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CHAPTER

ONE

INTRODUCTION

Migen is a Python-based tool that aims at automating further the VLSI design process.

Migen makes it possible to apply modern software concepts such as object-oriented programming and metaprogram-
ming to design hardware. This results in more elegant and easily maintained designs and reduces the incidence of
human errors.

1.1 Background

Even though the Milkymist system-on-chip [mm] is technically successful, it suffers from several limitations stemming
from its implementation in manually written Verilog HDL:

1. The “event-driven” paradigm of today’s dominant hardware descriptions languages (Verilog and VHDL, collec-
tively referred to as “V*HDL” in the rest of this document) is often too general. Today’s FPGA architectures
are optimized for the implementation of fully synchronous circuits. This means that the bulk of the code for an
efficient FPGA design falls into three categories:

(a) Combinatorial statements

(b) Synchronous statements

(c) Initialization of registers at reset

V*HDL do not follow this organization. This means that a lot of repetitive manual coding is needed, which
brings sources of human errors, petty issues, and confusion for beginners:

(a) wire vs. reg in Verilog

(b) forgetting to initialize a register at reset

(c) deciding whether a combinatorial statement must go into a process/always block or not

(d) simulation mismatches with combinatorial processes/always blocks

(e) and more...

A little-known fact about FPGAs is that many of them have the ability to initialize their registers from the
bitstream contents. This can be done in a portable and standard way using an “initial” block in Verilog, and by
affecting a value at the signal declaration in VHDL. This renders an explicit reset signal unnecessary in practice
in some cases, which opens the way for further design optimization. However, this form of initialization is
entirely not synthesizable for ASIC targets, and it is not easy to switch between the two forms of reset using
V*HDL.

2. V*HDL support for composite types is very limited. Signals having a record type in VHDL are unidirectional,
which makes them clumsy to use e.g. in bus interfaces. There is no record type support in Verilog, which means
that a lot of copy-and-paste has to be done when forwarding grouped signals.

1
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3. V*HDL support for procedurally generated logic is extremely limited. The most advanced forms of proce-
dural generation of synthesizable logic that V*HDL offers are CPP-style directives in Verilog, combinatorial
functions, and generate statements. Nothing really fancy, and it shows. To give a few examples:

(a) Building highly flexible bus interconnect is not possible. Even arbitrating any given number of bus masters
for commonplace protocols such as Wishbone is difficult with the tools that V*HDL puts at our disposal.

(b) Building a memory infrastructure (including bus interconnect, bridges and caches) that can automatically
adapt itself at compile-time to any word size of the SDRAM is clumsy and tedious.

(c) Building register banks for control, status and interrupt management of cores can also largely benefit from
automation.

(d) Many hardware acceleration problems can fit into the dataflow programming model. Manual dataflow im-
plementation in V*HDL has, again, a lot of redundancy and potential for human errors. See the Milkymist
texture mapping unit [mthesis] [mxcell] for an example of this. The amount of detail to deal with manually
also makes the design space exploration difficult, and therefore hinders the design of efficient architectures.

(e) Pre-computation of values, such as filter coefficients for DSP or even simply trigonometric tables, must
often be done using external tools whose results are copy-and-pasted (in the best cases, automatically) into
the V*HDL source.

Enter Migen, a Python toolbox for building complex digital hardware. We could have designed a brand new program-
ming language, but that would have been reinventing the wheel instead of being able to benefit from Python’s rich
features and immense library. The price to pay is a slightly cluttered syntax at times when writing descriptions in
FHDL, but we believe this is totally acceptable, particularly when compared to VHDL ;-)

Migen is made up of several related components, which are described in this manual.

1.2 Installing Migen

Either run the setup.py installation script or simply set PYTHONPATH to the root of the source directory.

For simulation support, an extra step is needed. See Installing the VPI module.

1.3 Feedback

Feedback concerning Migen or this manual should be sent to the Milkymist developers’ mailing list at de-
vel@lists.milkymist.org.

2 Chapter 1. Introduction
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CHAPTER

TWO

THE FHDL LAYER

The Fragmented Hardware Description Language (FHDL) is the lowest layer of Migen. It consists of a formal system
to describe signals, and combinatorial and synchronous statements operating on them. The formal system itself is
low level and close to the synthesizable subset of Verilog, and we then rely on Python algorithms to build complex
structures by combining FHDL elements and encapsulating them in “fragments”. The FHDL module also contains
a back-end to produce synthesizable Verilog, and some structure analysis and manipulation functionality. A VHDL
back-end [vhdlbe] is in development.

FHDL differs from MyHDL [myhdl] in fundamental ways. MyHDL follows the event-driven paradigm of traditional
HDLs (see Background) while FHDL separates the code into combinatorial statements, synchronous statements, and
reset values. In MyHDL, the logic is described directly in the Python AST. The converter to Verilog or VHDL then
examines the Python AST and recognizes a subset of Python that it translates into V*HDL statements. This seriously
impedes the capability of MyHDL to generate logic procedurally. With FHDL, you manipulate a custom AST from
Python, and you can more easily design algorithms that operate on it.

FHDL is made of several elements, which are briefly explained below.

2.1 Expressions

2.1.1 Integers and booleans

Python integers and booleans can appear in FHDL expressions to represent constant values in a circuit. True and
False are interpreted as 1 and 0, respectively.

Negative integers are explicitly supported. As with MyHDL [countin], arithmetic operations return the natural results.

2.1.2 Signal

The signal object represents a value that is expected to change in the circuit. It does exactly what Verilog’s “wire” and
“reg” and VHDL’s “signal” and “variable” do.

The main point of the signal object is that it is identified by its Python ID (as returned by the id() function), and
nothing else. It is the responsibility of the V*HDL back-end to establish an injective mapping between Python IDs
and the V*HDL namespace. It should perform name mangling to ensure this. The consequence of this is that signal
objects can safely become members of arbitrary Python classes, or be passed as parameters to functions or methods
that generate logic involving them.

The properties of a signal object are:

• An integer or a (integer, boolean) pair that defines the number of bits and whether the bit of higher index of the
signal is a sign bit (i.e. the signal is signed). The defaults are one bit and unsigned. Alternatively, the min and

3
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max parameters can be specified to define the range of the signal and determine its bit width and signedness. As
with Python ranges, min is inclusive and defaults to 0, max is exclusive and defaults to 2.

