
Timing control in ARTIQ

Sébastien Bourdeauducq

M-Labs Ltd – https://m-labs.hk

June 7, 2016

David Iliff, CC-BY-SA

https://m-labs.hk

Background

• ARTIQ “kernels” are Python programs compiled and executed
on the core device.

• CPU with tightly coupled I/O timing gateware (“RTIO core”).
• High resolution (nanosecond).
• Low latency (microsecond).

The basics

• The CPU maintains a time cursor used as timestamp to
program all RTIO commands.

• The time cursor can be advanced using delay() and
delay_mu().

• The absolute position of the time cursor can be retrieved
using now_mu() and set using at_mu().

• Gateware looks at the timestamps of programmed RTIO
commands, and executes them at the appropriate time.

• This guarantees “all or nothing” excellent timing precision.
• Absolute RTIO timestamps are referenced to the core device

startup (gateware time counter keeps running across
experiments).

The basics

A precisely timed 10µs pulse.

ttl.on()
delay(10*us)
ttl.off()

Why the *_mu functions?

• Absolute timestamps can be large numbers. They are
represented internally as 64-bit integers.

• Conversions between such a large number and floating point
in seconds can cause loss of precision.

• When computing the difference of absolute timestamps, use
mu_to_seconds(t2-t1), not
mu_to_seconds(t2)-mu_to_seconds(t1).

Underflows

An RTIO command must be programmed with a timestamp in the
future.

The core language supports exceptions

try:
ttl.on()

except RTIOUnderflow:
try again at the next mains cycle
delay(16.6667*ms)
ttl.on()

Tracking down underflows

• Exception backtraces tell you where underflows have occured.
• Analyzer supports plotting of RTIO slack (at submission of

RTIO command, difference between time cursor and physical
time).

Pulse method

ttl.on()
delay(10*us)
ttl.off()

is equivalent to:

ttl.pulse(10*us)

The pulse method advances the time cursor. Other methods such
as on, off, and the set method of DDSes do not. The latter are
called “zero-duration” methods.

Input
Count the rising edges occuring during a precisely timed 500ns
interval. Output pulse if more than 20 were received.

input.gate_rising(500*ns)
if input.count() > 20:

delay(2*us)
output.pulse(500*ns)

Overflow error

• The gateware buffers input events received while the input
gate is open.

• It keeps them in a FIFO until the CPU reads them out via
count (or timestamp_mu).

• If the FIFO is full and another event is coming, it causes an
overflow error.

• The RTIOOverflow exception is raised by the readout
method.

Seamless handover

@kernel @kernel
def kernel1(): def kernel2():

ttl.on() ttl.off()
delay(100*ms)

def run():
kernel1(); kernel2()

Resets

• Problem: previous kernel sets time cursor far in the future,
locks system.

• Solution: when switching experiments, clear RTIO FIFOs and
reinit time cursor.

Synchronization operation

• Problem: kernel returns before its last RTIO command is
executed, next experiment cancels it.

• Solution: sync command.

Issue 425: an alternate approach (2.0)?

• Maintain seamless handover between experiments.
• Trust that experiments end with the time cursor in a

reasonable position.
• Sanity checks on the time cursor after an experiment ends.
• Resets triggered by user or failed sanity checks to recover

from RTIO breakage.
• Case of the idle kernel – only run when no experiment present

plus time cursor position well below physical time.

