
Milkymist SoC

A performance-driven SoC architecture for video synthesis

Sébastien Bourdeauducq

KTH

June 2010

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 1 / 30

Introduction How it all started

How it all started

A device for video performance artists (VJs)...

inspired by the popular MilkDrop program for PCs

with many interfaces: MIDI, DMX, video in

highly integrated

At the frontier between...

big computers with software to render visual effects

and small, handy microcontroller boards you connect to anything

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 2 / 30

Introduction How it all started

How does MilkDrop look?

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 3 / 30

Introduction How it all started

How does MilkDrop look?

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 4 / 30

Introduction How it all started

How does MilkDrop look?

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 5 / 30

Introduction How does MilkDrop work?

How does MilkDrop work?

In two words:

Take the current image, and distort it:

zoom
rotation
scaling
others...

Draw waves and shapes.

Display the result.

Repeat the process (iterative rendering).

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 6 / 30

Introduction How does MilkDrop work?

How does MilkDrop work?

Distortion and waves are controlled by fully customizable equations.

The set of those equations is called a “preset” or “patch”.

Interaction of the visuals with sound is defined by those equations

...and also with DMX and MIDI in Milkymist.

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 7 / 30

Introduction Challenges

Challenges

The need for a CPU:

flexibility
ease of reprogramming, patching software bugs
software-friendly tasks: GUI, filesystems, protocols, ...

Speed, size, and cost:

careful design
balance between hardware and software
software is cheap and slow, hardware is expensive and fast

Memory problems: bandwidth, size.

Compute-intensive operations:

distorting the image
evaluating the equations

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 8 / 30

Introduction SoC platform

SoC platform

What is needed is a SoC with graphics acceleration.

They are ubiquitous today:

Texas Instruments OMAP
Freescale i.MX

However, those are closed and proprietary.

This work: a new open source SoC that can run MilkDrop.

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 9 / 30

Memory subsystem The memory problem

The memory problem

A tough one.

The application requires memory to be large, fast, and cheap.

The required memory size prohibits the use of SRAM

...then we have to use DRAM and face all its problems.

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 10 / 30

Memory subsystem The memory problem

Bandwidth estimation

Task Required bandwidth

VGA frame buffer 950Mb/s

Distortion 250Mb/s

Live video 300Mb/s

Scaling 500Mb/s

Video echo 900Mb/s

NTSC input 200Mb/s

Software and misc. 200Mb/s

Total 3.3Gb/s

One DDR SDRAM chip running at 100MHz:

3.2Gb/s peak bandwidth
32MB capacity
a few dollars

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 11 / 30

Memory subsystem Optimizing memory performance

Peak bandwidth?

Performance of SDRAM depends a lot on the cleverness of its controller.
Simplified example:

Memory transfers are always done using bursts of 4 consecutive words.
The bus master caches or discards the data it does not want.

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 12 / 30

Memory subsystem Optimizing memory performance

Techniques used in Milkymist

Single SDRAM and system clock domains (reduces latency)

Bursts

Critical word first

Pipelining

Page mode DRAM control

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 13 / 30

Memory subsystem Optimizing memory performance

Bursts: a good heuristics?

Good for the VGA framebuffer (a big bandwidth consumer):

when it gets a burst of consecutive chunks from memory...
those chunks also represent consecutive pixels (in scan order)
...so it can just put them in its output FIFO and easily acheive 100%
utilization!

It is the same for video inputs.

For image distortion: yes; more on this later.

For software: principle of temporal/spatial locality, caches.

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 14 / 30

Memory subsystem Results

Our memory system

2 chips of 32-bit DDR SDRAM at 100MHz.

Peak bandwidth of 6.4Gb/s.

Oversized – but this is necessary.

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 15 / 30

Memory subsystem Results

Performance measurement

Patch BW AMAT Max. BW bound

Idle 292 5.51 3932

Bright Fiber Matrix 1 990 6.37 3474

Swirlie 3 1080 6.71 3320

Spacedust 1021 6.47 3427

Snowflake Delight 1399 6.28 3516

Balk Acid 1427 6.38 3469

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 16 / 30

Distorting the image Presentation

What is “distortion”?