• A name, used as a hint for the V*HDL back-end name mangler.

• A boolean “variable”. If true, the signal will behave like a VHDL variable, or a Verilog reg that uses blocking
assignment. This parameter only has an effect when the signal’s value is modified in a synchronous statement.

• The signal’s reset value. It must be an integer, and defaults to 0. When the signal’s value is modified with a
synchronous statement, the reset value is the initialization value of the associated register. When the signal is
assigned to in a conditional combinatorial statement (If or Case), the reset value is the value that the signal
has when no condition that causes the signal to be driven is verified. This enforces the absence of latches in
designs. If the signal is permanently driven using a combinatorial statement, the reset value has no effect.

The sole purpose of the name property is to make the generated V*HDL code easier to understand and debug. From a
purely functional point of view, it is perfectly OK to have several signals with the same name property. The back-end
will generate a unique name for each object. If no name property is specified, Migen will analyze the code that created
the signal object, and try to extract the variable or member name from there. For example, the following statements
will create one or several signals named “bar”:

bar = Signal()
self.bar = Signal()
self.baz.bar = Signal()
bar = [Signal() for x in range(42)]

In case of conflicts, Migen tries first to resolve the situation by prefixing the identifiers with names from the class and
module hierarchy that created them. If the conflict persists (which can be the case if two signal objects are created
with the same name in the same context), it will ultimately add number suffixes.

2.1.3 Operators

Operators are represented by the _Operator object, which generally should not be used directly. Instead, most
FHDL objects overload the usual Python logic and arithmetic operators, which allows a much lighter syntax to be
used. For example, the expression:

a * b + c

is equivalent to:

_Operator("+", [_Operator("*", [a, b]), c])

2.1.4 Slices

Likewise, slices are represented by the _Slice object, which often should not be used in favor of the Python slice
operation [x:y]. Implicit indices using the forms [x], [x:] and [:y] are supported. Beware! Slices work like Python
slices, not like VHDL or Verilog slices. The first bound is the index of the LSB and is inclusive. The second bound is
the index of MSB and is exclusive. In V*HDL, bounds are MSB:LSB and both are inclusive.

2.1.5 Concatenations

Concatenations are done using the Cat object. To make the syntax lighter, its constructor takes a variable number
of arguments, which are the signals to be concatenated together (you can use the Python “*” operator to pass a list
instead). To be consistent with slices, the first signal is connected to the bits with the lowest indices in the result. This
is the opposite of the way the “{}” construct works in Verilog.

4 Chapter 2. The FHDL layer
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2.1.6 Replications

The Replicate object represents the equivalent of {count{expression}} in Verilog.

2.2 Statements

2.2.1 Assignment

Assignments are represented with the _Assign object. Since using it directly would result in a cluttered syntax, the
preferred technique for assignments is to use the eq() method provided by objects that can have a value assigned
to them. They are signals, and their combinations with the slice and concatenation operators. As an example, the
statement:

a[0].eq(b)

is equivalent to:

_Assign(_Slice(a, 0, 1), b)

2.2.2 If

The If object takes a first parameter which must be an expression (combination of the Constant, Signal,
_Operator, _Slice, etc. objects) representing the condition, then a variable number of parameters represent-
ing the statements (_Assign, If, Case, etc. objects) to be executed when the condition is verified.

The If object defines a Else() method, which when called defines the statements to be executed when the condition
is not true. Those statements are passed as parameters to the variadic method.

For convenience, there is also a Elif() method.

Example:

If(tx_count16 == 0,
tx_bitcount.eq(tx_bitcount + 1),
If(tx_bitcount == 8,

self.tx.eq(1)
).Elif(tx_bitcount == 9,

self.tx.eq(1),
tx_busy.eq(0)

).Else(
self.tx.eq(tx_reg[0]),
tx_reg.eq(Cat(tx_reg[1:], 0))

)
)

2.2.3 Case

The Case object constructor takes as first parameter the expression to be tested, and a dictionary whose keys are the
values to be matched, and values the statements to be executed in the case of a match. The special value "default"
can be used as match value, which means the statements should be executed whenever there is no other match.

2.2. Statements 5
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2.2.4 Arrays

The Array object represents lists of other objects that can be indexed by FHDL expressions. It is explicitly possible
to:

• nest Array objects to create multidimensional tables.

• list any Python object in a Array as long as every expression appearing in a fragment ultimately evaluates to a
Signal for all possible values of the indices. This allows the creation of lists of structured data.

• use expressions involving Array objects in both directions (assignment and reading).

For example, this creates a 4x4 matrix of 1-bit signals:

my_2d_array = Array(Array(Signal() for a in range(4)) for b in range(4))

You can then read the matrix with (x and y being 2-bit signals):

out.eq(my_2d_array[x][y])

and write it with:

my_2d_array[x][y].eq(inp)

Since they have no direct equivalent in Verilog, Array objects are lowered into multiplexers and conditional state-
ments before the actual conversion takes place. Such lowering happens automatically without any user intervention.

2.3 Special elements

2.3.1 Instances

Instance objects represent the parametrized instantiation of a V*HDL module, and the connection of its ports to FHDL
signals. They are useful in a number of cases:

• Reusing legacy or third-party V*HDL code.

• Using special FPGA features (DCM, ICAP, ...).

• Implementing logic that cannot be expressed with FHDL (e.g. latches).

• Breaking down a Migen system into multiple sub-systems.

The instance object constructor takes the type (i.e. name of the instantiated module) of the instance, then multiple
parameters describing how to connect and parametrize the instance.

These parameters can be:

• Instance.Input, Instance.Output or Instance.InOut to describe signal connections with the
instance. The parameters are the name of the port at the instance, and the FHDL expression it should be
connected to.

• Instance.Parameter sets a parameter (with a name and value) of the instance.

• Instance.ClockPort and Instance.ResetPort are used to connect clock and reset signals to the
instance. The only mandatory parameter is the name of the port at the instance. Optionally, a clock domain
name can be specified, and the invert option can be used to interface to those modules that require a 180-
degree clock or a active-low reset.

6 Chapter 2. The FHDL layer
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2.3.2 Memories

Memories (on-chip SRAM) are supported using a mechanism similar to instances.

A memory object has the following parameters:

• The width, which is the number of bits in each word.

• The depth, which represents the number of words in the memory.

