1 ) * j + i;
// face one
indices[ indexBufferOffset ] = a;
indices[ indexBufferOffset + 1 ] = b;
indices[ indexBufferOffset + 2 ] = d;
// face two
indices[ indexBufferOffset + 3 ] = b;
indices[ indexBufferOffset + 4 ] = c;
indices[ indexBufferOffset + 5 ] = d;
// update offset
indexBufferOffset += 6;
}
}
// build geometry
this.setIndex( new THREE.BufferAttribute( indices, 1 ) );
this.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) );
this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) );
this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) );
};
THREE.TorusBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.TorusBufferGeometry.prototype.constructor = THREE.TorusBufferGeometry;
// File:src/extras/geometries/TorusGeometry.js
/**
* @author oosmoxiecode
* @author mrdoob / http://mrdoob.com/
* based on http://code.google.com/p/away3d/source/browse/trunk/fp10/Away3DLite/src/away3dlite/primitives/Torus.as?r=2888
*/
THREE.TorusGeometry = function ( radius, tube, radialSegments, tubularSegments, arc ) {
THREE.Geometry.call( this );
this.type = 'TorusGeometry';
this.parameters = {
radius: radius,
tube: tube,
radialSegments: radialSegments,
tubularSegments: tubularSegments,
arc: arc
};
this.fromBufferGeometry( new THREE.TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) );
};
THREE.TorusGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.TorusGeometry.prototype.constructor = THREE.TorusGeometry;
// File:src/extras/geometries/TorusKnotBufferGeometry.js
/**
* @author Mugen87 / https://github.com/Mugen87
*
* see: http://www.blackpawn.com/texts/pqtorus/
*/
THREE.TorusKnotBufferGeometry = function ( radius, tube, tubularSegments, radialSegments, p, q ) {
THREE.BufferGeometry.call( this );
this.type = 'TorusKnotBufferGeometry';
this.parameters = {
radius: radius,
tube: tube,
tubularSegments: tubularSegments,
radialSegments: radialSegments,
p: p,
q: q
};
radius = radius || 100;
tube = tube || 40;
tubularSegments = Math.floor( tubularSegments ) || 64;
radialSegments = Math.floor( radialSegments ) || 8;
p = p || 2;
q = q || 3;
// used to calculate buffer length
var vertexCount = ( ( radialSegments + 1 ) * ( tubularSegments + 1 ) );
var indexCount = radialSegments * tubularSegments * 2 * 3;
// buffers
var indices = new THREE.BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 );
var vertices = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 );
// helper variables
var i, j, index = 0, indexOffset = 0;
var vertex = new THREE.Vector3();
var normal = new THREE.Vector3();
var uv = new THREE.Vector2();
var P1 = new THREE.Vector3();
var P2 = new THREE.Vector3();
var B = new THREE.Vector3();
var T = new THREE.Vector3();
var N = new THREE.Vector3();
// generate vertices, normals and uvs
for ( i = 0; i <= tubularSegments; ++ i ) {
// the radian "u" is used to calculate the position on the torus curve of the current tubular segement
var u = i / tubularSegments * p * Math.PI * 2;
// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
calculatePositionOnCurve( u, p, q, radius, P1 );
calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );
// calculate orthonormal basis
T.subVectors( P2, P1 );
N.addVectors( P2, P1 );
B.crossVectors( T, N );
N.crossVectors( B, T );
// normalize B, N. T can be ignored, we don't use it
B.normalize();
N.normalize();
for ( j = 0; j <= radialSegments; ++ j ) {
// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
var v = j / radialSegments * Math.PI * 2;
var cx = - tube * Math.cos( v );
var cy = tube * Math.sin( v );
// now calculate the final vertex position.
// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve
vertex.x = P1.x + ( cx * N.x + cy * B.x );
vertex.y = P1.y + ( cx * N.y + cy * B.y );
vertex.z = P1.z + ( cx * N.z + cy * B.z );
// vertex
vertices.setXYZ( index, vertex.x, vertex.y, vertex.z );
// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
normal.subVectors( vertex, P1 ).normalize();
normals.setXYZ( index, normal.x, normal.y, normal.z );
// uv
uv.x = i / tubularSegments;
uv.y = j / radialSegments;
uvs.setXY( index, uv.x, uv.y );
// increase index
index ++;
}
}
// generate indices
for ( j = 1; j <= tubularSegments; j ++ ) {
for ( i = 1; i <= radialSegments; i ++ ) {
// indices
var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
var b = ( radialSegments + 1 ) * j + ( i - 1 );
var c = ( radialSegments + 1 ) * j + i;
var d = ( radialSegments + 1 ) * ( j - 1 ) + i;
// face one
indices.setX( indexOffset, a ); indexOffset++;
indices.setX( indexOffset, b ); indexOffset++;
indices.setX( indexOffset, d ); indexOffset++;
// face two
indices.setX( indexOffset, b ); indexOffset++;
indices.setX( indexOffset, c ); indexOffset++;
indices.setX( indexOffset, d ); indexOffset++;
}
}
// build geometry
this.setIndex( indices );
this.addAttribute( 'position', vertices );
this.addAttribute( 'normal', normals );
this.addAttribute( 'uv', uvs );
// this function calculates the current position on the torus curve
function calculatePositionOnCurve( u, p, q, radius, position ) {
var cu = Math.cos( u );
var su = Math.sin( u );
var quOverP = q / p * u;
var cs = Math.cos( quOverP );
position.x = radius * ( 2 + cs ) * 0.5 * cu;
position.y = radius * ( 2 + cs ) * su * 0.5;
position.z = radius * Math.sin( quOverP ) * 0.5;
}
};
THREE.TorusKnotBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.TorusKnotBufferGeometry.prototype.constructor = THREE.TorusKnotBufferGeometry;
// File:src/extras/geometries/TorusKnotGeometry.js
/**
* @author oosmoxiecode
*/
THREE.TorusKnotGeometry = function ( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) {
THREE.Geometry.call( this );
this.type = 'TorusKnotGeometry';
this.parameters = {
radius: radius,
tube: tube,
tubularSegments: tubularSegments,
radialSegments: radialSegments,
p: p,
q: q
};
if( heightScale !== undefined ) console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' );
this.fromBufferGeometry( new THREE.TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) );
this.mergeVertices();
};
THREE.TorusKnotGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.TorusKnotGeometry.prototype.constructor = THREE.TorusKnotGeometry;
// File:src/extras/geometries/TubeGeometry.js
/**
* @author WestLangley / https://github.com/WestLangley
* @author zz85 / https://github.com/zz85
* @author miningold / https://github.com/miningold
* @author jonobr1 / https://github.com/jonobr1
*
* Modified from the TorusKnotGeometry by @oosmoxiecode
*
* Creates a tube which extrudes along a 3d spline
*
* Uses parallel transport frames as described in
* http://www.cs.indiana.edu/pub/techreports/TR425.pdf
*/
THREE.TubeGeometry = function ( path, segments, radius, radialSegments, closed, taper ) {
THREE.Geometry.call( this );
this.type = 'TubeGeometry';
this.parameters = {
path: path,
segments: segments,
radius: radius,
radialSegments: radialSegments,
closed: closed,
taper: taper
};
segments = segments || 64;
radius = radius || 1;
radialSegments = radialSegments || 8;
closed = closed || false;
taper = taper || THREE.TubeGeometry.NoTaper;
var grid = [];
var scope = this,
tangent,
normal,
binormal,
numpoints = segments + 1,
u, v, r,
cx, cy,
pos, pos2 = new THREE.Vector3(),
i, j,
ip, jp,
a, b, c, d,
uva, uvb, uvc, uvd;
var frames = new THREE.TubeGeometry.FrenetFrames( path, segments, closed ),
tangents = frames.tangents,
normals = frames.normals,
binormals = frames.binormals;
// proxy internals
this.tangents = tangents;
this.normals = normals;
this.binormals = binormals;
function vert( x, y, z ) {
return scope.vertices.push( new THREE.Vector3( x, y, z ) ) - 1;
}
// construct the grid
for ( i = 0; i < numpoints; i ++ ) {
grid[ i ] = [];
u = i / ( numpoints - 1 );
pos = path.getPointAt( u );
tangent = tangents[ i ];
normal = normals[ i ];
binormal = binormals[ i ];
r = radius * taper( u );
for ( j = 0; j < radialSegments; j ++ ) {
v = j / radialSegments * 2 * Math.PI;
cx = - r * Math.cos( v ); // TODO: Hack: Negating it so it faces outside.
