
Migen
A Python toolbox for building complex digital hardware

Sébastien Bourdeauducq

2013





M

FHDL

I Python as a meta-language for HDL
I Think of a generate statement on steroids

I Restricted to locally synchronous circuits (multiple clock
domains are supported)

I Designs are split into:
I synchronous statements⇐⇒ always @(posedge clk)

(VHDL: process(clk) begin if rising_edge(clk) then)
I combinatorial statements⇐⇒ always @(*)

(VHDL: process(all inputs) begin)
I Statements expressed using nested Python objects

I Various syntax tricks to make them look nicer
(”internal domain-specific language”)



FHDL crash course
I Basic element is Signal.

I Similar to Verilog wire/reg and VHDL signal.
I Signals can be combined to form expressions.

I e.g. (a & b) | c
I arithmetic also supported, with user-friendly sign extension
rules (à laMyHDL)

I Signals have a eqmethod that returns an assignment to that
signal.

I e.g. x.eq((a & b) | c)

I User gives an execution trigger (combinatorial or
synchronous to some clock) to assignments, andmakes them
part of a Module.

I Control structures (If, Case) also supported.
I Modules can be converted for synthesis or simulated.



M

Conversion for synthesis

I FHDL is entirely convertible to synthesizable Verilog
>>> from migen.fhdl.std import *

>>> from migen.fhdl import verilog

>>> counter = Signal(16)

>>> o = Signal()

>>> m = Module()

>>> m.comb += o.eq(counter == 0)

>>> m.sync += counter.eq(counter + 1)

>>> print(verilog.convert(m, ios={o}))



module top(input sys_rst, input sys_clk, output o);

reg [15:0] counter;

assign o = (counter == 1’d0);

always @(posedge sys_clk) begin

if (sys_rst) begin

counter <= 1’d0;

end else begin

counter <= (counter + 1’d1);

end

end

endmodule



M

Namemangling

I Problem: how tomap the structured Python Signal
namespace to the flat Verilog namespace?

I Keep the generated code readable (e.g. for debugging or
reading timing reports)

I Migen uses Python bytecode analysis and introspection to
generate (often) meaningful names



M

Namemangling in action

class Foo:

def __init__(self):

self.la = [Signal() for x in range(2)]

self.lb = [Signal() for x in range(3)]

a = [Foo() for x in range(3)]

→ foo0 la0, foo0 la1, foo0 lb0, foo0 lb1, foo1 la0, ..., foo1 lb0, ...,
foo2 lb2



M



M

Simulation

I Modules can have a Python functions to execute at each clock
cycle during simulations.

I Simulator provide read and write methods that manipulate
FHDL Signal objects.

I Python libraries useful for DSP testbenches: scipy, matplotlib
I Pythonmakes it easy to runmultiple simulations with
different parameters (including changes of IO timings)

I Writing self-checking testbenches is straightforward:
reproduciblity, reusability



Simulation

I Powerful Python features, e.g. generators:
def my_generator():

for x in range(10):

t = TWrite(x, 2*x)

yield t

print("Latency: " + str(t.latency))

for delay in range(prng.randrange(0, 3)):

yield None # inactivity

master1 = wishbone.Initiator(my_generator())

master2 = lasmibus.Initiator(my_generator(), port)



Pytholite
I Some of those generators are even synthesizable :)
I Output: FSM + datapath
I Lot of room for improvement (mapping, scheduling,
recognized subset)

I One application today: high-speed control of the analog RF
chain of a radar

def generator():

for i in range(10):

yield TWrite(i, 0)

bus_if = wishbone.Interface()

pl = make_pytholite(generator,

buses={"def": bus_if})

... verilog.convert(pl) ...



M

Bus support
I Wishbone1
I SRAM-like CSR
I DFI 2
I LASMI

wishbonecon0 = wishbone.InterconnectShared(

[cpu0.ibus, cpu0.dbus],

[(lambda a: a[26:29] == 0, norflash0.bus),

(lambda a: a[26:29] == 1, sram0.bus),

(lambda a: a[26:29] == 3, minimac0.membus),

(lambda a: a[27:29] == 2, wishbone2lasmi0.wb),

(lambda a: a[27:29] == 3, wishbone2csr0.wb)])

1http://www.opencores.org
2http://www.ddr-phy.org



M

CSR banks

Migen user:
self.baudrate = CSRStorage(16)

... If(counter == 0,

counter.eq(self.baudrate.storage))

...

