
Real-time experiment control for quantum physics

Robert Jördens

Ion Storage Group, Time and Frequency, NIST, Boulder, CO
rjordens@nist.gov

October 31, 2014

Jesse Varner, AzaToth, CC-BY-SA

rjordens@nist.gov

Ion trap
(NIST John Jost)

RF

RF

DC

DC

RF

RF

RF ground

RF ground

Quantum gate sequences

FPGA

ion trap

∼10 attenuators

∼50 DAC

∼20 DDS

∼50 GPIO

∼10 motors

∼10 power supplies

∼10 lasers

FPGA

ion trap

∼10 attenuators

∼50 DAC

∼20 DDS

∼50 GPIO

∼10 motors

∼10 power supplies

∼10 lasers

Physicists are not programmers:

LabVIEW: a “visual programming language” (a.k.a. “high viscosity language”)

Physicists are not programmers:

Rigid time-versus-channel matrix: inflexible (loops, conditionals?)

Physicists are not programmers:

Hard-coded components: not generic and opaque implementation

Enter ARTIQ

Advanced Real-Time Infrastructure for Quantum physics
• High performance — nanosecond resolution, hundreds of ns latency
• Expressive — describe algorithms with few lines of code
• Portable — treat hardware, especially FPGA boards, as commodity
• Modular — separate components as much as possible
• Flexible — hard-code as little as possible

Define a simple timing language

trigger.sync() # wait for trigger input
start = now() # capture trigger time
for i in range(3):

delay(5*us)
dds.pulse(900*MHz, 7*us) # first pulse 5 µs after trigger

at(start + 1*ms) # re-reference time-line
dds.pulse(200*MHz, 11*us) # exactly 1 ms after trigger

• Written in a subset of Python
• Executed on a CPU embedded on a FPGA (the core device)
• now(), at(), delay() describe time-line of an experiment
• Exact time is kept in an internal variable
• That variable only loosely tracks the execution time of CPU instructions
• The value of that variable is exchanged with the RTIO fabric that does

precise timing

Convenient syntax additions

with sequential:
with parallel:

a.pulse(100*MHz, 10*us)
b.pulse(200*MHz, 20*us)

with parallel:
c.pulse(300*MHz, 30*us)
d.pulse(400*MHz, 20*us)

• Experiments are inherently parallel: simultaneous laser pulses, parallel
cooling of ions in different trap zones

• parallel and sequential contexts with arbitrary nesting
• a and b pulses both start at the same time
• c and d pulses both start when a and b are both done (after 20 µs)
• Implemented by inlining, loop-unrolling, and interleaving

Physical quantities, hardware granularity
n = 1000
dt = 1.2345*ns
f = 345*MHz

dds.on(f, phase=0) # must round to integer tuning word
for i in range(n):

delay(dt) # must round to native cycles

dt_raw = time_to_cycles(dt) # integer number of cycles
f_raw = dds.frequency_to_ftw(f) # integer frequency tuning word

determine correct phase despite accumulation of rounding errors
phi = n*cycles_to_time(dt_raw)*dds.ftw_to_frequency(f_raw)

• Need well defined conversion and rounding of physical quantities (time,
frequency, phase, etc.) to hardware granularity and back

• Complicated because of calibration, offsets, cable delays, non-linearities
• No generic way to do it automatically and correctly
• → need to do it explicitly where it matters

Invite organizing experiment components and code reuse

class Experiment:
def build(self):

self.ion1 = Ion(...)
self.ion2 = Ion(...)
self.transporter = Transporter(...)

@kernel
def run(self):

with parallel:
self.ion1.cool(duration=10*us)
self.ion2.cool(frequency=...)

self.transporter.move(speed=...)
delay(100*ms)
self.ion1.detect(duration=...)

RPC to handle distributed non-RT hardware

class Experiment:
def prepare(self): # runs on the host

self.motor.move_to(20*mm) # slow RS232 motor controller

@kernel
def run(self): # runs on the RT core device

self.prepare() # converted into an RPC

• When a kernel function calls a non-kernel function, it generates a RPC
• The callee is executed on the host
• Mechanism to report results and control slow devices
• The kernel must have a loose real-time constraint (a long delay) or

means of re-synchronization to cover communication, host, and device
delays

Kernel deployment to the core device

• RPC and exception mappings are generated
• Constants and small kernels are inlined
• Small loops are unrolled
• Statements in parallel blocks are interleaved
• Time is converted to RTIO clock cycles
• The Python AST is converted to LLVM IR
• The LLVM IR is compiled to OpenRISC machine code
• The OpenRISC binary is sent to the core device
• The runtime in the core device links and runs the kernel
• The kernel calls the runtime for communication (RPC) and interfacing

with core device peripherals (RTIO, DDS)

https://github.com/m-labs/artiq

• Fully open-source, BSD licensed
• Ported and running on two different FPGA boards
• Design applicable beyond ion trapping (superconducting qubits, neutral

atoms...)
• Fastest open-source DDR3 SODIMM controller as a sub-project: 64 Gbps
• Interfacing with lab hardware
• Hardware-in-the-loop unittests
• Self-contained simulator
• Currently ∼1 µs latency and ∼1 MHz event rate
• DMA should improve that dramatically

https://github.com/m-labs/artiq