cy = r * Math.sin( v );
pos2.copy( pos );
pos2.x += cx * normal.x + cy * binormal.x;
pos2.y += cx * normal.y + cy * binormal.y;
pos2.z += cx * normal.z + cy * binormal.z;
grid[ i ][ j ] = vert( pos2.x, pos2.y, pos2.z );
}
}
// construct the mesh
for ( i = 0; i < segments; i ++ ) {
for ( j = 0; j < radialSegments; j ++ ) {
ip = ( closed ) ? ( i + 1 ) % segments : i + 1;
jp = ( j + 1 ) % radialSegments;
a = grid[ i ][ j ]; // *** NOT NECESSARILY PLANAR ! ***
b = grid[ ip ][ j ];
c = grid[ ip ][ jp ];
d = grid[ i ][ jp ];
uva = new THREE.Vector2( i / segments, j / radialSegments );
uvb = new THREE.Vector2( ( i + 1 ) / segments, j / radialSegments );
uvc = new THREE.Vector2( ( i + 1 ) / segments, ( j + 1 ) / radialSegments );
uvd = new THREE.Vector2( i / segments, ( j + 1 ) / radialSegments );
this.faces.push( new THREE.Face3( a, b, d ) );
this.faceVertexUvs[ 0 ].push( [ uva, uvb, uvd ] );
this.faces.push( new THREE.Face3( b, c, d ) );
this.faceVertexUvs[ 0 ].push( [ uvb.clone(), uvc, uvd.clone() ] );
}
}
this.computeFaceNormals();
this.computeVertexNormals();
};
THREE.TubeGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.TubeGeometry.prototype.constructor = THREE.TubeGeometry;
THREE.TubeGeometry.NoTaper = function ( u ) {
return 1;
};
THREE.TubeGeometry.SinusoidalTaper = function ( u ) {
return Math.sin( Math.PI * u );
};
// For computing of Frenet frames, exposing the tangents, normals and binormals the spline
THREE.TubeGeometry.FrenetFrames = function ( path, segments, closed ) {
var normal = new THREE.Vector3(),
tangents = [],
normals = [],
binormals = [],
vec = new THREE.Vector3(),
mat = new THREE.Matrix4(),
numpoints = segments + 1,
theta,
smallest,
tx, ty, tz,
i, u;
// expose internals
this.tangents = tangents;
this.normals = normals;
this.binormals = binormals;
// compute the tangent vectors for each segment on the path
for ( i = 0; i < numpoints; i ++ ) {
u = i / ( numpoints - 1 );
tangents[ i ] = path.getTangentAt( u );
tangents[ i ].normalize();
}
initialNormal3();
/*
function initialNormal1(lastBinormal) {
// fixed start binormal. Has dangers of 0 vectors
normals[ 0 ] = new THREE.Vector3();
binormals[ 0 ] = new THREE.Vector3();
if (lastBinormal===undefined) lastBinormal = new THREE.Vector3( 0, 0, 1 );
normals[ 0 ].crossVectors( lastBinormal, tangents[ 0 ] ).normalize();
binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ).normalize();
}
function initialNormal2() {
// This uses the Frenet-Serret formula for deriving binormal
var t2 = path.getTangentAt( epsilon );
normals[ 0 ] = new THREE.Vector3().subVectors( t2, tangents[ 0 ] ).normalize();
binormals[ 0 ] = new THREE.Vector3().crossVectors( tangents[ 0 ], normals[ 0 ] );
normals[ 0 ].crossVectors( binormals[ 0 ], tangents[ 0 ] ).normalize(); // last binormal x tangent
binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ).normalize();
}
*/
function initialNormal3() {
// select an initial normal vector perpendicular to the first tangent vector,
// and in the direction of the smallest tangent xyz component
normals[ 0 ] = new THREE.Vector3();
binormals[ 0 ] = new THREE.Vector3();
smallest = Number.MAX_VALUE;
tx = Math.abs( tangents[ 0 ].x );
ty = Math.abs( tangents[ 0 ].y );
tz = Math.abs( tangents[ 0 ].z );
if ( tx <= smallest ) {
smallest = tx;
normal.set( 1, 0, 0 );
}
if ( ty <= smallest ) {
smallest = ty;
normal.set( 0, 1, 0 );
}
if ( tz <= smallest ) {
normal.set( 0, 0, 1 );
}
vec.crossVectors( tangents[ 0 ], normal ).normalize();
normals[ 0 ].crossVectors( tangents[ 0 ], vec );
binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );
}
// compute the slowly-varying normal and binormal vectors for each segment on the path
for ( i = 1; i < numpoints; i ++ ) {
normals[ i ] = normals[ i - 1 ].clone();
binormals[ i ] = binormals[ i - 1 ].clone();
vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );
if ( vec.length() > Number.EPSILON ) {
vec.normalize();
theta = Math.acos( THREE.Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors
normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );
}
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
if ( closed ) {
theta = Math.acos( THREE.Math.clamp( normals[ 0 ].dot( normals[ numpoints - 1 ] ), - 1, 1 ) );
theta /= ( numpoints - 1 );
if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ numpoints - 1 ] ) ) > 0 ) {
theta = - theta;
}
for ( i = 1; i < numpoints; i ++ ) {
// twist a little...
normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
}
};
// File:src/extras/geometries/PolyhedronGeometry.js
/**
* @author clockworkgeek / https://github.com/clockworkgeek
* @author timothypratley / https://github.com/timothypratley
* @author WestLangley / http://github.com/WestLangley
*/
THREE.PolyhedronGeometry = function ( vertices, indices, radius, detail ) {
THREE.Geometry.call( this );
this.type = 'PolyhedronGeometry';
this.parameters = {
vertices: vertices,
indices: indices,
radius: radius,
detail: detail
};
radius = radius || 1;
detail = detail || 0;
var that = this;
for ( var i = 0, l = vertices.length; i < l; i += 3 ) {
prepare( new THREE.Vector3( vertices[ i ], vertices[ i + 1 ], vertices[ i + 2 ] ) );
}
var p = this.vertices;
var faces = [];
for ( var i = 0, j = 0, l = indices.length; i < l; i += 3, j ++ ) {
var v1 = p[ indices[ i ] ];
var v2 = p[ indices[ i + 1 ] ];
var v3 = p[ indices[ i + 2 ] ];
faces[ j ] = new THREE.Face3( v1.index, v2.index, v3.index, [ v1.clone(), v2.clone(), v3.clone() ], undefined, j );
}
var centroid = new THREE.Vector3();
for ( var i = 0, l = faces.length; i < l; i ++ ) {
subdivide( faces[ i ], detail );
}
// Handle case when face straddles the seam
for ( var i = 0, l = this.faceVertexUvs[ 0 ].length; i < l; i ++ ) {
var uvs = this.faceVertexUvs[ 0 ][ i ];
var x0 = uvs[ 0 ].x;
var x1 = uvs[ 1 ].x;
var x2 = uvs[ 2 ].x;
var max = Math.max( x0, x1, x2 );
var min = Math.min( x0, x1, x2 );
if ( max > 0.9 && min < 0.1 ) {
// 0.9 is somewhat arbitrary
if ( x0 < 0.2 ) uvs[ 0 ].x += 1;
if ( x1 < 0.2 ) uvs[ 1 ].x += 1;
if ( x2 < 0.2 ) uvs[ 2 ].x += 1;
}
}
// Apply radius
for ( var i = 0, l = this.vertices.length; i < l; i ++ ) {
this.vertices[ i ].multiplyScalar( radius );
}
// Merge vertices
this.mergeVertices();
this.computeFaceNormals();
this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius );
// Project vector onto sphere's surface
function prepare( vector ) {
var vertex = vector.normalize().clone();
vertex.index = that.vertices.push( vertex ) - 1;
// Texture coords are equivalent to map coords, calculate angle and convert to fraction of a circle.