• An optional list of integers used to initialize the memory.

To access the memory in hardware, ports can be obtained by calling the get_port method. A port always has an
address signal a and a data read signal dat_r. Other signals may be available depending on the port’s configuration.

Options to get_port are:

• write_capable (default: False): if the port can be used to write to the memory. This creates an additional
we signal.

• async_read (default: False): whether reads are asychronous (combinatorial) or synchronous (registered).

• has_re (default: False): adds a read clock-enable signal re (ignored for asychronous ports).

• we_granularity (default: 0): if non-zero, writes of less than a memory word can occur. The width of the
we signal is increased to act as a selection signal for the sub-words.

• mode (default: WRITE_FIRST, ignored for aynchronous ports). It can be:

– READ_FIRST: during a write, the previous value is read.

– WRITE_FIRST: the written value is returned.

– NO_CHANGE: the data read signal keeps its previous value on a write.

• clock_domain (default: "sys"): the clock domain used for reading and writing from this port.

Migen generates behavioural V*HDL code that should be compatible with all simulators and, if the number of ports
is <= 2, most FPGA synthesizers. If a specific code is needed, the memory generator function can be overriden using
the memory_handler parameter of the conversion function.

2.4 Fragments

A “fragment” is a unit of logic, which is composed of:

• A list of combinatorial statements.

• A list of synchronous statements, or a clock domain name -> synchronous statements dictionary.

• A list of instances.

• A list of memories.

• A list of simulation functions (see Simulating a Migen design).

Fragments can reference arbitrary signals, including signals that are referenced in other fragments. Fragments can be
combined using the “+” operator, which returns a new fragment containing the concatenation of each matched pair of
lists.

Fragments can be passed to the back-end for conversion to Verilog.

By convention, classes that generate logic implement a method called get_fragment. When called, this method
builds a new fragment implementing the desired functionality of the class, and returns it. This convention allows
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fragments to be built automatically by combining the fragments from all relevant objects in the local scope, by using
the autofragment module.

2.5 Conversion for synthesis

Any FHDL fragment (except, of course, its simulation functions) can be converted into synthesizable Verilog HDL.
This is accomplished by using the convert function in the verilog module.

Migen does not provide support for any specific synthesis tools or ASIC/FPGA technologies. Users must run them-
selves the generated code through the appropriate tool flow for hardware implementation.

The Mibuild package, available separately from the Migen website, provides scripts to interface third-party FPGA
tools to Migen and a database of boards for the easy deployment of designs.

2.6 Multi-clock-domain designs

A clock domain is identified by its name (a string). A design with multiple clock domains passes a dictionary instead
of a list of synchronous statements in the Fragment constructor. Keys of that dictionary are the names of the clock
domains, and the associated values are the statements that should be executed at each cycle of the clock in that domain.

Mapping clock domain names to clock signals is done during conversion. The clock_domain parameter of
the conversion function accepts a dictionary keyed by clock domain names that contains ClockDomain objects.
ClockDomain objects are containers for a clock signal and a optional reset signal. Those signals can be driven like
other FHDL signals.

8 Chapter 2. The FHDL layer
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THREE

BUS SUPPORT

Migen Bus contains classes providing a common structure for master and slave interfaces of the following buses:

• Wishbone [wishbone], the general purpose bus recommended by Opencores.

• CSR-2 (see CSR-2 bus), a low-bandwidth, resource-sensitive bus designed for accessing the configuration and
status registers of cores from software.

• ASMIbus (see Advanced System Memory Infrastructure), a split-transaction bus optimized for use with a high-
performance, out-of-order SDRAM controller.

• DFI [dfi] (partial), a standard interface protocol between memory controller logic and PHY interfaces.

It also provides interconnect components for these buses, such as arbiters and address decoders. The strength of the
Migen procedurally generated logic can be illustrated by the following example:

wbcon = wishbone.InterconnectShared(
[cpu.ibus, cpu.dbus, ethernet.dma, audio.dma],
[(lambda a: a[27:] == 0, norflash.bus),
(lambda a: a[27:] == 1, wishbone2asmi.wishbone),
(lambda a: a[27:] == 3, wishbone2csr.wishbone)])

In this example, the interconnect component generates a 4-way round-robin arbiter, multiplexes the master bus signals
into a shared bus, and connects all slave interfaces to the shared bus, inserting the address decoder logic in the bus cycle
qualification signals and multiplexing the data return path. It can recognize the signals in each core’s bus interface
thanks to the common structure mandated by Migen Bus. All this happens automatically, using only that much user
code. The resulting interconnect logic can be retrieved using wbcon.get_fragment(), and combined with the
fragments from the rest of the system.

3.1 Configuration and Status Registers

3.1.1 CSR-2 bus

The CSR-2 bus, is a low-bandwidth, resource-sensitive bus designed for accessing the configuration and status registers
of cores from software.

It is the successor of the CSR bus used in Milkymist SoC 1.x, with two modifications:

• Up to 32 slave devices (instead of 16)

• Data words are 8 bits (instead of 32)

9
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3.1.2 Generating register banks

Migen Bank is a system comparable to wishbone-gen [wbgen], which automates the creation of configuration and
status register banks and interrupt/event managers implemented in cores.

Bank takes a description made up of a list of registers and generates logic implementing it with a slave interface
compatible with Migen Bus.

A register can be “raw”, which means that the core has direct access to it. It also means that the register width must
be less or equal to the bus word width. In that case, the register object provides the following signals:

• r, which contains the data written from the bus interface.

• re, which is the strobe signal for r. It is active for one cycle, after or during a write from the bus. r is only
valid when re is high.

• w, which must provide at all times the value to be read from the bus.

Registers that are not raw are managed by Bank and contain fields. If the sum of the widths of all fields attached
to a register exceeds the bus word width, the register will automatically be sliced into words of the maximum size
and implemented at consecutive bus addresses, MSB first. Field objects have two parameters, access_bus and
access_dev, determining respectively the access policies for the bus and core sides. They can take the values
READ_ONLY, WRITE_ONLY and READ_WRITE. If the device can read, the field object provides the r signal, which
contains at all times the current value of the field (kept by the logic generated by Bank). If the device can write, the
field object provides the following signals:

• w, which provides the value to be written into the field.

• we, which strobes the value into the field.

As a special exception, fields that are read-only from the bus and write-only for the device do not use the we signal.
Instead, the device must permanently drive valid data on the w signal.

