An introduction to Migen

Version: February 7th 2014

Seébastien Bourdeauducq

This tutorial gives a first introduction to FPGA design using Migen. It assumes some knowledge of Unix
commands, Python programming language and logic design.

1 Software setup

1.1 Third-party tools

This tutorial requires a Linux machine with Python 3.3+, Git and Xilinx ISE. Note that Migen
cannot be used with Python 2, but most Linux distributions allow you to easily install both Python
2 and Python 3 on the same machine.

1.2 Migen
We simply obtain the sources from the Git repository and set the PYTHONPATH environment vari-
able so that Python searches that directory when importing modules.

Alternatively, Migen can be permanently installed on your system by running its setuptools
script (python3 setup.py install)

$ git clone git://github.com/m-labs/migen.git
$ export PYTHONPATH=‘pwd‘/migen

1.3 Simulator

This step can be skipped if you do not intend to use the simulator.

Migen relies on an external Verilog simulator to simulate your designs. It is known to work with
Icarus Verilog.

Make sure that your installed version of Icarus Verilog is recent enough to include commit
b85e7efca86757c4a752bbba5de2127fe9df0al3 (from April 2, 2012). The bug that this commit fixes
makes the Migen simulator completely dysfunctional.

To communicate with Icarus Verilog, the Migen simulator uses a UNIX domain socket and a cus-
tom protocol which is handled by a VPI plug-in (written in C) on the Icarus side.

To build and install this plug-in, run the following commands from the vpi directory in the Migen
source tree:

S make [INCDIRS=-I/usr/...]
$ make install [INSTDIR=/usr/...]

The variable INCDIRS (default: empty) can be used to give a list of paths where to search for the
include files. This is useful considering that different Linux distributions put the vpi_user.hfile
(shipped with Icarus Verilog) in various locations.

The variable INSTDIR (default: /usr/1ib/iv1l) specifies where the migensim.vpi file is to be
installed.

A VCD file viewer such as GTKWave should also be installed.

2 First steps

A central component of Migen is the FHDL layer. It allows you to create and manipulate logic
designs in Python and convert them to synthesizable Verilog.

Run a Python interpreter and import the Migen FHDL declarations:

$ python3
>>> from migen.fhdl.std import =

The basic building block of a FHDL design is the Signal object. It serves the same purpose as
signal in VHDL and wire or reg in Verilog.
We create two such signals, having a width of 1 bit each:

>>> a = Signal (1)
>>> Db Signal (1)

The width of 1 is the default, so one can also simply write Signal().

We would now like to represent Boolean equations between signals, for example the OR of these
two signals we just created. Migen provides the _Operator object for this purpose, but since

2

using it directly results in a very cluttered syntax, it also redefines the basic Python operations on
signals so that such _Operator objects can be created in a much lighter way:

>>> a | b
<migen.fhdl.structure._Operator object at 0x965el4c>

Let’s examine the contents of our newly-created object:

>>> tmp = a | b

>>> tmp

<migen.fhdl.structure._Operator object at 0x965e86c>
>>> tmp.op

I|l

>>> tmp.operands

[<Signal a at Oxb6f7ae2c>, <Signal b at 0x965e82c>]

As you can see, the object contains the information to represent our OR gate. _Operator objects
can be of course combined to form expression trees (of arbitrary complexity):

>>> ¢ = Signal ()
>>> tmp = a | (b & ¢)
>>> tmp

<migen.fhdl.structure._Operator object at 0x965eeac>

>>> tmp.op

ryr

>>> tmp.operands

[<Signal a at Oxb6f7ae2c>,
<migen.fhdl.structure._Operator object at 0x965e56c>]

>>> tmp.operands[l].op

1t

>>> tmp.operands[1l].operands

[<Signal b at 0x965e82c>, <Signal c at 0xb6f6clec>]

We now have a means of representing Boolean equations involving signals. We would now like
to assign such expressions to other signals. FHDL provides the _Assign object for this purpose,
as well as a technique to create it easily using the eq method of Signal objects:

>>> x = Signal ()

>>> tmp = x.eqg(a | b)

>>> tmp

<migen.fhdl.structure._Assign object at 0xa237lec>
>>> tmp.l # left hand-side of assignment

<Signal x at 0xaz23756c¢c>

>>> tmp.r # right hand-side of assignment
<migen.fhdl.structure._Operator object at 0xaz23790c>

In a typical FPGA design, an assignment can be triggered by two types of events:

1. whenever an input changes (combinatorial assignment)
2. at the edge of the clock signal (synchronous assignment)
Defining when an assignment takes place is done by using the in-place addition operation (+=) on

special properties of a Module object. The comb special property makes the assignment combina-
torial, while the sync property synchronizes it with the default (aka system) clock.