var u = azimuth( vector ) / 2 / Math.PI + 0.5;
var v = inclination( vector ) / Math.PI + 0.5;
vertex.uv = new THREE.Vector2( u, 1 - v );
return vertex;
}
// Approximate a curved face with recursively sub-divided triangles.
function make( v1, v2, v3, materialIndex ) {
var face = new THREE.Face3( v1.index, v2.index, v3.index, [ v1.clone(), v2.clone(), v3.clone() ], undefined, materialIndex );
that.faces.push( face );
centroid.copy( v1 ).add( v2 ).add( v3 ).divideScalar( 3 );
var azi = azimuth( centroid );
that.faceVertexUvs[ 0 ].push( [
correctUV( v1.uv, v1, azi ),
correctUV( v2.uv, v2, azi ),
correctUV( v3.uv, v3, azi )
] );
}
// Analytically subdivide a face to the required detail level.
function subdivide( face, detail ) {
var cols = Math.pow( 2, detail );
var a = prepare( that.vertices[ face.a ] );
var b = prepare( that.vertices[ face.b ] );
var c = prepare( that.vertices[ face.c ] );
var v = [];
var materialIndex = face.materialIndex;
// Construct all of the vertices for this subdivision.
for ( var i = 0 ; i <= cols; i ++ ) {
v[ i ] = [];
var aj = prepare( a.clone().lerp( c, i / cols ) );
var bj = prepare( b.clone().lerp( c, i / cols ) );
var rows = cols - i;
for ( var j = 0; j <= rows; j ++ ) {
if ( j === 0 && i === cols ) {
v[ i ][ j ] = aj;
} else {
v[ i ][ j ] = prepare( aj.clone().lerp( bj, j / rows ) );
}
}
}
// Construct all of the faces.
for ( var i = 0; i < cols ; i ++ ) {
for ( var j = 0; j < 2 * ( cols - i ) - 1; j ++ ) {
var k = Math.floor( j / 2 );
if ( j % 2 === 0 ) {
make(
v[ i ][ k + 1 ],
v[ i + 1 ][ k ],
v[ i ][ k ],
materialIndex
);
} else {
make(
v[ i ][ k + 1 ],
v[ i + 1 ][ k + 1 ],
v[ i + 1 ][ k ],
materialIndex
);
}
}
}
}
// Angle around the Y axis, counter-clockwise when looking from above.
function azimuth( vector ) {
return Math.atan2( vector.z, - vector.x );
}
// Angle above the XZ plane.
function inclination( vector ) {
return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) );
}
// Texture fixing helper. Spheres have some odd behaviours.
function correctUV( uv, vector, azimuth ) {
if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) uv = new THREE.Vector2( uv.x - 1, uv.y );
if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) uv = new THREE.Vector2( azimuth / 2 / Math.PI + 0.5, uv.y );
return uv.clone();
}
};
THREE.PolyhedronGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.PolyhedronGeometry.prototype.constructor = THREE.PolyhedronGeometry;
// File:src/extras/geometries/DodecahedronGeometry.js
/**
* @author Abe Pazos / https://hamoid.com
*/
THREE.DodecahedronGeometry = function ( radius, detail ) {
var t = ( 1 + Math.sqrt( 5 ) ) / 2;
var r = 1 / t;
var vertices = [
// (±1, ±1, ±1)
- 1, - 1, - 1, - 1, - 1, 1,
- 1, 1, - 1, - 1, 1, 1,
1, - 1, - 1, 1, - 1, 1,
1, 1, - 1, 1, 1, 1,
// (0, ±1/φ, ±φ)
0, - r, - t, 0, - r, t,
0, r, - t, 0, r, t,
// (±1/φ, ±φ, 0)
- r, - t, 0, - r, t, 0,
r, - t, 0, r, t, 0,
// (±φ, 0, ±1/φ)
- t, 0, - r, t, 0, - r,
- t, 0, r, t, 0, r
];
var indices = [
3, 11, 7, 3, 7, 15, 3, 15, 13,
7, 19, 17, 7, 17, 6, 7, 6, 15,
17, 4, 8, 17, 8, 10, 17, 10, 6,
8, 0, 16, 8, 16, 2, 8, 2, 10,
0, 12, 1, 0, 1, 18, 0, 18, 16,
6, 10, 2, 6, 2, 13, 6, 13, 15,
2, 16, 18, 2, 18, 3, 2, 3, 13,
18, 1, 9, 18, 9, 11, 18, 11, 3,
4, 14, 12, 4, 12, 0, 4, 0, 8,
11, 9, 5, 11, 5, 19, 11, 19, 7,
19, 5, 14, 19, 14, 4, 19, 4, 17,
1, 12, 14, 1, 14, 5, 1, 5, 9
];
THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail );
this.type = 'DodecahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
};
THREE.DodecahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype );
THREE.DodecahedronGeometry.prototype.constructor = THREE.DodecahedronGeometry;
// File:src/extras/geometries/IcosahedronGeometry.js
/**
* @author timothypratley / https://github.com/timothypratley
*/
THREE.IcosahedronGeometry = function ( radius, detail ) {
var t = ( 1 + Math.sqrt( 5 ) ) / 2;
var vertices = [
- 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, 0,
0, - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t,
t, 0, - 1, t, 0, 1, - t, 0, - 1, - t, 0, 1
];
var indices = [
0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11,
1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8,
3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9,
4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1
];
THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail );
this.type = 'IcosahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
};
THREE.IcosahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype );
THREE.IcosahedronGeometry.prototype.constructor = THREE.IcosahedronGeometry;
// File:src/extras/geometries/OctahedronGeometry.js
/**
* @author timothypratley / https://github.com/timothypratley
*/
THREE.OctahedronGeometry = function ( radius, detail ) {
var vertices = [
1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1
];
var indices = [
0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2
];
THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail );
this.type = 'OctahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
};
THREE.OctahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype );
THREE.OctahedronGeometry.prototype.constructor = THREE.OctahedronGeometry;
// File:src/extras/geometries/TetrahedronGeometry.js
/**
* @author timothypratley / https://github.com/timothypratley
*/
THREE.TetrahedronGeometry = function ( radius, detail ) {
var vertices = [
1, 1, 1, - 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1
];
var indices = [
2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1
];
THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail );
this.type = 'TetrahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
};
THREE.TetrahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype );
THREE.TetrahedronGeometry.prototype.constructor = THREE.TetrahedronGeometry;
// File:src/extras/geometries/ParametricGeometry.js
/**
* @author zz85 / https://github.com/zz85
* Parametric Surfaces Geometry
* based on the brilliant article by @prideout http://prideout.net/blog/?p=44
*
* new THREE.ParametricGeometry( parametricFunction, uSegments, ySegements );
*
*/
THREE.ParametricGeometry = function ( func, slices, stacks ) {
THREE.Geometry.call( this );
this.type = 'ParametricGeometry';
this.parameters = {
func: func,
slices: slices,
stacks: stacks
};
var verts = this.vertices;
var faces = this.faces;
var uvs = this.faceVertexUvs[ 0 ];
var i, j, p;
var u, v;
var sliceCount = slices + 1;
for ( i = 0; i <= stacks; i ++ ) {
v = i / stacks;
for ( j = 0; j <= slices; j ++ ) {
u = j / slices;
p = func( u, v );
verts.push( p );
}
}
var a, b, c, d;
var uva, uvb, uvc, uvd;
for ( i = 0; i < stacks; i ++ ) {
for ( j = 0; j < slices; j ++ ) {
a = i * sliceCount + j;
b = i * sliceCount + j + 1;
c = ( i + 1 ) * sliceCount + j + 1;
d = ( i + 1 ) * sliceCount + j;
uva = new THREE.Vector2( j / slices, i / stacks );
uvb = new THREE.Vector2( ( j + 1 ) / slices, i / stacks );
uvc = new THREE.Vector2( ( j + 1 ) / slices, ( i + 1 ) / stacks );
uvd = new THREE.Vector2( j / slices, ( i + 1 ) / stacks );
faces.push( new THREE.Face3( a, b, d ) );