3.1.3 Generating interrupt controllers

The event manager provides a systematic way to generate standard interrupt controllers.

Its constructor takes as parameters one or several event sources. An event source is an instance of either:

• EventSourcePulse, which contains a signal trigger that generates an event when high. The event stays
asserted after the trigger signal goes low, and until software acknowledges it. An example use is to pulse
trigger high for 1 cycle after the reception of a character in a UART.

• EventSourceLevel, which contains a signal trigger that generates an event on its falling edge. The
purpose of this event source is to monitor the status of processes and generate an interrupt on their completion.
The signal trigger can be connected to the busy signal of a dataflow actor, for example.

The EventManager provides a signal irq which is driven high whenever there is a pending and unmasked event.
It is typically connected to an interrupt line of a CPU.

The EventManager provides a method get_registers, that returns a list of registers to be used with Migen
Bank. Each event source is assigned one bit in each of those registers. They are:

• status: contains the current level of the trigger line of EventSourceLevel sources. It is 0 for
EventSourcePulse. This register is read-only.

• pending: contains the currently asserted events. Writing 1 to the bit assigned to an event clears it.

• enable: defines which asserted events will cause the irq line to be asserted. This register is read-write.

10 Chapter 3. Bus support
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3.2 Advanced System Memory Infrastructure

3.2.1 Rationale

The lagging of the DRAM semiconductor processes behind the logic processes has led the industry into a subtle way
of ever increasing memory performance.

Modern devices feature a DRAM core running at a fraction of the logic frequency, whose wide data bus is serialized
and deserialized to and from the faster clock domain. Further, the presence of more banks increases page hit rate and
provides opportunities for parallel execution of commands to different banks.

A first-generation SDR-133 SDRAM chip runs both DRAM, I/O and logic at 133MHz and features 4 banks. A 16-bit
chip has a 16-bit DRAM core.

A newer DDR3-1066 chip still runs the DRAM core at 133MHz, but the logic at 533MHz (4 times the DRAM
frequency) and the I/O at 1066Mt/s (8 times the DRAM frequency). A 16-bit chip has a 128-bit internal DRAM core.
Such a device features 8 banks. Note that the serialization also introduces multiplied delays (e.g. CAS latency) when
measured in number of cycles of the logic clock.

To take full advantage of these new architectures, the memory controller should be able to peek ahead at the incoming
requests and service several of them in parallel, while respecting the various timing specifications of each DRAM bank
and avoiding conflicts for the shared data lines. Going further in this direction, a controller able to complete transfers
out of order can provide even more performance by:

1. grouping requests by DRAM row, in order to minimize time spent on precharging and activating banks.

2. grouping requests by direction (read or write) in order to minimize delays introduced by bus turnaround and
write recovery times.

3. being able to complete a request that hits a page earlier than a concurrent one which requires the cycling of
another bank.

The first two techniques are explained with more details in [drreorder].

To enable the efficient implementation of these mechanisms, a new communication protocol with the memory con-
troller must be devised. Migen and Milkymist SoC (-NG) implement their own bus, called ASMIbus, based on the
split-transaction principle.

3.2.2 Topology

The ASMI consists of a memory controller (e.g. ASMIcon) containing a hub that connects the multiple masters,
handles transaction tags, and presents a view of the pending requests to the rest of the memory controller.

Each master has a number of dedicated transaction slots allocated inside the hub. Each slot is assigned a tag, that is
later used in the data transfer to identify the slot the data belongs to.

It is suggested that memory controllers use an interface to a PHY compatible with DFI [dfi]. The DFI clock can be the
same as the ASMIbus clock, with optional serialization and deserialization taking place across the PHY, as specified
in the DFI standard.

3.2.3 Signals

The ASMIbus consists of two parts: the control signals, and the data signals.

The control signals are used to issue requests.

• Master-to-Hub:

3.2. Advanced System Memory Infrastructure 11
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Figure 3.1: ASMI topology.

– adr communicates the memory address to be accessed. The unit is the word width of the particular
implementation of ASMIbus.

– we is the write enable signal.

– stb qualifies the transaction request, and should be asserted until ack goes high.

• Hub-to-Master

– tag_issue is an integer representing the transaction (“tag”) attributed by the hub. The width of this
signal is determined by the maximum number of in-flight transactions that the hub port can handle.

– ack is asserted when tag_issue is valid and the transaction has been registered by the hub. A hub may
assert ack even when stb is low, which means it is ready to accept any new transaction and will do as
soon as stb goes high.

The data signals are used to complete requests.

• Hub-to-Master

– tag_call is used to identify the transaction for which the data is “called”. It takes the tag value that has
been previously attributed by the hub to that transaction during the issue phase.

– call qualifies tag_call.

– data_r returns data from the DRAM in the case of a read transaction. It is valid for one cycle after CALL
has been asserted and tag_call has identified the transaction. The value of this signal is undefined for
the cycle after a write transaction data have been called.

• Master-to-Hub

– data_w must supply data to the controller from the appropriate write transaction, on the cycle after they
have been called using call and tag_call.

– data_wm are the byte-granular write data masks. They are used in combination with data_w to identify
the bytes that should be modified in the memory. The data_wm bit should be low for its corresponding
data_w byte to be written.

In order to avoid duplicating the tag matching and tracking logic, the master-to-hub data signals must be driven low
when they are not in use, so that they can be simply ORed together inside the memory controller. This way, only
masters have to track (their own) transactions for arbitrating the data lines.

Tags represent in-flight transactions. The hub can reissue a tag as soon as the cycle when it appears on tag_call.

12 Chapter 3. Bus support



Migen manual, Release X

3.2.4 SDRAM burst length and clock ratios

A system using ASMI must set the SDRAM burst length B, the ASMIbus word width W and the ratio between the
ASMIbus clock frequency Fa and the SDRAM I/O frequency Fi so that all data transfers last for exactly one ASMIbus
cycle.

More explicitly, these relations must be verified:

B = Fi/Fa

W = B*[number of SDRAM I/O pins]

For DDR memories, the I/O frequency is twice the logic frequency.

3.2.5 Using ASMI with Migen

TODO: please document me!
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FOUR

DATAFLOW

Many hardware acceleration problems can be expressed in the dataflow paradigm. It models a program as a directed
graph of the data flowing between functions. The nodes of the graph are functional units called actors, and the edges
represent the connections (transporting data) between them.

