
An introduction to Migen

Sébastien Bourdeauducq

This tutorial gives a first introduction to FPGA design using Migen. It assumes some knowledge of Unix
commands, Python programming language and logic design.

1 Software setup

1.1 Third-party tools

This tutorial requires a Linux machine with Python 3, Git and Xilinx ISE. Note that Migen cannot
be used with Python 2, but most Linux distributions allow you to easily install both Python 2 and
Python 3 on the same machine.

1.2 Migen and Mibuild

We simply obtain the sources from the Git repositories and set the PYTHONPATH environment vari-
able so that Python searches those directories when importing modules. Alternatively, Migen and
Mibuild can be permanently installed on your system by running their respective setuptools
script (python3 setup.py install)

$ git clone git://github.com/milkymist/migen.git
$ git clone git://github.com/milkymist/mibuild.git
$ export PYTHONPATH=‘pwd‘/migen:‘pwd‘/mibuild

1.3 Simulator

This step can be skipped if you do not intend to use the simulator.

Migen relies on an external Verilog simulator to simulate your designs. It is known to work with
Icarus Verilog.

Make sure that your installed version of Icarus Verilog is recent enough to include commit
b85e7efca86757c4a752bbba5de2127fe9df0a13 (from April 2, 2012). The bug that this commit fixes
makes the Migen simulator completely dysfunctional.

1



To communicate with Icarus Verilog, the Migen simulator uses a UNIX domain socket and a cus-
tom protocol which is handled by a VPI plug-in (written in C) on the Icarus side.

To build and install this plug-in, run the following commands from the vpi directory in the Migen
source tree:

$ make [INCDIRS=-I/usr/...]
$ make install [INSTDIR=/usr/...]

The variable INCDIRS (default: empty) can be used to give a list of paths where to search for the
include files. This is useful considering that different Linux distributions put the vpi_user.h file
(shipped with Icarus Verilog) in various locations.

The variable INSTDIR (default: /usr/lib/ivl) specifies where the migensim.vpi file is to be
installed.

A VCD file viewer such as GTKWave should also be installed.

2 First steps

A central component of Migen is the FHDL layer. It allows you to create and manipulate logic
designs in Python and convert them to synthesizable Verilog.

Run a Python interpreter and import the Migen FHDL declarations:

$ python3
>>> from migen.fhdl.structure import *

The basic building block of a FHDL design is the Signal object. It serves the same purpose as
signal in VHDL and wire or reg in Verilog.

We create two such signals, having a width of 1 bit each:

>>> a = Signal(1)
>>> b = Signal(1)

The width of 1 is the default, so one can also simply write Signal().

We would now like to represent Boolean equations between signals, for example the OR of these
two signals we just created. Migen provides the _Operator object for this purpose, but since
using it directly results in a very cluttered syntax, it also redefines the basic Python operations on
signals so that such _Operator objects can be created in a much lighter way:

>>> a | b
<migen.fhdl.structure._Operator object at 0x965e14c>

2



Let’s examine the contents of our newly-created object:

>>> tmp = a | b
>>> tmp
<migen.fhdl.structure._Operator object at 0x965e86c>
>>> tmp.op
’|’
>>> tmp.operands
[<Signal a at 0xb6f7ae2c>, <Signal b at 0x965e82c>]

As you can see, the object contains the information to represent our OR gate. _Operator objects
can be of course combined to form expression trees (of arbitrary complexity):

>>> c = Signal()
>>> tmp = a | (b & c)
>>> tmp
<migen.fhdl.structure._Operator object at 0x965eeac>
>>> tmp.op
’|’
>>> tmp.operands
[<Signal a at 0xb6f7ae2c>,

<migen.fhdl.structure._Operator object at 0x965e56c>]
>>> tmp.operands[1].op
’&’
>>> tmp.operands[1].operands
[<Signal b at 0x965e82c>, <Signal c at 0xb6f6c0ec>]

We now have a means of representing Boolean equations involving signals. We would now like
to assign such expressions to other signals. FHDL provides the _Assign object for this purpose,
as well as a technique to create it easily using the eq method of Signal objects:

>>> x = Signal()
>>> tmp = x.eq(a | b)
>>> tmp
<migen.fhdl.structure._Assign object at 0xa2371ec>
>>> tmp.l # left hand-side of assignment
<Signal x at 0xa23756c>
>>> tmp.r # right hand-side of assignment
<migen.fhdl.structure._Operator object at 0xa23790c>

In a typical FPGA design, an assignment can be triggered by two types of events:

1. whenever an input changes (combinatorial assignment)

2. at the edge of the clock signal (synchronous assignment)

3



Migen collects assignment lists in an object called Fragment, which among other things defines
when the assignments in those lists take place. The Fragment constructor can take two lists of
respectively combinatorial and synchronous statements. If only one list is specified, it assumes it
contains combinatorial statements.

Migen supports designs with multiple clock domains, but they are beyond the scope of this tuto-
rial.

We can now fully model a pure (combinatorial) OR gate between signals a, b and x:

>>> f = Fragment([x.eq(a | b)])

Fragments are convertible to Verilog. Note the ios option of the convert function, that speci-
fies which signals (in our case, all of them) should be exported as inputs/outputs of the Verilog
module. Without that option, signals would stay inside the Verilog module (try it).