uvs.push( [ uva, uvb, uvd ] );
faces.push( new THREE.Face3( b, c, d ) );
uvs.push( [ uvb.clone(), uvc, uvd.clone() ] );
}
}
// console.log(this);
// magic bullet
// var diff = this.mergeVertices();
// console.log('removed ', diff, ' vertices by merging');
this.computeFaceNormals();
this.computeVertexNormals();
};
THREE.ParametricGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.ParametricGeometry.prototype.constructor = THREE.ParametricGeometry;
// File:src/extras/geometries/WireframeGeometry.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WireframeGeometry = function ( geometry ) {
THREE.BufferGeometry.call( this );
var edge = [ 0, 0 ], hash = {};
function sortFunction( a, b ) {
return a - b;
}
var keys = [ 'a', 'b', 'c' ];
if ( geometry instanceof THREE.Geometry ) {
var vertices = geometry.vertices;
var faces = geometry.faces;
var numEdges = 0;
// allocate maximal size
var edges = new Uint32Array( 6 * faces.length );
for ( var i = 0, l = faces.length; i < l; i ++ ) {
var face = faces[ i ];
for ( var j = 0; j < 3; j ++ ) {
edge[ 0 ] = face[ keys[ j ] ];
edge[ 1 ] = face[ keys[ ( j + 1 ) % 3 ] ];
edge.sort( sortFunction );
var key = edge.toString();
if ( hash[ key ] === undefined ) {
edges[ 2 * numEdges ] = edge[ 0 ];
edges[ 2 * numEdges + 1 ] = edge[ 1 ];
hash[ key ] = true;
numEdges ++;
}
}
}
var coords = new Float32Array( numEdges * 2 * 3 );
for ( var i = 0, l = numEdges; i < l; i ++ ) {
for ( var j = 0; j < 2; j ++ ) {
var vertex = vertices[ edges [ 2 * i + j ] ];
var index = 6 * i + 3 * j;
coords[ index + 0 ] = vertex.x;
coords[ index + 1 ] = vertex.y;
coords[ index + 2 ] = vertex.z;
}
}
this.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) );
} else if ( geometry instanceof THREE.BufferGeometry ) {
if ( geometry.index !== null ) {
// Indexed BufferGeometry
var indices = geometry.index.array;
var vertices = geometry.attributes.position;
var groups = geometry.groups;
var numEdges = 0;
if ( groups.length === 0 ) {
geometry.addGroup( 0, indices.length );
}
// allocate maximal size
var edges = new Uint32Array( 2 * indices.length );
for ( var o = 0, ol = groups.length; o < ol; ++ o ) {
var group = groups[ o ];
var start = group.start;
var count = group.count;
for ( var i = start, il = start + count; i < il; i += 3 ) {
for ( var j = 0; j < 3; j ++ ) {
edge[ 0 ] = indices[ i + j ];
edge[ 1 ] = indices[ i + ( j + 1 ) % 3 ];
edge.sort( sortFunction );
var key = edge.toString();
if ( hash[ key ] === undefined ) {
edges[ 2 * numEdges ] = edge[ 0 ];
edges[ 2 * numEdges + 1 ] = edge[ 1 ];
hash[ key ] = true;
numEdges ++;
}
}
}
}
var coords = new Float32Array( numEdges * 2 * 3 );
for ( var i = 0, l = numEdges; i < l; i ++ ) {
for ( var j = 0; j < 2; j ++ ) {
var index = 6 * i + 3 * j;
var index2 = edges[ 2 * i + j ];
coords[ index + 0 ] = vertices.getX( index2 );
coords[ index + 1 ] = vertices.getY( index2 );
coords[ index + 2 ] = vertices.getZ( index2 );
}
}
this.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) );
} else {
// non-indexed BufferGeometry
var vertices = geometry.attributes.position.array;
var numEdges = vertices.length / 3;
var numTris = numEdges / 3;
var coords = new Float32Array( numEdges * 2 * 3 );
for ( var i = 0, l = numTris; i < l; i ++ ) {
for ( var j = 0; j < 3; j ++ ) {
var index = 18 * i + 6 * j;
var index1 = 9 * i + 3 * j;
coords[ index + 0 ] = vertices[ index1 ];
coords[ index + 1 ] = vertices[ index1 + 1 ];
coords[ index + 2 ] = vertices[ index1 + 2 ];
var index2 = 9 * i + 3 * ( ( j + 1 ) % 3 );
coords[ index + 3 ] = vertices[ index2 ];
coords[ index + 4 ] = vertices[ index2 + 1 ];
coords[ index + 5 ] = vertices[ index2 + 2 ];
}
}
this.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) );
}
}
};
THREE.WireframeGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.WireframeGeometry.prototype.constructor = THREE.WireframeGeometry;
// File:src/extras/helpers/AxisHelper.js
/**
* @author sroucheray / http://sroucheray.org/
* @author mrdoob / http://mrdoob.com/
*/
THREE.AxisHelper = function ( size ) {
size = size || 1;
var vertices = new Float32Array( [
0, 0, 0, size, 0, 0,
0, 0, 0, 0, size, 0,
0, 0, 0, 0, 0, size
] );
var colors = new Float32Array( [
1, 0, 0, 1, 0.6, 0,
0, 1, 0, 0.6, 1, 0,
0, 0, 1, 0, 0.6, 1
] );
var geometry = new THREE.BufferGeometry();
geometry.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) );
geometry.addAttribute( 'color', new THREE.BufferAttribute( colors, 3 ) );
var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors } );
THREE.LineSegments.call( this, geometry, material );
};
THREE.AxisHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.AxisHelper.prototype.constructor = THREE.AxisHelper;
// File:src/extras/helpers/ArrowHelper.js
/**
* @author WestLangley / http://github.com/WestLangley
* @author zz85 / http://github.com/zz85
* @author bhouston / http://clara.io
*
* Creates an arrow for visualizing directions
*
* Parameters:
* dir - Vector3
* origin - Vector3
* length - Number
* color - color in hex value
* headLength - Number
* headWidth - Number
*/
THREE.ArrowHelper = ( function () {
var lineGeometry = new THREE.Geometry();
lineGeometry.vertices.push( new THREE.Vector3( 0, 0, 0 ), new THREE.Vector3( 0, 1, 0 ) );
var coneGeometry = new THREE.CylinderGeometry( 0, 0.5, 1, 5, 1 );
coneGeometry.translate( 0, - 0.5, 0 );
return function ArrowHelper( dir, origin, length, color, headLength, headWidth ) {
// dir is assumed to be normalized
THREE.Object3D.call( this );
if ( color === undefined ) color = 0xffff00;
if ( length === undefined ) length = 1;
if ( headLength === undefined ) headLength = 0.2 * length;
if ( headWidth === undefined ) headWidth = 0.2 * headLength;
this.position.copy( origin );
this.line = new THREE.Line( lineGeometry, new THREE.LineBasicMaterial( { color: color } ) );
this.line.matrixAutoUpdate = false;
this.add( this.line );
this.cone = new THREE.Mesh( coneGeometry, new THREE.MeshBasicMaterial( { color: color } ) );
this.cone.matrixAutoUpdate = false;
this.add( this.cone );
this.setDirection( dir );
this.setLength( length, headLength, headWidth );
}
}() );
THREE.ArrowHelper.prototype = Object.create( THREE.Object3D.prototype );
THREE.ArrowHelper.prototype.constructor = THREE.ArrowHelper;
THREE.ArrowHelper.prototype.setDirection = ( function () {
var axis = new THREE.Vector3();
var radians;
return function setDirection( dir ) {
// dir is assumed to be normalized
if ( dir.y > 0.99999 ) {
this.quaternion.set( 0, 0, 0, 1 );
} else if ( dir.y < - 0.99999 ) {
this.quaternion.set( 1, 0, 0, 0 );
} else {
axis.set( dir.z, 0, - dir.x ).normalize();
radians = Math.acos( dir.y );
this.quaternion.setFromAxisAngle( axis, radians );
}
};
}() );
THREE.ArrowHelper.prototype.setLength = function ( length, headLength, headWidth ) {
if ( headLength === undefined ) headLength = 0.2 * length;
if ( headWidth === undefined ) headWidth = 0.2 * headLength;
this.line.scale.set( 1, Math.max( 0, length - headLength ), 1 );
this.line.updateMatrix();
this.cone.scale.set( headWidth, headLength, headWidth );
this.cone.position.y = length;
this.cone.updateMatrix();
};
THREE.ArrowHelper.prototype.setColor = function ( color ) {