Actors communicate by exchanging data units called tokens. A token contains arbitrary (user-defined) data, which is
a record containing one or many fields, a field being a bit vector or another record. Token exchanges are atomic (i.e.
all fields are transferred at once from the transmitting actor to the receiving actor).

4.1 Actors

4.1.1 Actors and endpoints

Actors in Migen are implemented in FHDL. This low-level approach maximizes the practical flexibility: for example,
an actor can manipulate the bus signals to implement a DMA master in order to read data from system memory (see
Bus actors).

Token exchange ports of actors are called endpoints. Endpoints are unidirectional and can be sources (which transmit
tokens out of the actor) or sinks (which receive tokens into the actor).

The flow of tokens is controlled using two handshake signals (strobe and acknowledgement) which are implemented
by every endpoint. The strobe signal is driven by sources, and the acknowledgement signal by sinks.

stb ack Situation
0 0 The source endpoint does not have data to send, and the sink endpoint is not ready to accept data.
0 1 The sink endpoint is ready to accept data, but the source endpoint has currently no data to send. The

sink endpoint is not required to keep its ack signal asserted.
1 0 The source endpoint is trying to send data to the sink endpoint, which is currently not ready to accept

it. The transaction is stalled. The source endpoint must keep stb asserted and continue to present
valid data until the transaction is completed.

1 1 The source endpoint is sending data to the sink endpoint which is ready to accept it. The transaction
is completed. The sink endpoint must register the incoming data, as the source endpoint is not
required to hold it valid at the next cycle.

It is permitted to generate an ack signal combinatorially from one or several stb signals. However, there should not
be any combinatorial path from an ack to a stb signal.

Actors are derived from the the migen.flow.actor.Actor base class. The constructor of this base class takes a
variable number of parameters, each describing one endpoint of the actor.

An endpoint description is a triple consisting of:

• The endpoint’s name.

15
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Figure 4.1: Actors and endpoints.
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• A reference to the migen.flow.actor.Sink or the migen.flow.actor.Source class, defining the
token direction of the endpoint.

• The layout of the data record that the endpoint is dealing with.

Record layouts are a list of fields. Each field is described by a pair consisting of:

• The field’s name.

• Either a bit width or a (bit width, signedness) pair if the field is a bit vector, or another record layout if the field
is a lower-level record.

For example, this code:

Actor(
("operands", Sink, [("a", 16), ("b", 16)]),
("result", Source, [("r", 17)]))

creates an actor with:

• One sink named operands accepting data structured as a 16-bit field a and a 16-bit field b. Note that this is
functionally different from having two endpoints a and b, each accepting a single 16-bit field. With a single
endpoint, the data is strobed when both a and b are valid, and a and b are both acknowledged atomically. With
two endpoints, the actor has to deal with accepting a and b independently. Plumbing actors (see Plumbing
actors) and abstract networks (see Actor networks) provide a systematic way of converting between these two
behaviours, so user actors should implement the behaviour that results in the simplest or highest performance
design.

• One source named result transmitting a single 17-bit field named r.

Implementing the functionality of the actor can be done in two ways:

• Overloading the get_fragment method.

• Overloading both the get_control_fragment and get_process_fragment methods. The
get_control_fragment method should return a fragment that manipulates the control signals (strobes,
acknowledgements and the actor’s busy signal) while get_process_fragment should return a fragment
that manipulates the token payload. Overloading get_control_fragment alone allows you to define ab-
stract actor classes implementing a given scheduling model. Migen comes with a library of such abstract classes
for the most common schedules (see Common scheduling models).

Accessing the endpoints is done via the endpoints dictionary, which is keyed by endpoint names and contains
instances of the migen.flow.actor.Endpoint class. The latter holds:

• A signal object stb.

• A signal object ack.

• The data payload token. The individual fields are the items (in the Python sense) of this object.

4.1.2 Busy signal

The basic actor class creates a busy control signal that actor implementations should drive.

This signal represents whether the actor’s state holds information that will cause the completion of the transmission of
output tokens. For example:

• A “buffer” actor that simply registers and forwards incoming tokens should drive 1 on busy when its register
contains valid data pending acknowledgement by the receiving actor, and 0 otherwise.

• An actor sequenced by a finite state machine should drive busy to 1 whenever the state machine leaves its idle
state.

4.1. Actors 17
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• An actor made of combinatorial logic is stateless and should tie busy to 0.

4.1.3 Common scheduling models

For the simplest and most common scheduling cases, Migen provides logic to generate the handshake signals and the
busy signal. This is done through abstract actor classes that overload get_control_fragment only, and the user
should overload get_process_fragment to implement the actor’s payload.

These classes are usable only when the actor has exactly one sink and one source (but those endpoints can contain an
arbitrary data structure), and in the cases listed below.

Combinatorial

The actor datapath is made entirely of combinatorial logic. The handshake signals pass through. A small integer adder
would use this model.

This model is implemented by the migen.flow.actor.CombinatorialActor class. There are no parameters
or additional control signals.

N-sequential

The actor consumes one token at its input, and it produces one output token after N cycles. It cannot accept new input
tokens until it has produced its output. A multicycle integer divider would use this model.

This model is implemented by the migen.flow.actor.SequentialActor class. The constructor of this class
takes as parameter the number of cycles N. The class provides an extra control signal trigger that pulses to 1 for
one cycle when the actor should register the inputs and start its processing. The actor is then expected to provide an
output after the N cycles and hold it constant until the next trigger pulse.

N-pipelined

This is similar to the sequential model, but the actor can always accept new input tokens. It produces an output token
N cycles of latency after accepting an input token. A pipelined multiplier would use this model.

This model is implemented by the migen.flow.actor.PipelinedActor class. The constructor takes the
number of pipeline stages N. There is an extra control signal pipe_ce that should enable or disable all synchronous
statements in the datapath (i.e. it is the common clock enable signal for all the registers forming the pipeline stages).

4.2 The Migen actor library

4.2.1 Plumbing actors

Plumbing actors arbitrate the flow of data between actors. For example, when a source feeds two sinks, they ensure
that each sink receives exactly one copy of each token transmitted by the source.