Migen supports designs with multiple clock domains, but they are beyond the scope of this tuto-
rial.

We can now fully model a pure (combinatorial) OR gate between signals a, b and x:

>>> my_or = Module ()
>>> my_or.comb += x.eg(a | b)

Modules are convertible to Verilog. Note the ios option of the convert function, that speci-
ties which signals (in our case, all of them) should be exported as inputs/outputs of the Verilog
module. Without that option, signals would stay inside the Verilog module (try it).

>>> from migen.fhdl import verilog
>>> print (verilog.convert (my_or, ios={a, b, x}))
/* Machine—-generated using Migen =/
module top(
input a,
input b,
output x

// synthesis translate off
reg dummy_s;

initial dummy_s <= 17d0;
// synthesis translate on
assign x = (a | b);

endmodule

3 ALED blinker

3.1 Design

We are now ready for a slightly more complicated design. It consists of a decrementing counter,
which, when it reaches 0, toggles a one-bit signal (which will blink a LED) and reloads from
another signal (that controls the period of the toggling).

Create a file 1edblinker.py containing the following:

from migen.fhdl.std import =
from migen.fhdl import verilog

class Blinker (Module) :
def _ init_ (self, led, maxperiod):
counter = Signal (max=maxperiod+l)
period = Signal (max=maxperiod+1l)
self.comb += period.eg(maxperiod)
self.sync += If(counter == 0,
led.eg("1led),
counter.eq(period)
) .Else (
counter.eqg(counter - 1)

led = Signal ()
my_blinker = Blinker(led, 30000000)
print (verilog.convert (my_blinker, ios={led}))

Take note of the following points:

e we are inheriting from the Module class. This is the preferred way of creating a component
in Migen, rather than instantiating Module directly and externally using its special proper-
ties as we did before. In a more complex design, a module can integrate other modules by
using the submodules special property.

e another way to create multi-bit signals is to use the max parameter of the constructor, which
specifies the exclusive upper bound that the value of the signal can reach. There is a similar
min parameter. Both min and/or max can be negative, in which case Migen will use two’s
complement arithemetic to represent negative values.

e we use the If object, which represents conditional statements (which have the same sense
as in Verilog or VHDL). Another Python syntax trick is used here for E1se, which is actually
a method of the If object that modifies the latter when called and inserts the statement list
for the “false” part of the conditional.

Run this script and examine the generated Verilog source.

As an exercise, you can add a control signal that toggles between a high and a slow blinking fre-
quency. Conditional statements can also be used in combinatorial lists (as in Verilog or VHDL).
When using += on a special Module property, the statement(s) you specify are added to the exist-
ing statements in that module.

3.2 Simulation

For the purposes of the simulation, set the period signal to a lower value, e.g. 5. Add the following
to the script:

from migen.sim.generic import run_simulation

run_simulation (my_blinker, ncycles=200, vcd_name="ledblinker.vcd")

You can remove the import of the migen. fhdl.verilog module and the printing of the Verilog
source. Running the script now produces a VCD file which you can open with GTKWave:

$ gtkwave ledblinker.vcd

Notice that a clock and reset signal have been added automatically.

Since observing waveforms manually is a tedious and error-prone process, Migen lets you read
and write simulated signals from Python. All the libraries and features that Python offers can be
used, which enables you to create powerful test benches. In this tutorial, we will simply print out
at which clock cycles the transitions on led occur.