this.line.material.color.set( color );
this.cone.material.color.set( color );
};
// File:src/extras/helpers/BoxHelper.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.BoxHelper = function ( object ) {
var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );
var positions = new Float32Array( 8 * 3 );
var geometry = new THREE.BufferGeometry();
geometry.setIndex( new THREE.BufferAttribute( indices, 1 ) );
geometry.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) );
THREE.LineSegments.call( this, geometry, new THREE.LineBasicMaterial( { color: 0xffff00 } ) );
if ( object !== undefined ) {
this.update( object );
}
};
THREE.BoxHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.BoxHelper.prototype.constructor = THREE.BoxHelper;
THREE.BoxHelper.prototype.update = ( function () {
var box = new THREE.Box3();
return function ( object ) {
if ( object instanceof THREE.Box3 ) {
box.copy( object );
} else {
box.setFromObject( object );
}
if ( box.isEmpty() ) return;
var min = box.min;
var max = box.max;
/*
5____4
1/___0/|
| 6__|_7
2/___3/
0: max.x, max.y, max.z
1: min.x, max.y, max.z
2: min.x, min.y, max.z
3: max.x, min.y, max.z
4: max.x, max.y, min.z
5: min.x, max.y, min.z
6: min.x, min.y, min.z
7: max.x, min.y, min.z
*/
var position = this.geometry.attributes.position;
var array = position.array;
array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z;
array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z;
array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z;
array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z;
array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z;
array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z;
array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z;
array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z;
position.needsUpdate = true;
this.geometry.computeBoundingSphere();
};
} )();
// File:src/extras/helpers/BoundingBoxHelper.js
/**
* @author WestLangley / http://github.com/WestLangley
*/
// a helper to show the world-axis-aligned bounding box for an object
THREE.BoundingBoxHelper = function ( object, hex ) {
var color = ( hex !== undefined ) ? hex : 0x888888;
this.object = object;
this.box = new THREE.Box3();
THREE.Mesh.call( this, new THREE.BoxGeometry( 1, 1, 1 ), new THREE.MeshBasicMaterial( { color: color, wireframe: true } ) );
};
THREE.BoundingBoxHelper.prototype = Object.create( THREE.Mesh.prototype );
THREE.BoundingBoxHelper.prototype.constructor = THREE.BoundingBoxHelper;
THREE.BoundingBoxHelper.prototype.update = function () {
this.box.setFromObject( this.object );
this.box.size( this.scale );
this.box.center( this.position );
};
// File:src/extras/helpers/CameraHelper.js
/**
* @author alteredq / http://alteredqualia.com/
*
* - shows frustum, line of sight and up of the camera
* - suitable for fast updates
* - based on frustum visualization in lightgl.js shadowmap example
* http://evanw.github.com/lightgl.js/tests/shadowmap.html
*/
THREE.CameraHelper = function ( camera ) {
var geometry = new THREE.Geometry();
var material = new THREE.LineBasicMaterial( { color: 0xffffff, vertexColors: THREE.FaceColors } );
var pointMap = {};
// colors
var hexFrustum = 0xffaa00;
var hexCone = 0xff0000;
var hexUp = 0x00aaff;
var hexTarget = 0xffffff;
var hexCross = 0x333333;
// near
addLine( "n1", "n2", hexFrustum );
addLine( "n2", "n4", hexFrustum );
addLine( "n4", "n3", hexFrustum );
addLine( "n3", "n1", hexFrustum );
// far
addLine( "f1", "f2", hexFrustum );
addLine( "f2", "f4", hexFrustum );
addLine( "f4", "f3", hexFrustum );
addLine( "f3", "f1", hexFrustum );
// sides
addLine( "n1", "f1", hexFrustum );
addLine( "n2", "f2", hexFrustum );
addLine( "n3", "f3", hexFrustum );
addLine( "n4", "f4", hexFrustum );
// cone
addLine( "p", "n1", hexCone );
addLine( "p", "n2", hexCone );
addLine( "p", "n3", hexCone );
addLine( "p", "n4", hexCone );
// up
addLine( "u1", "u2", hexUp );
addLine( "u2", "u3", hexUp );
addLine( "u3", "u1", hexUp );
// target
addLine( "c", "t", hexTarget );
addLine( "p", "c", hexCross );
// cross
addLine( "cn1", "cn2", hexCross );
addLine( "cn3", "cn4", hexCross );
addLine( "cf1", "cf2", hexCross );
addLine( "cf3", "cf4", hexCross );
function addLine( a, b, hex ) {
addPoint( a, hex );
addPoint( b, hex );
}
function addPoint( id, hex ) {
geometry.vertices.push( new THREE.Vector3() );
geometry.colors.push( new THREE.Color( hex ) );
if ( pointMap[ id ] === undefined ) {
pointMap[ id ] = [];
}
pointMap[ id ].push( geometry.vertices.length - 1 );
}
THREE.LineSegments.call( this, geometry, material );
this.camera = camera;
this.camera.updateProjectionMatrix();
this.matrix = camera.matrixWorld;
this.matrixAutoUpdate = false;
this.pointMap = pointMap;
this.update();
};
THREE.CameraHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.CameraHelper.prototype.constructor = THREE.CameraHelper;
THREE.CameraHelper.prototype.update = function () {
var geometry, pointMap;
var vector = new THREE.Vector3();
var camera = new THREE.Camera();
function setPoint( point, x, y, z ) {
vector.set( x, y, z ).unproject( camera );
var points = pointMap[ point ];
if ( points !== undefined ) {
for ( var i = 0, il = points.length; i < il; i ++ ) {
geometry.vertices[ points[ i ] ].copy( vector );
}
}
}
return function () {
geometry = this.geometry;
pointMap = this.pointMap;
var w = 1, h = 1;
// we need just camera projection matrix
// world matrix must be identity
camera.projectionMatrix.copy( this.camera.projectionMatrix );
// center / target
setPoint( "c", 0, 0, - 1 );
setPoint( "t", 0, 0, 1 );
// near
setPoint( "n1", - w, - h, - 1 );
setPoint( "n2", w, - h, - 1 );
setPoint( "n3", - w, h, - 1 );
setPoint( "n4", w, h, - 1 );
// far
setPoint( "f1", - w, - h, 1 );
setPoint( "f2", w, - h, 1 );
setPoint( "f3", - w, h, 1 );
setPoint( "f4", w, h, 1 );
// up
setPoint( "u1", w * 0.7, h * 1.1, - 1 );
setPoint( "u2", - w * 0.7, h * 1.1, - 1 );
setPoint( "u3", 0, h * 2, - 1 );
// cross
setPoint( "cf1", - w, 0, 1 );
setPoint( "cf2", w, 0, 1 );
setPoint( "cf3", 0, - h, 1 );
setPoint( "cf4", 0, h, 1 );
setPoint( "cn1", - w, 0, - 1 );
setPoint( "cn2", w, 0, - 1 );
setPoint( "cn3", 0, - h, - 1 );
setPoint( "cn4", 0, h, - 1 );
geometry.verticesNeedUpdate = true;
};
}();
// File:src/extras/helpers/DirectionalLightHelper.js
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
*/
THREE.DirectionalLightHelper = function ( light, size ) {
THREE.Object3D.call( this );
this.light = light;
this.light.updateMatrixWorld();
this.matrix = light.matrixWorld;
this.matrixAutoUpdate = false;
size = size || 1;
var geometry = new THREE.Geometry();
geometry.vertices.push(
new THREE.Vector3( - size, size, 0 ),
new THREE.Vector3( size, size, 0 ),
new THREE.Vector3( size, - size, 0 ),
new THREE.Vector3( - size, - size, 0 ),
new THREE.Vector3( - size, size, 0 )
);
var material = new THREE.LineBasicMaterial( { fog: false } );
material.color.copy( this.light.color ).multiplyScalar( this.light.intensity );
this.lightPlane = new THREE.Line( geometry, material );
this.add( this.lightPlane );
geometry = new THREE.Geometry();