Migen generates address decoder and register logic.
Rhino-gateware does BORPH interfacing.
→ Software user:
/proc/[pid]/hw/ioreg/baudrate



M

LASMI

LASMI (Lightweight Advanced SystemMemory Infrastructure) key
ideas

I Speed is beautiful: optimize for performance
I Operate several FSMs (bank machines) concurrently to
manage each bank

I Crossbar interconnect betweenmasters and bankmachines
I Pipelining: new requests can be issued without waiting for
data. Peak IO bandwidth (minus refresh) is attainable.

I In a frequency-ratio system, issue multiple DRAM commands
from different bank FSMs in a single cycle



M

LASMIcon (milkymist-ng)

Memory controller operates several bank machines in parallel
I Each bankmachine uses the pagemode algorithm
I Tracks open row, detects page hits
I Ensures per-bank timing specifications are met (tRP, tRCD,
tWR)

I Generates DRAM-level requests (PRECHARGE, ACTIVATE,
READ,WRITE)



LASMIcon (milkymist-ng)

Command steering stage picks final requests
I In a frequency-ratio system, may issuemultiple commands
from several bankmachines in a single cycle

I PHY uses SERDES to handle I/O
I FPGAs are horribly and painfully SLOW, so we need such
tricks even for DDR333 (2002!!!)

I Groups writes and reads to reduce turnaround times
(reordering)

I commands stay executed in-order for each bankmachine: no
reorder buffer needed on themaster side

I Ensures no read-to-write conflict occurs on the shared
bidirectional data bus

I Ensures write-to-read (tWTR) specification is met



M

LASMIcon (milkymist-ng)

I Supports SDR, DDR, LPDDR, DDR2 andDDR3 (partial)
I Hardware tested:

I Mixxeo digital videomixer (Spartan-6, DDR, 10Gbps)
I Experiment control board from Paul-Drude-Institut Berlin
(Spartan-6, DDR2, 4Gbps)

I FPGA development boards: KC705 (Kintex-7, DDR3), LX9
Microboard (Spartan-6, LPDDR), Altera DE0Nano (Cyclone,
SDR), ...



M

Dataflow programming

I Representation of algorithms as a graph (network) of
functional units

I Similar to Simulink or LabVIEW
I Parallelizable and relatively intuitive
I Migen provides infrastructure for actors (functional units)
written in FHDL

I Migen provides an actor library for DMA (Wishbone and
LASMI), simulation, etc.



DF example: Fourier transform

Graph by C. Burrus “FFT Flowgraphs”
http://cnx.org/content/m16352/latest/

http://cnx.org/content/m16352/latest/


M

Mibuild

Interface betweenMigen and your FPGA board
from mibuild.platforms import roach

plat = roach.Platform()

m = YourModule(plat.request("clocks"),

plat.request("adc"), plat.request("dac"))

plat.build_cmdline(m)

I Supports Xilinx: ISE and Vivado (including 7 series)
I Supports Altera: Quartus
I Runs on Linux andWindows



M

CurrentMigen users

I Mixxeo digital videomixer
I RHINO— software-defined radio
I Vermeer — radar
I NIST— trapped ion quantum computers
I Paul-Drude-Institut Berlin — experiment control
I A few semiconductor companies — ??? (fixing bugs)



M

Current and future works

I Dataflow system overhaul
I Static scheduling when possible
I Actor sharing
I Better graph language
I Unify with Pytholite?

I GUI
I Build simple DF graphs more easily
I For complex designs, Python programming is great

I Direct synthesis (Mist): Migen FHDL to EDIF netlist
I Get rid of the Xst proprietary bloatware
I Later: get rid of the P&R + Bitgen proprietary bloatware



M

Direct synthesis (Mist)

I Right now
I basic logic operations
I registers
I IO
I instantiation of pre-existing IP

I Working on
I Arithmetic operations
I BRAM

I ToDo
I Optimization



Migen is open source!
I BSD license

I Compatible with proprietary designs.
I Contributing what you can is encouraged.

I http://milkymist.org/3/migen.html
I http://github.com/milkymist/migen
I Mailing list: http://lists.milkymist.org
I IRC: Freenode #milkymist
I Commercial support available


