Real-time experiment control for quantum physics

Robert Jordens

lon Storage Group, Time and Frequency, NIST, Boulder, CO
rjordens@nist.gov

Jesse Varner, AzaToth, CC-BY-SA

rjordens@nist.gov

lon trap
(NIST John Jost)

Quantum gate sequences

Qubit trajectory Single qubit gate

e 4

Zone A o

Separation

Zone B

Total transport distance = 1 mm

i |

BN ‘ ~10 attenuators

’ —

V)

78

ion trap A
™

~10 lasers

Physicists are not programmers:

e
Ee v i

ot Gt o it
B e o e C

LabVIEW: a “visual programming language” (a.k.a. “high viscosity language”)

Physicists are not programmers:

Stehwelle: Stehwelle Stehwelle Stehwelle Stehwelle

= Analog_Trigger il i’

=& Mot J W I

= Bin_Laden solute [a0 S1.540400 36400

™ Dispenser_geht_aus
. 4

O Event | O Group | ¥ Ins
= 8 x| o &

Variables Lelstung_Raman_1 ¥ 0,01 (Lelstung_unten)” 1 Leistung_unten Lektung unten Lektung unten Loktung unten

Name | Value | A | Leistung_Raman_1t 1 0.01+(Leistung_oben)* Leistung_oben Leistung_oben Leistung_oben |
AAE Wi o B e E e ——— |
Atomlaser_RF 1200000
Atomlaser A gl o | ST men — E— | —
deitans FT R Fre—
detanuy Freq_DDS_0 8065 " 80 e 8066 " 06 +delt 2% " 06 +delt B0e6+dek:
detuning 3000 2q_DDS s -+ deltanu/2*(1-cos 1 605 +deltanu +deten
icroncs o [e et s s o [
Dicpenseran 17 [power o050 6 w1z 2 12 12 12
Digheneer aus 14
o & X
Prose 055 oroi ol ored orsd orod ol i
oo 1 = ol o= = orod i !

Values

iger_aie
ioer_cout aate 1
& x = @

Rigid time-versus-channel matrix: inflexible (loops, conditionals?)

Physicists are not programmers:

Manual operation: Actions:

780 nm laser system outputs ...

Run Experiment
Magnetic trap outputs ...

Optical trap outputs .. Queuc Experiment

Other outputs ...

Measurements ... |

Parameter Menus: Measurement queue ... |
MOT.CMOT, Molasscs parameters ...

Magnetic trap parameters ... Utilities ... |

Evaporation parameters .

Magnetic Trap Parameters 2 ...

Optical trap loading parameters ...

Optical trap parameters ..

Ramp magnetic trap off parameters ...

Optical trap parameters 3 ...

Tweezer parameters ...

Final trap parameters ...

Singls atom detection parameters ...

Detection parameters ...

Camera parameters ...

Experiment Configuration parameters ...

Laser utilities ...

General information ...

Utilities ...

System Configuration parameters ... |

sools | 0K Concel | Un | Down

Calculator | EJsRs Residual Ga...| & oogle - krose...| @@ cortral - icros... | [iowBA 72z

sware| | (4 & &
Hard-coded components: not generic and opaque implementation

&3 e ® ¥ &b,

Enter ARTIQ

Advanced Real-Time Infrastructure for Quantum physics

High performance — nanosecond resolution, hundreds of ns latency
Expressive — describe algorithms with few lines of code

Portable — treat hardware, especially FPGA boards, as commodity
Modular — separate components as much as possible

Flexible — hard-code as little as possible

Define a simple timing language

trigger.sync() # wait for trigger input
start = now() # capture trigger time
for i in range(3):

delay (5*us)

dds.pulse(900#MHz, 7*us) # first pulse 5 us after trigger
at(start + 1*ms) # re-reference time-line
dds.pulse(200*MHz, 11*us) # ezactly 1 ms after trigger

= Written in a subset of Python

= Executed on a CPU embedded on a FPGA (the core device)

= now(), at(), delay() describe time-line of an experiment

= Exact time is kept in an internal variable

= That variable only loosely tracks the execution time of CPU instructions

= The value of that variable is exchanged with the RTIO fabric that does
precise timing

Convenient syntax additions

with sequential:
with parallel:
a.pulse(100*%MHz, 10%us)
b.pulse (200*%MHz, 20%*us)
with parallel:
c.pulse(300%MHz, 30%us)
d.pulse(400%MHz, 20*us)

= Experiments are inherently parallel: simultaneous laser pulses, parallel
cooling of ions in different trap zones

= parallel and sequential contexts with arbitrary nesting
= a and b pulses both start at the same time
= c and d pulses both start when a and b are both done (after 20 ps)

= Implemented by inlining, loop-unrolling, and interleaving

Physical quantities, hardware granularity

n = 1000
dt = 1.2345%ns
f = 345%MHz
dds.on(f, phase=0) # must round to integer tuning word
for i in range(n):

delay(dt) # must round to native cycles
dt_raw = time_to_cycles(dt) # integer number of cycles
f_raw = dds.frequency_to_ftw(f) # integer frequency tuning word
determine correct phase despite accumulation of rounding errors
phi = n*cycles_to_time(dt_raw)*dds.ftw_to_frequency(f_raw)

= Need well defined conversion and rounding of physical quantities (time,
frequency, phase, etc.) to hardware granularity and back

= Complicated because of calibration, offsets, cable delays, non-linearities
= No generic way to do it automatically and correctly

= — need to do it explicitly where it matters

Invite organizing experiment components and code reuse

class Experiment:
def build(self):
self.ionl = Ion(...)
self.ion2 = Ion(...)
T

self.transporter = Transporter(...)

Qkernel
def run(self):
with parallel:
self.ionl.cool(duration=10*us)
self.ion2.cool(frequency=...)
self .transporter.move(speed=...)
delay (100*ms)
self.ionl.detect(duration=...)

RPC to handle distributed non-RT hardware

class Experiment:
def prepare(self): # runs on the host
self .motor.move_to (20*mm) # slow RS232 motor controller
Qkernel
def run(self): # runs on the RT core device
self.prepare() # converted into an RPC

= When a kernel function calls a non-kernel function, it generates a RPC
= The callee is executed on the host
= Mechanism to report results and control slow devices

= The kernel must have a loose real-time constraint (a long delay) or
means of re-synchronization to cover communication, host, and device
delays

Kernel deployment to the core device

= RPC and exception mappings are generated

= Constants and small kernels are inlined

= Small loops are unrolled

= Statements in parallel blocks are interleaved

= Time is converted to RTIO clock cycles

= The Python AST is converted to LLVM IR

= The LLVM IR is compiled to OpenRISC machine code
= The OpenRISC binary is sent to the core device

= The runtime in the core device links and runs the kernel

= The kernel calls the runtime for communication (RPC) and interfacing
with core device peripherals (RTIO, DDS)

https://github.com/m-labs/artiq

Fully open-source, BSD licensed
Ported and running on two different FPGA boards

Design applicable beyond ion trapping (superconducting qubits, neutral
atoms...)

Fastest open-source DDR3 SODIMM controller as a sub-project: 64 Gbps
Interfacing with lab hardware

Hardware-in-the-loop unittests

Self-contained simulator

Currently ~1 ps latency and ~1 MHz event rate

DMA should improve that dramatically

https://github.com/m-labs/artiq