geometry.vertices.push(
new THREE.Vector3(),
new THREE.Vector3()
);
material = new THREE.LineBasicMaterial( { fog: false } );
material.color.copy( this.light.color ).multiplyScalar( this.light.intensity );
this.targetLine = new THREE.Line( geometry, material );
this.add( this.targetLine );
this.update();
};
THREE.DirectionalLightHelper.prototype = Object.create( THREE.Object3D.prototype );
THREE.DirectionalLightHelper.prototype.constructor = THREE.DirectionalLightHelper;
THREE.DirectionalLightHelper.prototype.dispose = function () {
this.lightPlane.geometry.dispose();
this.lightPlane.material.dispose();
this.targetLine.geometry.dispose();
this.targetLine.material.dispose();
};
THREE.DirectionalLightHelper.prototype.update = function () {
var v1 = new THREE.Vector3();
var v2 = new THREE.Vector3();
var v3 = new THREE.Vector3();
return function () {
v1.setFromMatrixPosition( this.light.matrixWorld );
v2.setFromMatrixPosition( this.light.target.matrixWorld );
v3.subVectors( v2, v1 );
this.lightPlane.lookAt( v3 );
this.lightPlane.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity );
this.targetLine.geometry.vertices[ 1 ].copy( v3 );
this.targetLine.geometry.verticesNeedUpdate = true;
this.targetLine.material.color.copy( this.lightPlane.material.color );
};
}();
// File:src/extras/helpers/EdgesHelper.js
/**
* @author WestLangley / http://github.com/WestLangley
* @param object THREE.Mesh whose geometry will be used
* @param hex line color
* @param thresholdAngle the minimum angle (in degrees),
* between the face normals of adjacent faces,
* that is required to render an edge. A value of 10 means
* an edge is only rendered if the angle is at least 10 degrees.
*/
THREE.EdgesHelper = function ( object, hex, thresholdAngle ) {
var color = ( hex !== undefined ) ? hex : 0xffffff;
THREE.LineSegments.call( this, new THREE.EdgesGeometry( object.geometry, thresholdAngle ), new THREE.LineBasicMaterial( { color: color } ) );
this.matrix = object.matrixWorld;
this.matrixAutoUpdate = false;
};
THREE.EdgesHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.EdgesHelper.prototype.constructor = THREE.EdgesHelper;
// File:src/extras/helpers/FaceNormalsHelper.js
/**
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
*/
THREE.FaceNormalsHelper = function ( object, size, hex, linewidth ) {
// FaceNormalsHelper only supports THREE.Geometry
this.object = object;
this.size = ( size !== undefined ) ? size : 1;
var color = ( hex !== undefined ) ? hex : 0xffff00;
var width = ( linewidth !== undefined ) ? linewidth : 1;
//
var nNormals = 0;
var objGeometry = this.object.geometry;
if ( objGeometry instanceof THREE.Geometry ) {
nNormals = objGeometry.faces.length;
} else {
console.warn( 'THREE.FaceNormalsHelper: only THREE.Geometry is supported. Use THREE.VertexNormalsHelper, instead.' );
}
//
var geometry = new THREE.BufferGeometry();
var positions = new THREE.Float32Attribute( nNormals * 2 * 3, 3 );
geometry.addAttribute( 'position', positions );
THREE.LineSegments.call( this, geometry, new THREE.LineBasicMaterial( { color: color, linewidth: width } ) );
//
this.matrixAutoUpdate = false;
this.update();
};
THREE.FaceNormalsHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.FaceNormalsHelper.prototype.constructor = THREE.FaceNormalsHelper;
THREE.FaceNormalsHelper.prototype.update = ( function () {
var v1 = new THREE.Vector3();
var v2 = new THREE.Vector3();
var normalMatrix = new THREE.Matrix3();
return function update() {
this.object.updateMatrixWorld( true );
normalMatrix.getNormalMatrix( this.object.matrixWorld );
var matrixWorld = this.object.matrixWorld;
var position = this.geometry.attributes.position;
//
var objGeometry = this.object.geometry;
var vertices = objGeometry.vertices;
var faces = objGeometry.faces;
var idx = 0;
for ( var i = 0, l = faces.length; i < l; i ++ ) {
var face = faces[ i ];
var normal = face.normal;
v1.copy( vertices[ face.a ] )
.add( vertices[ face.b ] )
.add( vertices[ face.c ] )
.divideScalar( 3 )
.applyMatrix4( matrixWorld );
v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );
position.setXYZ( idx, v1.x, v1.y, v1.z );
idx = idx + 1;
position.setXYZ( idx, v2.x, v2.y, v2.z );
idx = idx + 1;
}
position.needsUpdate = true;
return this;
}
}() );
// File:src/extras/helpers/GridHelper.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.GridHelper = function ( size, step ) {
var geometry = new THREE.Geometry();
var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors } );
this.color1 = new THREE.Color( 0x444444 );
this.color2 = new THREE.Color( 0x888888 );
for ( var i = - size; i <= size; i += step ) {
geometry.vertices.push(
new THREE.Vector3( - size, 0, i ), new THREE.Vector3( size, 0, i ),
new THREE.Vector3( i, 0, - size ), new THREE.Vector3( i, 0, size )
);
var color = i === 0 ? this.color1 : this.color2;
geometry.colors.push( color, color, color, color );
}
THREE.LineSegments.call( this, geometry, material );
};
THREE.GridHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.GridHelper.prototype.constructor = THREE.GridHelper;
THREE.GridHelper.prototype.setColors = function( colorCenterLine, colorGrid ) {
this.color1.set( colorCenterLine );
this.color2.set( colorGrid );
this.geometry.colorsNeedUpdate = true;
};
// File:src/extras/helpers/HemisphereLightHelper.js
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
THREE.HemisphereLightHelper = function ( light, sphereSize ) {
THREE.Object3D.call( this );
this.light = light;
this.light.updateMatrixWorld();
this.matrix = light.matrixWorld;
this.matrixAutoUpdate = false;
this.colors = [ new THREE.Color(), new THREE.Color() ];
var geometry = new THREE.SphereGeometry( sphereSize, 4, 2 );
geometry.rotateX( - Math.PI / 2 );
for ( var i = 0, il = 8; i < il; i ++ ) {
geometry.faces[ i ].color = this.colors[ i < 4 ? 0 : 1 ];
}
var material = new THREE.MeshBasicMaterial( { vertexColors: THREE.FaceColors, wireframe: true } );
this.lightSphere = new THREE.Mesh( geometry, material );
this.add( this.lightSphere );
this.update();
};
THREE.HemisphereLightHelper.prototype = Object.create( THREE.Object3D.prototype );
THREE.HemisphereLightHelper.prototype.constructor = THREE.HemisphereLightHelper;
THREE.HemisphereLightHelper.prototype.dispose = function () {
this.lightSphere.geometry.dispose();
this.lightSphere.material.dispose();
};
THREE.HemisphereLightHelper.prototype.update = function () {
var vector = new THREE.Vector3();
return function () {
this.colors[ 0 ].copy( this.light.color ).multiplyScalar( this.light.intensity );
this.colors[ 1 ].copy( this.light.groundColor ).multiplyScalar( this.light.intensity );
this.lightSphere.lookAt( vector.setFromMatrixPosition( this.light.matrixWorld ).negate() );
this.lightSphere.geometry.colorsNeedUpdate = true;
}
}();
// File:src/extras/helpers/PointLightHelper.js
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
THREE.PointLightHelper = function ( light, sphereSize ) {
this.light = light;
this.light.updateMatrixWorld();
var geometry = new THREE.SphereGeometry( sphereSize, 4, 2 );
var material = new THREE.MeshBasicMaterial( { wireframe: true, fog: false } );