= GTKWave - ledblinker.vcd
File Edit Search Time Markers View Help

da 5H C_‘ &3 (= (=) I8 2| Go o) From:[O sec :|T0:|:2005 ns | Marker: 161200 ps | Cursor: 25500 ps
~ SST Signals Waves
&, top Time '

counter[31:0] =
led=
period[31:0] =|| | (EELEEE
sys clk=| HJNEEEEEEEEEEEEEEEEEEEEEEEEEEEEn A,
sys_rst=

Type Signals

reg dummy_s
reg led

wire period[31:0]
wire sys_clk

wire sys_rst

Filter: | |

Append | | Insert Replace

Fig. 1: LED blinker signals in GTKWave.

Add the following code to the script:

class Blinker (Module) :
def _ _init_ (self, led, maxperiod):
self.led = led
self.v_led_old = 0

def do_simulation(self, selfp):

v_led = selfp.led # read the current signal value
if v_led != self.v_led_old:
print ("{old}->{new} cycle={cycle}".format (
old=self.v_led_old, new=v_led,
cycle=s.cycle_counter))
self.v_led_old = v_1led

We are using another Module feature, the do_simulation method. At each simulated clock
cycle, the Migen simulator runs this function in each Module, passing it a “proxy” object in the
selfp parameter that mirrors the module and lets the function manipulate the values of the sig-

nals. Reading a proxy attribute corresponding to a signal from the module returns the value of
the signal, and writing to the proxy attribute sets the value of the signal.

Run the simulator again. It should run the do_simulation method and produce the following
output:

0->1 cycle=1

1->0 cycle=7

0->1 cycle=13
1->0 cycle=19
0->1 cycle=25
1->0 cycle=31
0->1 cycle=37
1->0 cycle=43

As an exercise, you can add code that verifies that the transitions are happening on the intended
edges (i.e. make the test bench self-checking).

3.3 Hardware implementation

Revert any code changes you have done for simulation purposes and go back to the original design
(you can still leave out the explicit conversion to Verilog).

Hardware implementation on supported boards is greatly simplified by using the Mibuild library
which is distributed with Migen. This tutorial assumes you have a Mixxeo, a Milkymist One, a
Papilio Pro or a RHINO board. Import the corresponding module with one of the following lines:

from mibuild.platforms import mixxeo as board
from mibuild.platforms import ml as board

from mibuild.platforms import papilio_pro as board
from mibuild.platforms import rhino as board

See the “platforms” folder in the Mibuild sources for a complete list of supported boards. You can
also add your own and submit it for inclusion into Mibuild. Altera boards are also supported.

Next, create a platform object and obtain the 1ed signal from Mibuild instead of creating it your-
self:

plat = board.Platform()
led = plat.request ("user_led")
my_blinker = Blinker (led, 30000000)

You are now ready to build the bitstream! Mibuild will add a default clock, which has a frequency
of 50MHz on the Mixxeo and Milkymist One, 32MHz on the Papilio Pro and 100MHz on the
RHINO.

plat.build _cmdline (my_blinker)

Run the script with those modifications, and after a too long compilation process, you will obtain
a top.bit bitstream file in a newly created folder build.

Mibuild assumes the Xilinx tools are installed in /opt /Xilinx. If they are not, run your script as
follows: python3 ledblinker.py —--ise-path /path_to_ise

Load the bitstream file using the appropriate programming tool for your board, and you should
see the LED blinking. The Mixxeo, Milkymist One and Papilio Pro boards can be programmed
with UrJTAG:

$ Jjtag

jtag> cable milkymist # for Mixxeo and Milkymist One
jtag> cable Flyswatter # for Papilio Pro

jtag> detect

jtag> pld load build/top.bit

4 To go further

This tutorial has given you an overview of the base component of Migen, FHDL. It enables devel-
opers to use the full power of Python to generate and verify the logic of their designs.

Migen comes with many other components and features that use FHDL to build system-on-chip
interconnect, dataflow systems, configuration and status register banks, finite state machines, and
more. Read the Migen manual available at http://m-labs.hk/gateware.html for a more
complete description. A heavy user of Migen is the MiSoC system-on-chip, whose source code
you can obtain from the same webpage.

Direct questions and feedback about Migen or this tutorial to the devel@lists.m-labs.hk mailing
list or the IRC channel #m-labs on Freenode.

