
Build your own FM transmitter using an FPGA
...and rickroll your neighbors!1

Nina Engelhardt

December 7, 2014

1Note: This is illegal in most places. But fun!



Thanks for coming!



This is the second slide
A bit more information about this

I Right now I’ll talk your ear off a bit
I boolean logic
I what’s in an FPGA?
I combinatorial vs synchronous circuits

I If you’ve heard that stuff before, or like to know what’s
coming, you can already start reading/working on the tutorial
files

I tutorial.pdf = introduction to migen, how to build
combinatorial and synchronous logic in migen

I fmtransmitter.pdf + fm transmitter your name here.py = you
know, that thing you came here for

I ssh into the lab computer to get them
I username + password on the wall



Boolean Logic

I Boolean Algebra (Z/2Z)
I Values = 0, 1
I Operators = and, or, not, xor (&, |, !, ^) (∧,∨,¬,⊕)

I not getting into all the properties
I Boolean Functions

I f (i1, ..., in) = (o1, ..., om)
I many possible ways to express one function as formulas

I f (i1, i2, i3) = (i1 ∧ i2) ∨ i3 = (i1 ∨ i3) ∧ (i2 ∨ i3)

I but one unique representation: truth table
a b (a ∨ b)
1 1 1
1 0 1
0 1 1
0 0 0



Inside an FPGA

I Truth table!

I any function with more inputs (or outputs) is broken up into
multiple truth tables



Inside an FPGA
The LUT’s trusty sidekick: the flip-flop

I Saves input value d when you tell it “now!”

I Outputs saved value on q

I Saying “now!” = rising edge on port clk



Inside an FPGA
The LUT’s trusty sidekick: the flip-flop

I Very important that all flip-flops get “now!” signal at the
same moment (synchronous)

I Otherwise Q1 might have already changed when 2nd FF gets
signal

I Clock signals are special, have their own routing network



Inside an FPGA
A maze of square little logic blocks, all alike

I Lots of these all over the FPGA

I Configurable routing network to connect them however you
want

I Programming an FPGA = filling truth tables and routing
signals (not by hand, thankfully)



Hardware Design
it’s not programming

I Hardware design is describing how you want to connect wires,
logic, and FFs together

I Not at all like writing code: spatial instead of temporal

I But looks very similar: out = A & B

I Keep in mind what you get is this:



Hardware Design
but it’s a lot like programming

I need to define variables first:

out = Signal()

A = Signal()

B = Signal()

I out.eq(A & B)

I Just floating in space like that it’s no good, add it to a module

module.comb += out.eq(A & B)

module.sync += out.eq(A & B)

I adding to sync will make out into a register (FF)

I then if you read out, you get the value from previous cycle!



Hardware Design
but it’s not programming

out.eq(out + 1)

I if you add it to combinatorial statements:

out = (((((out + 1) + 1) + 1) + 1) + 1) + ...

I does not compute (combinatorial loop)

I if you add it to synchronous statements:

out = previous_out + 1

I oh look, a counter!



That’s it from me
fly, my lovelies, fly!

I Now you are equipped to start the tutorial

I We’ll go through it together when you’re done

I And then I’ll unleash you onto the FM transmitter


	Boolean Logic
	FPGA
	Hardware Design
	Conclusion