material.color.copy( this.light.color ).multiplyScalar( this.light.intensity );
THREE.Mesh.call( this, geometry, material );
this.matrix = this.light.matrixWorld;
this.matrixAutoUpdate = false;
/*
var distanceGeometry = new THREE.IcosahedronGeometry( 1, 2 );
var distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );
this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial );
this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial );
var d = light.distance;
if ( d === 0.0 ) {
this.lightDistance.visible = false;
} else {
this.lightDistance.scale.set( d, d, d );
}
this.add( this.lightDistance );
*/
};
THREE.PointLightHelper.prototype = Object.create( THREE.Mesh.prototype );
THREE.PointLightHelper.prototype.constructor = THREE.PointLightHelper;
THREE.PointLightHelper.prototype.dispose = function () {
this.geometry.dispose();
this.material.dispose();
};
THREE.PointLightHelper.prototype.update = function () {
this.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity );
/*
var d = this.light.distance;
if ( d === 0.0 ) {
this.lightDistance.visible = false;
} else {
this.lightDistance.visible = true;
this.lightDistance.scale.set( d, d, d );
}
*/
};
// File:src/extras/helpers/SkeletonHelper.js
/**
* @author Sean Griffin / http://twitter.com/sgrif
* @author Michael Guerrero / http://realitymeltdown.com
* @author mrdoob / http://mrdoob.com/
* @author ikerr / http://verold.com
*/
THREE.SkeletonHelper = function ( object ) {
this.bones = this.getBoneList( object );
var geometry = new THREE.Geometry();
for ( var i = 0; i < this.bones.length; i ++ ) {
var bone = this.bones[ i ];
if ( bone.parent instanceof THREE.Bone ) {
geometry.vertices.push( new THREE.Vector3() );
geometry.vertices.push( new THREE.Vector3() );
geometry.colors.push( new THREE.Color( 0, 0, 1 ) );
geometry.colors.push( new THREE.Color( 0, 1, 0 ) );
}
}
geometry.dynamic = true;
var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors, depthTest: false, depthWrite: false, transparent: true } );
THREE.LineSegments.call( this, geometry, material );
this.root = object;
this.matrix = object.matrixWorld;
this.matrixAutoUpdate = false;
this.update();
};
THREE.SkeletonHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.SkeletonHelper.prototype.constructor = THREE.SkeletonHelper;
THREE.SkeletonHelper.prototype.getBoneList = function( object ) {
var boneList = [];
if ( object instanceof THREE.Bone ) {
boneList.push( object );
}
for ( var i = 0; i < object.children.length; i ++ ) {
boneList.push.apply( boneList, this.getBoneList( object.children[ i ] ) );
}
return boneList;
};
THREE.SkeletonHelper.prototype.update = function () {
var geometry = this.geometry;
var matrixWorldInv = new THREE.Matrix4().getInverse( this.root.matrixWorld );
var boneMatrix = new THREE.Matrix4();
var j = 0;
for ( var i = 0; i < this.bones.length; i ++ ) {
var bone = this.bones[ i ];
if ( bone.parent instanceof THREE.Bone ) {
boneMatrix.multiplyMatrices( matrixWorldInv, bone.matrixWorld );
geometry.vertices[ j ].setFromMatrixPosition( boneMatrix );
boneMatrix.multiplyMatrices( matrixWorldInv, bone.parent.matrixWorld );
geometry.vertices[ j + 1 ].setFromMatrixPosition( boneMatrix );
j += 2;
}
}
geometry.verticesNeedUpdate = true;
geometry.computeBoundingSphere();
};
// File:src/extras/helpers/SpotLightHelper.js
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
*/
THREE.SpotLightHelper = function ( light ) {
THREE.Object3D.call( this );
this.light = light;
this.light.updateMatrixWorld();
this.matrix = light.matrixWorld;
this.matrixAutoUpdate = false;
var geometry = new THREE.BufferGeometry();
var positions = [
0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, - 1, 0, 1,
0, 0, 0, 0, 1, 1,
0, 0, 0, 0, - 1, 1
];
for ( var i = 0, j = 1, l = 32; i < l; i ++, j ++ ) {
var p1 = ( i / l ) * Math.PI * 2;
var p2 = ( j / l ) * Math.PI * 2;
positions.push(
Math.cos( p1 ), Math.sin( p1 ), 1,
Math.cos( p2 ), Math.sin( p2 ), 1
);
}
geometry.addAttribute( 'position', new THREE.Float32Attribute( positions, 3 ) );
var material = new THREE.LineBasicMaterial( { fog: false } );
this.cone = new THREE.LineSegments( geometry, material );
this.add( this.cone );
this.update();
};
THREE.SpotLightHelper.prototype = Object.create( THREE.Object3D.prototype );
THREE.SpotLightHelper.prototype.constructor = THREE.SpotLightHelper;
THREE.SpotLightHelper.prototype.dispose = function () {
this.cone.geometry.dispose();
this.cone.material.dispose();
};
THREE.SpotLightHelper.prototype.update = function () {
var vector = new THREE.Vector3();
var vector2 = new THREE.Vector3();
return function () {
var coneLength = this.light.distance ? this.light.distance : 1000;
var coneWidth = coneLength * Math.tan( this.light.angle );
this.cone.scale.set( coneWidth, coneWidth, coneLength );
vector.setFromMatrixPosition( this.light.matrixWorld );
vector2.setFromMatrixPosition( this.light.target.matrixWorld );
this.cone.lookAt( vector2.sub( vector ) );
this.cone.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity );
};
}();
// File:src/extras/helpers/VertexNormalsHelper.js
/**
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
*/
THREE.VertexNormalsHelper = function ( object, size, hex, linewidth ) {
this.object = object;
this.size = ( size !== undefined ) ? size : 1;
var color = ( hex !== undefined ) ? hex : 0xff0000;
var width = ( linewidth !== undefined ) ? linewidth : 1;
//
var nNormals = 0;
var objGeometry = this.object.geometry;
if ( objGeometry instanceof THREE.Geometry ) {
nNormals = objGeometry.faces.length * 3;
} else if ( objGeometry instanceof THREE.BufferGeometry ) {
nNormals = objGeometry.attributes.normal.count
}
//
var geometry = new THREE.BufferGeometry();
var positions = new THREE.Float32Attribute( nNormals * 2 * 3, 3 );
geometry.addAttribute( 'position', positions );
THREE.LineSegments.call( this, geometry, new THREE.LineBasicMaterial( { color: color, linewidth: width } ) );
//
this.matrixAutoUpdate = false;
this.update();
};
THREE.VertexNormalsHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.VertexNormalsHelper.prototype.constructor = THREE.VertexNormalsHelper;
THREE.VertexNormalsHelper.prototype.update = ( function () {
var v1 = new THREE.Vector3();
var v2 = new THREE.Vector3();
var normalMatrix = new THREE.Matrix3();
return function update() {
var keys = [ 'a', 'b', 'c' ];
this.object.updateMatrixWorld( true );
normalMatrix.getNormalMatrix( this.object.matrixWorld );
var matrixWorld = this.object.matrixWorld;
var position = this.geometry.attributes.position;
//
var objGeometry = this.object.geometry;
if ( objGeometry instanceof THREE.Geometry ) {
var vertices = objGeometry.vertices;
var faces = objGeometry.faces;
var idx = 0;
for ( var i = 0, l = faces.length; i < l; i ++ ) {
var face = faces[ i ];
for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {
var vertex = vertices[ face[ keys[ j ] ] ];
var normal = face.vertexNormals[ j ];
v1.copy( vertex ).applyMatrix4( matrixWorld );
v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );
position.setXYZ( idx, v1.x, v1.y, v1.z );
idx = idx + 1;
position.setXYZ( idx, v2.x, v2.y, v2.z );
