web-legacy/gateware.html

100 lines
5.3 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title>M-Labs &raquo; open source experimental physics</title>
<link rel="stylesheet" type="text/css" media="screen" href="style.css" />
<link rel="icon" type="image/png" href="favicon.png" />
</head>
<body>
<div id="header">
<div id="headerinside">
<div id="logo"><a href="index.html"><img src="logo.png"></a></div>
<ul id="menu">
<li><a href="artiq/index.html">artiq</a></li>
<li><a class="selected" href="gateware.html">gateware</a></li>
<li><a href="video.html">video</a></li>
<li><a href="public_events.html">events</a></li>
<li><a href="about.html">about</a></li>
</ul>
</div>
</div>
<div id="container">
<div class="full">
<h2>Migen</h2>
<div style="float: right;"><img src="migen.svg"></div>
<p>Migen is a Python-based tool that automates further the VLSI design process.</p>
<p>Despite being faster than schematics entry, hardware design with Verilog and VHDL remains tedious and inefficient for several reasons. The event-driven model introduces issues and manual coding that are unnecessary for synchronous circuits, which represent the lion's share of today's logic designs. Counter-intuitive arithmetic rules result in steeper learning curves and provide a fertile ground for subtle bugs in designs. Finally, support for procedural generation of logic (metaprogramming) through "generate" statements is very limited and restricts the ways code can be made generic, reused and organized.</p>
<p>To address those issues, we have developed the Migen FHDL library that replaces the event-driven paradigm with the notions of combinatorial and synchronous statements, has arithmetic rules that make integers always behave like mathematical integers, and most importantly allows the design's logic to be constructed by a Python program. This last point enables hardware designers to take advantage of the richness of the Python language - object oriented programming, function parameters, generators, operator overloading, libraries, etc. - to build well organized, reusable and elegant designs.</p>
<p>Other Migen libraries are built on FHDL and provide various tools such as a system-on-chip interconnect infrastructure, a dataflow programming system, a more traditional high-level synthesizer that compiles Python routines into state machines with datapaths, and a simulator that allows test benches to be written in Python.</p>
<p>Migen is the foundation for MiSoC, and is also used in the <a href="http://www.rhinoplatform.org">Rhino</a> software-defined radio platform.</p>
<p>You can find the Migen source <a href="http://github.com/m-labs/migen">here</a>, released under the permissive BSD license</a>.</p>
<p>
<b>Documentation</b>
<ul>
<li><a href="migen/manual">User guide</a></li>
<li><a href="migen/tutorial.pdf">Tutorial: An introduction to Migen</a></li>
<li><a href="migen/slides.pdf">Lecture slides</a></li>
</ul>
</p>
<p>
<b>Try Migen in your web browser:</b>
<a href="http://www.edaplayground.com"><img src="edaplayground.png" valign="middle" alt="EDA Playground"></a> provides an online interface to many server-side tools, including Migen.
</p>
<h2>MiSoC</h2>
<p>Built on Migen, MiSoC provides a high performance, flexible and lightweight solution to build system-on-chips for various applications.</p>
<p><ul>
<li>CPU options:<ul>
<li>LatticeMico32, modified to include an optional MMU (experimental).</li>
<li><a href="https://github.com/openrisc/mor1kx">mor1kx</a>, a better OpenRISC implementation.</li>
</ul></li>
<li>High performance memory controller capable of issuing several SDRAM commands per FPGA cycle.</li>
<li>Supports SDR, DDR, LPDDR and DDR2.</li>
<li>Provided peripherals: UART, GPIO, timer, GPIO, NOR flash controller, SPI flash controller, Ethernet MAC, and more.</li>
<li>High performance: on Spartan-6, 83MHz system clock frequencies, 10+Gbps DDR SDRAM bandwidth, 1080p 32bpp framebuffer, etc.</li>
<li>Low resource usage: basic implementation fits easily in Spartan-6 LX9.</li>
<li>Portable and easy to customize thanks to Python- and Migen-based architecture.</li>
<li>Design new peripherals using Migen and benefit from automatic CSR maps and logic, simplified DMAs, etc.</li>
<li>Possibility to encapsulate legacy Verilog/VHDL code.</li>
</ul></p>
<p>MiSoC source is <a href="http://github.com/m-labs/misoc">here</a>, mostly covered by the permissive BSD license</a>. Here is a <a href="http://github.com/m-labs/blinkie">simple example</a> of how to customize MiSoC.</p>
</div>
</div>
<div id="footer">
<div id="footerinside">
<table width="100%"><tr>
<td><p><img src="logo_small.png"><br /><br />The open source experimental physics company.</p></td>
<td><p><b>M-Labs Limited</b><br />5/F., Yat Chau Building<br />262 Des Voeux Road Central<br />Hong Kong<br />+852-59362721</p></td>
<td><a href="https://webchat.freenode.net/?channels=m-labs">Freenode #m-labs</a><br /><a href="https://ssl.serverraum.org/lists/listinfo/devel/">Developer mailing list</a><br />
GitHub: <a href="https://github.com/m-labs">m-labs</a><br />
Twitter: @<a href="http://twitter.com/M_Labs_Ltd">M_Labs_Ltd</a><br />
</td>
</tr></table>
</div>
</div>
</body>
</html>