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 17 / 30

Distorting the image Presentation

More precisely...

Tessellate the source image with rectangles.

Compute the source (texture) coordinates on each vertex.

Fill each rectangle in the destination picture.

Interpolate linearly the source (texture) coordinates.

This is called texture mapping.

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 18 / 30

Distorting the image Speed considerations

Speed constraints

Good system performance: must fill > 31 million pixels per second.

With a 100MHz clock, we have < 3.2 cycles to put out a pixel.

Precludes any software implementation (more than 40 times too
slow).

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 19 / 30

Distorting the image Speed considerations

Solutions

Efficient algorithm

Inspired by Bresenham’s linear interpolation algorithm

“SIMD” parallelism

the same operation on independent data can be done in parallel
example: computing the interpolated X and Y in the texture

Pipelined parallelism

Milkymist’s TMU has about 20 pipeline stages

Smart memory access

cache
write buffer

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 20 / 30

Distorting the image Cache

Using a cache

Example: rotation of a rectangle.

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 21 / 30

Distorting the image Cache

How big should the cache be?

Simulation with different sets of texture coordinates:

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 22 / 30

Distorting the image Write buffer

Write buffer

“Double buffering”, stores two bursts.

1 pixel/clock up to 12 cycles of memory access time.

 40

 50

 60

 70

 80

 90

 100

 110

 120

 10 15 20 25 30

P
er

fo
rm

an
ce

 (
M

pi
xe

ls
/s

)

Memory write access time (cycles)

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 23 / 30

Distorting the image Performance results

Performance results

Depends on cache hit rate.

Enough performance for MilkDrop in 640x480 30fps.

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 24 / 30

Generating texture coordinates The problem

The problem

Intensive floating point processing, for each vertex.

At least ≈ 58 million operations per second needed.

Cannot be met with an in-order FPU at 100MHz in FPGAs (CPI
< 1.73).

We need parallelism.

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 25 / 30

Generating texture coordinates Levels of parallelism

Levels of parallelism

Two approaches:

Vertex-level parallelism.
Instruction-level parallelism.

Vertex-level parallelism requires more on-chip storage for temporary
values.

Instruction-level parallelism is potentially slower.

The two approaches are not mutually exclusive.

We focused on instruction-level parallelism only (simpler).

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 26 / 30

Generating texture coordinates Instruction-level parallelism

Instruction-level parallelism

Out-of-order execution.

Relatively expensive and complex hardware structures.

We avoid them with instructions statically scheduled by the compiler.

like VLIW architectures.

Works well, because:

all delays are known (negligible memory accesses).
no control hazards.

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 27 / 30

Generating texture coordinates Results

Results

Patch Instructions Cycles CPI

Default 192 259 1.35

The Tunnel 208 286 1.38

Warp of Dali 1 220 292 1.33

Digital Flame 216 293 1.36

Wormhole Pillars 231 326 1.41

We needed CPI < 1.73.

Success!

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 28 / 30

Conclusion

Conclusion

We have developed a working MilkDrop rendering program for the
SoC.

proof of concept

Further development

Interfaces support: video input, DMX, MIDI, USB ...
Operating system support.
End user application.
“Packaged” device.

Further research

Out-of-order memory subsystem.
Texture mapping unit prefetching.
High level synthesis.

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 29 / 30

Conclusion

Thank you for your attention

Web: http://www.milkymist.org

Mailing list: devel [AT] lists [DOT] milkymist [DOT] org

Demonstration & questions

Sébastien Bourdeauducq (KTH) Milkymist SoC June 2010 30 / 30

http://www.milkymist.org

	Introduction
	How it all started
	How does MilkDrop work?
	Challenges
	SoC platform

	Memory subsystem
	The memory problem
	Optimizing memory performance
	Results

	Distorting the image
	Presentation
	Speed considerations
	Cache
	Write buffer
	Performance results

	Generating texture coordinates
	The problem
	Levels of parallelism
	Instruction-level parallelism
	Results

	Conclusion