idx = idx + 1;
}
}
} else if ( objGeometry instanceof THREE.BufferGeometry ) {
var objPos = objGeometry.attributes.position;
var objNorm = objGeometry.attributes.normal;
var idx = 0;
// for simplicity, ignore index and drawcalls, and render every normal
for ( var j = 0, jl = objPos.count; j < jl; j ++ ) {
v1.set( objPos.getX( j ), objPos.getY( j ), objPos.getZ( j ) ).applyMatrix4( matrixWorld );
v2.set( objNorm.getX( j ), objNorm.getY( j ), objNorm.getZ( j ) );
v2.applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );
position.setXYZ( idx, v1.x, v1.y, v1.z );
idx = idx + 1;
position.setXYZ( idx, v2.x, v2.y, v2.z );
idx = idx + 1;
}
}
position.needsUpdate = true;
return this;
}
}() );
// File:src/extras/helpers/WireframeHelper.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WireframeHelper = function ( object, hex ) {
var color = ( hex !== undefined ) ? hex : 0xffffff;
THREE.LineSegments.call( this, new THREE.WireframeGeometry( object.geometry ), new THREE.LineBasicMaterial( { color: color } ) );
this.matrix = object.matrixWorld;
this.matrixAutoUpdate = false;
};
THREE.WireframeHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.WireframeHelper.prototype.constructor = THREE.WireframeHelper;
// File:src/extras/objects/ImmediateRenderObject.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.ImmediateRenderObject = function ( material ) {
THREE.Object3D.call( this );
this.material = material;
this.render = function ( renderCallback ) {};
};
THREE.ImmediateRenderObject.prototype = Object.create( THREE.Object3D.prototype );
THREE.ImmediateRenderObject.prototype.constructor = THREE.ImmediateRenderObject;
// File:src/extras/objects/MorphBlendMesh.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.MorphBlendMesh = function( geometry, material ) {
THREE.Mesh.call( this, geometry, material );
this.animationsMap = {};
this.animationsList = [];
// prepare default animation
// (all frames played together in 1 second)
var numFrames = this.geometry.morphTargets.length;
var name = "__default";
var startFrame = 0;
var endFrame = numFrames - 1;
var fps = numFrames / 1;
this.createAnimation( name, startFrame, endFrame, fps );
this.setAnimationWeight( name, 1 );
};
THREE.MorphBlendMesh.prototype = Object.create( THREE.Mesh.prototype );
THREE.MorphBlendMesh.prototype.constructor = THREE.MorphBlendMesh;
THREE.MorphBlendMesh.prototype.createAnimation = function ( name, start, end, fps ) {
var animation = {
start: start,
end: end,
length: end - start + 1,
fps: fps,
duration: ( end - start ) / fps,
lastFrame: 0,
currentFrame: 0,
active: false,
time: 0,
direction: 1,
weight: 1,
directionBackwards: false,
mirroredLoop: false
};
this.animationsMap[ name ] = animation;
this.animationsList.push( animation );
};
THREE.MorphBlendMesh.prototype.autoCreateAnimations = function ( fps ) {
var pattern = /([a-z]+)_?(\d+)/i;
var firstAnimation, frameRanges = {};
var geometry = this.geometry;
for ( var i = 0, il = geometry.morphTargets.length; i < il; i ++ ) {
var morph = geometry.morphTargets[ i ];
var chunks = morph.name.match( pattern );
if ( chunks && chunks.length > 1 ) {
var name = chunks[ 1 ];
if ( ! frameRanges[ name ] ) frameRanges[ name ] = { start: Infinity, end: - Infinity };
var range = frameRanges[ name ];
if ( i < range.start ) range.start = i;
if ( i > range.end ) range.end = i;
if ( ! firstAnimation ) firstAnimation = name;
}
}
for ( var name in frameRanges ) {
var range = frameRanges[ name ];
this.createAnimation( name, range.start, range.end, fps );
}
this.firstAnimation = firstAnimation;
};
THREE.MorphBlendMesh.prototype.setAnimationDirectionForward = function ( name ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.direction = 1;
animation.directionBackwards = false;
}
};
THREE.MorphBlendMesh.prototype.setAnimationDirectionBackward = function ( name ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.direction = - 1;
animation.directionBackwards = true;
}
};
THREE.MorphBlendMesh.prototype.setAnimationFPS = function ( name, fps ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.fps = fps;
animation.duration = ( animation.end - animation.start ) / animation.fps;
}
};
THREE.MorphBlendMesh.prototype.setAnimationDuration = function ( name, duration ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.duration = duration;
animation.fps = ( animation.end - animation.start ) / animation.duration;
}
};
THREE.MorphBlendMesh.prototype.setAnimationWeight = function ( name, weight ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.weight = weight;
}
};
THREE.MorphBlendMesh.prototype.setAnimationTime = function ( name, time ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.time = time;
}
};
THREE.MorphBlendMesh.prototype.getAnimationTime = function ( name ) {
var time = 0;
var animation = this.animationsMap[ name ];
if ( animation ) {
time = animation.time;
}
return time;
};
THREE.MorphBlendMesh.prototype.getAnimationDuration = function ( name ) {
var duration = - 1;
var animation = this.animationsMap[ name ];
if ( animation ) {
duration = animation.duration;
}
return duration;
};
THREE.MorphBlendMesh.prototype.playAnimation = function ( name ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.time = 0;
animation.active = true;
} else {
console.warn( "THREE.MorphBlendMesh: animation[" + name + "] undefined in .playAnimation()" );
}
};
THREE.MorphBlendMesh.prototype.stopAnimation = function ( name ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.active = false;
}
};
THREE.MorphBlendMesh.prototype.update = function ( delta ) {
for ( var i = 0, il = this.animationsList.length; i < il; i ++ ) {
var animation = this.animationsList[ i ];
if ( ! animation.active ) continue;
var frameTime = animation.duration / animation.length;
animation.time += animation.direction * delta;
if ( animation.mirroredLoop ) {
if ( animation.time > animation.duration || animation.time < 0 ) {
animation.direction *= - 1;
if ( animation.time > animation.duration ) {
animation.time = animation.duration;
animation.directionBackwards = true;
}
if ( animation.time < 0 ) {
animation.time = 0;
animation.directionBackwards = false;
}
}
} else {
animation.time = animation.time % animation.duration;
if ( animation.time < 0 ) animation.time += animation.duration;
}
var keyframe = animation.start + THREE.Math.clamp( Math.floor( animation.time / frameTime ), 0, animation.length - 1 );
var weight = animation.weight;
if ( keyframe !== animation.currentFrame ) {
this.morphTargetInfluences[ animation.lastFrame ] = 0;
this.morphTargetInfluences[ animation.currentFrame ] = 1 * weight;
this.morphTargetInfluences[ keyframe ] = 0;
animation.lastFrame = animation.currentFrame;
animation.currentFrame = keyframe;
}
var mix = ( animation.time % frameTime ) / frameTime;
if ( animation.directionBackwards ) mix = 1 - mix;
if ( animation.currentFrame !== animation.lastFrame ) {
this.morphTargetInfluences[ animation.currentFrame ] = mix * weight;
this.morphTargetInfluences[ animation.lastFrame ] = ( 1 - mix ) * weight;
} else {
this.morphTargetInfluences[ animation.currentFrame ] = weight;
}
}
};