Most of the time, you will not need to instantiate plumbing actors directly, as abstract actor networks (see Actor
networks) provide a more powerful solution and let Migen insert plumbing actors behind the scenes.
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Buffer

The Buffer registers the incoming token and retransmits it. It is a pipelined actor with one stage. It can be used to
relieve some performance problems or ease timing closure when many levels of combinatorial logic are accumulated
in the datapath of a system.

When used in a network, abstract instances of Buffer are automatically configured by Migen (i.e. the appropriate
token layout is set).

Combinator

This actor combines tokens from several sinks into one source.

For example, when the operands of a pipelined multiplier are available independently, the Combinator can turn
them into a structured token that is sent atomically into the multiplier when both operands are available, simplifying
the design of the multiplier actor.

Splitter

This actor does the opposite job of the Combinator. It receives a token from its sink, duplicates it into an arbitrary
number of copies, and transmits one through each of its sources. It can optionally omit certain fields of the token (i.e.
take a subrecord).

For example, an Euclidean division actor generating the quotient and the remainder in one step can transmit both using
one token. The Splitter can then forward the quotient and the remainder independently, as integers, to other actors.

4.2.2 Structuring actors

Cast

This actor concatenates all the bits from the data of its sink (in the order as they appear in the layout) and connects
them to the raw bits of its source (obtained in the same way). The source and the sink layouts must contain the same
number of raw bits. This actor is a simple “connect-through” which does not use any hardware resources.

It can be used in conjunction with the bus master actors (see Bus actors) to destructure (resp. structure) data going to
(resp. coming from) the bus.

Unpack

This actor takes a token with the fields chunk0 ... chunk[N-1] (each having the same layout L) and generates N
tokens with the layout L containing the data of chunk0 ... chunk[N-1] respectively.

Pack

This actor receives N tokens with a layout L and generates one token with the fields chunk0 ... chunk[N-1] (each
having the same layout L) containing the data of the N incoming tokens respectively.

4.2. The Migen actor library 19
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4.2.3 Simulation actors

When hardware implementation is not desired, Migen lets you program actor behaviour in “regular” Python.

For this purpose, it provides a migen.actorlib.sim.SimActor class. The constructor takes a generator as
parameter, and a list of endpoints (similarly to the base migen.flow.actor.Actor class). The generator imple-
ments the actor’s behaviour.

Generators can yield None (in which case, the actor does no transfer for one cycle) or one or a tuple of instances of
the Token class. Tokens for sink endpoints are pulled and the “value” field filled in. Tokens for source endpoints are
pushed according to their “value” field. The generator is run again after all transactions are completed.

The possibility to push several tokens at once is important to interact with actors that only accept a group of tokens
when all of them are available.

The Token class contains the following items:

• The name of the endpoint from which it is to be received, or to which it is to be transmitted. This value is not
modified by the transaction.

• A dictionary of values corresponding to the fields of the token. Fields that are lower-level records are represented
by another dictionary. This item should be set to None (default) when receiving from a sink.

See dataflow.py in the examples folder of the Migen sources for a demonstration of the use of these actors.

4.2.4 Bus actors

Migen provides a collection of bus-mastering actors, which makes it possible for dataflow systems to access system
memory easily and efficiently.

Wishbone reader

The migen.actorlib.dma_wishbone.Reader takes a token representing a 30-bit Wishbone address (ex-
pressed in words), reads one 32-bit word on the bus at that address, and transmits the data.

It does so using Wishbone classic cycles (there is no burst or cache support). The actor is pipelined and its throughput
is only limited by the Wishbone stall cycles.

Wishbone writer

The migen.actorlib.dma_wishbone.Writer takes a token containing a 30-bit Wishbone address (expressed
in words) and a 32-bit word of data, and writes that word to the bus.

Only Wishbone classic cycles are supported. The throughput is limited by the Wishbone stall cycles only.

ASMI reader

The migen.actorlib.dma_asmi.Reader requires a ASMI port at instantiation time. This port defines the
address and data widths of the actor and how many outstanding transactions are supported.

Input tokens contain the raw ASMI address, and output tokens are wide ASMI data words.

If more than one slot are assigned to the port, the reader actor implements a reorder buffer (so that the order of the
output tokens matches that of the input tokens even if the memory system completes transactions out-of-order) and is
capable of supporting as many outstanding transactions as there are slots.
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ASMI writer

TODO

4.2.5 Miscellaneous actors

Integer sequence generator

The integer sequence generator either:

• takes a token containing a maximum value N and generates N tokens containing the numbers 0 to N-1.

• takes a token containing a number of values N and a offset O and generates N-O tokens containing the numbers
O to O+N-1.

The actor instantiation takes several parameters:

• the number of bits needed to represent the maximum number of generated values.

• the number of bits needed to represent the maximum offset. When this value is 0 (default), then offsets are not
supported and the sequence generator accepts tokens which contain the maximum value alone.

The integer sequence generator can be used in combination with bus actors to generate addresses and read contiguous
blocks of system memory (see Bus actors).

4.3 Actor networks

4.3.1 Graph definition

Migen represents an actor network using the migen.flow.network.DataFlowGraph class. It is derived from
MultiDiGraph from the NetworkX [networkx] library.

Nodes of the graph are either:

• An existing actor (physical actor).

• An instance of migen.flow.network.AbstractActor, containing the actor class and a dictionary (ab-
stract actor). It means that the actor class should be instantiated with the parameters from the dictionary. This
form is needed to enable optimizations such as actor duplication or sharing during elaboration.

Edges of the graph represent the flow of data between actors. They have the following data properties:

• source: a string containing the name of the source endpoint, which can be None (Python’s None, not the
string "None") if the transmitting actor has only one source endpoint.

• sink: a string containing the name of the sink endpoint, which can be None if the transmitting actor has only
one sink endpoint.

• source_subr: if only certain fields (a subrecord) of the source endpoint should be included in the connection,
their names are listed in this parameter. The None value connects all fields.

• sink_subr: if the connection should only drive certain fields (a subrecord) of the sink endpoint, they are
listed here. The None value connects all fields.

Compared to NetworkX’s MultiDiGraph it is based on, Migen’s DataFlowGraph class implements an additional
method that makes it easier to add actor connections to a graph:
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add_connection(source_node, sink_node,
source_ep=None, sink_ep=None, # default: assume nodes have 1 source/sink

# and use that one
source_subr=None, sink_subr=None) # default: use whole record

4.3.2 Abstract and physical networks

A network (or graph) is abstract if it cannot be physically implemented by only connecting existing records together.
More explicitly, a graph is abstract if any of these conditions is met:

1. A node is an abstract actor.

2. A subrecord is used at a source or a sink.

3. A single source feeds more than one sink.

The DataFlowGraph class implements a method is_abstract that tests and returns if the network is abstract.