>>> from migen.fhdl import verilog
>>> print(verilog.convert(f, ios={a, b, x}))
/* Machine-generated using Migen */
module top(

input a,
input b,
output x

);

// synthesis translate off
reg dummy_s;
initial dummy_s <= 1’d0;
// synthesis translate on
assign x = (a | b);

endmodule

Fragments from different parts of a complex design can be combined (e.g. using the + operator)
to form one large fragment that is finally converted to Verilog for synthesis.

3 A LED blinker

3.1 Design

We are now ready for a slightly more complicated design. It consists of a decrementing 32-bit
counter, which, when it reaches 0, toggles a one-bit signal (which will blink a LED) and reloads
from another signal (that controls the period of the toggling).

4



Create a file ledblinker.py containing the following:

from migen.fhdl.structure import *
from migen.fhdl import verilog

counter = Signal(32)
period = Signal(32)
led = Signal()

comb = [
period.eq(30000000)

]
sync = [

If(counter == 0,
led.eq(˜led),
counter.eq(period)

).Else(
counter.eq(counter - 1)

)
]
f = Fragment(comb, sync)
print(verilog.convert(f, ios={led}))

Notice the use of the If object, which represents conditional statements (which have the same
sense as in Verilog or VHDL). Another Python syntax trick is used here for Else, which is actually
a method of the If object that modifies the latter when called and inserts the statement list for the
“false” part of the conditional.

Run this script and examine the generated Verilog source.

As an exercise, you can add a control signal that toggles between a high and a slow blinking
frequency. Conditional statements can also be used in combinatorial lists (as in Verilog or VHDL).

3.2 Simulation

For the purposes of the simulation, set the period signal to a lower value, e.g. 5. Add the following
to the script:

from migen.sim.generic import Simulator, TopLevel

...

sim = Simulator(f, TopLevel("ledblinker.vcd"))
sim.run(200)

5



You can remove the import of the migen.fhdl.verilog module and the printing of the Verilog
source. Running the script now produces a VCD file which you can open with GTKWave:

$ gtkwave ledblinker.vcd

Fig. 1: LED blinker signals in GTKWave.

Notice that a clock and reset signal have been added automatically.

Since observing waveforms manually is a tedious and error-prone process, Migen lets you read
and write simulated signals from Python. All the libraries and features that Python offers can be
used, which enables you to create powerful test benches. In this tutorial, we will simply print out
at which clock cycles the transitions on led occur.

Add the following code to the script:

v_led_old = 0
def print_edges(s):

global v_led_old
v_led = s.rd(led) # read the current signal value
if v_led != v_led_old:

print("{old}->{new} cycle={cycle}".format(
old=v_led_old, new=v_led,

6



cycle=s.cycle_counter))
v_led_old = v_led

We will now use another Fragment feature, the list of simulation functions. At each simulated clock
cycle, the Migen simulator runs in turn all the functions in this list, passing them an object that
lets them manipulate the values of the signals.

Create the fragment as follows:

f = Fragment(comb, sync, sim=[print_edges])

and run the simulator again. It should run the print_edges function and produce the following
output:

0->1 cycle=1
1->0 cycle=7
0->1 cycle=13
1->0 cycle=19
0->1 cycle=25
1->0 cycle=31
0->1 cycle=37
1->0 cycle=43
...

As an exercise, you can add code that verifies that the transitions are happening on the intended
edges (i.e. make the test bench self-checking).

3.3 Hardware implementation

Revert any code changes you have done for simulation purposes and go back to the original design
(you can still leave out the explicit conversion to Verilog).

Hardware implementation on supported boards is greatly simplified by using the Mibuild library.
This tutorial assumes you have a Milkymist One or a RHINO board. Import the corresponding
module with one of these two lines:

from mibuild.platforms import m1 as board
from mibuild.platforms import rhino as board

See the “platforms” folder in the Mibuild sources for a complete list of supported boards. You can
also add your own and submit it for inclusion into Mibuild.

Next, create a platform object and tell Mibuild to map your led signal to the first available LED
on the board:

7



plat = board.Platform()
plat.request("user_led", obj=led)

You are now ready to build the bitstream! Mibuild will add a default clock, which has a frequency
of 50MHz on the Milkymist One and 100MHz on the RHINO.

plat.build_cmdline(f)

Run the script with those modifications, and after a too long compilation process, you will obtain
a top.bit bitstream file in a newly created folder build.

Mibuild assumes the Xilinx tools are installed in /opt/Xilinx. If they are not, run your script as
follows: python3 ledblinker.py --ise-path /path_to_ise

Load the bitstream file using the appropriate programming tool for your board, and you should
see the LED blinking.

4 To go further

This tutorial has given you an overview of the base component of Migen, FHDL. It enables devel-
opers to use the full power of Python to generate and verify the logic of their designs.

Migen comes with many other components and features that use FHDL to build system-on-chip
interconnect, dataflow systems, configuration and status register banks, finite state machines, and
more. Read the Migen manual available at http://milkymist.org/3/migen.html for a
more complete description. A heavy user of Migen is the milkymist-ng system-on-chip, whose
source code you can obtain from http://milkymist.org/3/mng.html.

Direct questions and feedback about Migen or this tutorial to the devel@lists.milkymist.org mail-
ing list or the IRC channel #milkymist on Freenode.

8