An abstract graph can be turned into a physical graph through elaboration.

4.3.3 Elaboration

The most straightforward elaboration process goes as follows:

1. Whenever several sources drive different fields of a single sink, insert a Combinator plumbing actor. A
Combinator should also be inserted when a single source drive only certain fields of a sink.

2. Whenever several sinks are driven by a single source (possibly by different fields of that source), insert a
Splitter plumbing actor. A Splitter should also be inserted when only certain fields of a source drive a
sink.

3. Whenever an actor is abstract, instantiate it.

This method is implemented by default by the elaborate method of the DataFlowGraph class, that modifies the
graph in-place.

Thanks to abstract actors, there are optimization possibilities during this stage:

• Time-sharing an actor to reduce resource utilization.

• Duplicating an actor to increase performance.

• Promoting an actor to a wider datapath to enable time-sharing with another. For example, if a network contains
a 16-bit and a 32-bit multiplier, the 16-bit multiplier can be promoted to 32-bit and time-shared.

• Algebraic optimizations.

• Removing redundant actors whose output is only used partially. For example, two instances of divider using the
restoring method can be present in a network, and each could generate either the quotient or the remainder of
the same integers. Since the restoring method produces both results at the same time, only one actor should be
used instead.

None of these optimizations are implemented yet.

4.3.4 Implementation

A physical graph can be implemented and turned into a synthesizable or simulable fragment using the
migen.flow.network.CompositeActor actor.
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4.4 Performance tools

The module migen.flow.perftools provides utilities to analyze the performance of a dataflow network.

The class EndpointReporter is a simulation object that attaches to an endpoint and measures three parameters:

• The total number of clock cycles per token (CPT). This gives a measure of the raw inverse token rate through
the endpoint. The smaller this number, the faster the endpoint operates. Since an endpoint has only one set of
synchronous control signals, the CPT value is always superior or equal to 1 (multiple data records can however
be packed into a single token, see for example Structuring actors).

• The average number of inactivity cycles per token (IPT). An inactivity cycle is defined as a cycle with the stb
signal deasserted. This gives a measure of the delay between attempts at token transmissions (“slack”) on the
endpoint.

• The average number of stall cycles per token (NPT). A stall cycle is defined as a cycle with stb asserted and
ack deasserted. This gives a measure of the “backpressure” on the endpoint, which represents the average
number of wait cycles it takes for the source to have a token accepted by the sink. If all tokens are accepted
immediately in one cycle, then NPT=0.

In the case of an actor network, the DFGReporter simulation object attaches an EndpointReporter to the
source endpoint of each edge in the graph. The graph must not be abstract.

The DFGReporter contains a dictionary nodepair_to_ep that is keyed by (source actor,
destination actor) pairs. Entries are other dictionaries that are keyed with the name of the source endpoint
and return the associated EndpointReporter objects.

DFGReporter also provides a method get_edge_labels that can be used in conjunction with NetworkX’s
draw_networkx_edge_labels function to draw the performance report on a graphical representation of the
graph (for an example, see Actor network with performance data from a simulation run.).

Figure 4.2: Actor network with performance data from a simulation run.

4.5 High-level actor description

Actors can be written in a subset of Python and automatically compiled into FHDL by using the Pytholite component.
This functionality is still very limited for now.
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FIVE

SIMULATING A MIGEN DESIGN

Migen allows you to easily simulate your FHDL design and interface it with arbitrary Python code.

To interpret the design, the FHDL structure is simply converted into Verilog and then simulated using an external
program (e.g. Icarus Verilog). This is is intrinsically compatible with VHDL/Verilog instantiations from Migen and
maximizes software reuse.

To interface the external simulator to Python, a VPI task is called at each clock cycle and implement the test bench
functionality proper - which can be fully written in Python.

Signals inside the simulator can be read and written using VPI as well. This is how the Python test bench generates
stimulus and obtains the values of signals for processing.

5.1 Installing the VPI module

To communicate with the external simulator, Migen uses a UNIX domain socket and a custom protocol which is
handled by a VPI plug-in (written in C) on the simulator side.

To build and install this plug-in, run the following commands from the vpi directory:

make [INCDIRS=-I/usr/...]
make install [INSTDIR=/usr/...]

The variable INCDIRS (default: empty) can be used to give a list of paths where to search for the include files. This
is useful considering that different Linux distributions put the vpi_user.h file in various locations.

The variable INSTDIR (default: /usr/lib/ivl) specifies where the migensim.vpi file is to be installed.

This plug-in is designed for Icarus Verilog, but can probably be used with most Verilog simulators with minor modifi-
cations.

5.2 The generic simulator object

The generic simulator object (migen.sim.generic.Simulator) is the central component of the simulation.

5.2.1 Creating a simulator object

The constructor of the Simulator object takes the following parameters:

1. The fragment to simulate. The fragment can (and generally does) contain both synthesizable code and a non-
synthesizable list of simulation functions.
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2. A top-level object (see The top-level object). With the default value of None, the simulator creates a default
top-level object itself.

3. A simulator runner object (see The external simulator runner). With the default value of None, Icarus Verilog
is used with the default parameters.

4. The name of the UNIX domain socket used to communicate with the external simulator through the VPI plug-in
(default: “simsocket”).

5. Additional keyword arguments (if any) are passed to the Verilog conversion function.

5.2.2 Running the simulation

Running the simulation is achieved by calling the run method of the Simulator object.

It takes an optional parameter that defines the maximum number of clock cycles that this call simulates. The default
value of -1 sets no cycle limit.

The simulation runs until the maximum number of cycles is reached, or a simulation function sets the property
interrupt to True in the Simulator object.

At each clock cycle, the Simulator object runs in turn all simulation functions listed in the fragment. Simulation
functions must take exactly one parameter which is used by the instance of the Simulator object to pass a reference
to itself.

Simulation functions can read the current simulator cycle by reading the cycle_counter property of the
Simulator. The cycle counter’s value is 0 for the cycle immediately following the reset cycle.

5.2.3 Reading and writing signals

Reading and writing signals is done by calling the Simulator object’s methods rd and wr (respectively) from
simulation functions.

The rd method takes the FHDL Signal object to read and returns its value as a Python integer. The returned integer
is the value of the signal immediately before the clock edge.

The wr method takes a Signal object and the value to write as a Python integer. The signal takes the new value
immediately after the clock edge.

The semantics of reads and writes (respectively immediately before and after the clock edge) match those of the non-
blocking assignment in Verilog. Note that because of Verilog’s design, reading “variable” signals (i.e. written to using
blocking assignment) directly may give unexpected and non-deterministic results and is not supported. You should
instead read the values of variables after they have gone through a non-blocking assignment in the same always
block.

5.2.4 Reading and writing memories

References to FHDL Memory objects can also be passed to the rd and wr methods. In this case, they take an
additional parameter for the memory address.

5.2.5 Initializing signals and memories

A simulation function can access (and typically initialize) signals and memories during the reset cycle if it has its
property initialize set to True.
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In this case, it will be run once at the beginning of the simulation with a cycle counter value of -1 indicating the reset
cycle.

5.3 The external simulator runner

5.3.1 Role

The runner object is responsible for starting the external simulator, loading the VPI module, and feeding the generated
Verilog into the simulator.

It must implement a start method, called by the Simulator, which takes two strings as parameters. They contain
respectively the Verilog source of the top-level design and the converted fragment.

5.3.2 Icarus Verilog support

Migen comes with a migen.sim.icarus.Runner object that supports Icarus Verilog.

Its constructor has the following optional parameters:

1. extra_files (default: None): lists additional Verilog files to simulate.

2. top_file (default: “migensim_top.v”): name of the temporary file containing the top-level.

3. dut_file (default: “migensim_dut.v”): name of the temporary file containing the converted fragment.

4. vvp_file (default: None): name of the temporary file compiled by Icarus Verilog. When None, becomes
dut_file + "vp".

5. keep_files (default: False): do not delete temporary files. Useful for debugging.

5.4 The top-level object

5.4.1 Role of the top-level object

The top-level object is responsible for generating the Verilog source for the top-level test bench.

It must implement a method get that takes as parameter the name of the UNIX socket the VPI plugin should connect
to, and returns the full Verilog source as a string.

It must have the following attributes (which are read by the Simulator object):

• clk_name: name of the clock signal.

• rst_name: name of the reset signal.

• dut_type: module type of the converted fragment.

• dut_name: name used for instantiating the converted fragment.

• top_name: name/module type of the top-level design.
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5.4.2 Role of the generated Verilog

The generated Verilog must:

1. instantiate the converted fragment and connect its clock and reset ports.

2. produce a running clock signal.

3. assert the reset signal for the first cycle and deassert it immediately after.

4. at the beginning, call the task $migensim_connect with the UNIX socket name as parameter.

5. at each rising clock edge, call the task $migensim_tick. It is an error to call $migensim_tick before a
call to $migensim_connect.

6. set up the optional VCD output file.

5.4.3 The generic top-level object

Migen comes with a migen.sim.generic.TopLevel object that implements the above behaviour. It should be
usable in the majority of cases.

The main parameters of its constructor are the output VCD file (default: None) and the levels of hierarchy that must
be present in the VCD (default: 1).
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SIX

CASE STUDIES

6.1 A VGA framebuffer core

6.1.1 Purpose

The purpose of the VGA framebuffer core is to scan a buffer in system memory and generate an appropriately timed
video signal in order to display the picture from said buffer on a regular VGA monitor.

The core is meant to be integrated in a SoC and is controllable by a CPU which can set parameters such as the
framebuffer address, video resolution and timing parameters.

This case study highlights what tools Migen provides to design such a core.

6.1.2 Architecture

The framebuffer core is designed using the Migen dataflow system (see Dataflow). Its block diagram is given in the
figure below:

Figure 6.1: Data flow graph of the framebuffer core.
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Actors drawn with a blue background are designed specifically for the framebuffer cores, the others are generic actors
from the Migen library. Migen also provides the interconnect logic between the actors.

6.1.3 Frame initiator

The frame initiator generates tokens that correspond each to one complete scan of the picture (active video, synchro-
nization pulses, front and back porches). The token contains the address and the length of the framebuffer used for the
active video region, and timing parameters to generate the synchronization and porches.

Switching the framebuffer address (without tearing) is simply done by generating a token with the new address.
Tearing will not occur since the new token will accepted only after the one from the previous frame has been processed
(i.e. all addresses within the previous frame have been generated).

Video resolution can be changed in a similar way.

To interface with the CPU, the frame initiator uses Migen to provide a CSR bank (see Generating register banks).

6.1.4 Pixel fetcher

The pixel fetcher is made up of the address generator, the ASMI reader and the unpacker.

The address generator is a simple counter that takes one token containing the pair (base, length) and generates
length tokens containing base, ..., base+length-1. It is implemented using a Migen library component (see
Integer sequence generator).

Those addresses are fed into the ASMI reader (see Bus actors) that fetches the corresponding locations from the system
memory. The ASMI reader design supports an arbitrary number of outstanding requests (which is equal to the number
of slots in its ASMI port), which enables it to sustain a high throughput in spite of memory latency. The ASMI reader
also contains a reorder buffer and generates memory word tokens in the order of the supplied address tokens, even if
the memory system completes the transactions in a different order (see see Advanced System Memory Infrastructure
for information about reordering). These features make it possible to utilize the available memory bandwidth to the
full extent, and reduce the need for on-chip buffering.

ASMI memory words are wide and contain several pixels. The unpacking actor (see Structuring actors) takes a token
containing a memory word and “chops” it into multiple tokens containing one pixel each.

6.1.5 Video timing generator

The video timing generator is the central piece of the framebuffer core. It takes one token containing the timing
parameters of a frame, followed by as many tokens as there are pixels in the frame. It generates tokens containing the
status of the horizontal/vertical synchronization signals and red/green/blue values. When the contents of those tokens
are sent out at the pixel clock rate (and the red/green/blue value converted to analog), they form a valid video signal
for one frame.

6.1.6 DAC driver

The DAC driver accepts and buffers the output tokens from the video timing generator, and sends their content to the
DAC and video port at the pixel clock rate using an asynchronous FIFO.
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