web-legacy/solvespace/javascript/three-r76.js

41508 lines
941 KiB
JavaScript
Raw Normal View History

2016-06-05 22:06:34 +08:00
// File:src/Three.js
/**
* @author mrdoob / http://mrdoob.com/
*/
var THREE = { REVISION: '76' };
//
if ( typeof define === 'function' && define.amd ) {
define( 'three', THREE );
} else if ( 'undefined' !== typeof exports && 'undefined' !== typeof module ) {
module.exports = THREE;
}
//
if ( Number.EPSILON === undefined ) {
Number.EPSILON = Math.pow( 2, - 52 );
}
//
if ( Math.sign === undefined ) {
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign
Math.sign = function ( x ) {
return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x;
};
}
if ( Function.prototype.name === undefined && Object.defineProperty !== undefined ) {
// Missing in IE9-11.
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name
Object.defineProperty( Function.prototype, 'name', {
get: function () {
return this.toString().match( /^\s*function\s*(\S*)\s*\(/ )[ 1 ];
}
} );
}
if ( Object.assign === undefined ) {
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
Object.defineProperty( Object, 'assign', {
writable: true,
configurable: true,
value: function ( target ) {
'use strict';
if ( target === undefined || target === null ) {
throw new TypeError( "Cannot convert first argument to object" );
}
var to = Object( target );
for ( var i = 1, n = arguments.length; i !== n; ++ i ) {
var nextSource = arguments[ i ];
if ( nextSource === undefined || nextSource === null ) continue;
nextSource = Object( nextSource );
var keysArray = Object.keys( nextSource );
for ( var nextIndex = 0, len = keysArray.length; nextIndex !== len; ++ nextIndex ) {
var nextKey = keysArray[ nextIndex ];
var desc = Object.getOwnPropertyDescriptor( nextSource, nextKey );
if ( desc !== undefined && desc.enumerable ) {
to[ nextKey ] = nextSource[ nextKey ];
}
}
}
return to;
}
} );
}
// https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent.button
THREE.MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2 };
// GL STATE CONSTANTS
THREE.CullFaceNone = 0;
THREE.CullFaceBack = 1;
THREE.CullFaceFront = 2;
THREE.CullFaceFrontBack = 3;
THREE.FrontFaceDirectionCW = 0;
THREE.FrontFaceDirectionCCW = 1;
// SHADOWING TYPES
THREE.BasicShadowMap = 0;
THREE.PCFShadowMap = 1;
THREE.PCFSoftShadowMap = 2;
// MATERIAL CONSTANTS
// side
THREE.FrontSide = 0;
THREE.BackSide = 1;
THREE.DoubleSide = 2;
// shading
THREE.FlatShading = 1;
THREE.SmoothShading = 2;
// colors
THREE.NoColors = 0;
THREE.FaceColors = 1;
THREE.VertexColors = 2;
// blending modes
THREE.NoBlending = 0;
THREE.NormalBlending = 1;
THREE.AdditiveBlending = 2;
THREE.SubtractiveBlending = 3;
THREE.MultiplyBlending = 4;
THREE.CustomBlending = 5;
// custom blending equations
// (numbers start from 100 not to clash with other
// mappings to OpenGL constants defined in Texture.js)
THREE.AddEquation = 100;
THREE.SubtractEquation = 101;
THREE.ReverseSubtractEquation = 102;
THREE.MinEquation = 103;
THREE.MaxEquation = 104;
// custom blending destination factors
THREE.ZeroFactor = 200;
THREE.OneFactor = 201;
THREE.SrcColorFactor = 202;
THREE.OneMinusSrcColorFactor = 203;
THREE.SrcAlphaFactor = 204;
THREE.OneMinusSrcAlphaFactor = 205;
THREE.DstAlphaFactor = 206;
THREE.OneMinusDstAlphaFactor = 207;
// custom blending source factors
//THREE.ZeroFactor = 200;
//THREE.OneFactor = 201;
//THREE.SrcAlphaFactor = 204;
//THREE.OneMinusSrcAlphaFactor = 205;
//THREE.DstAlphaFactor = 206;
//THREE.OneMinusDstAlphaFactor = 207;
THREE.DstColorFactor = 208;
THREE.OneMinusDstColorFactor = 209;
THREE.SrcAlphaSaturateFactor = 210;
// depth modes
THREE.NeverDepth = 0;
THREE.AlwaysDepth = 1;
THREE.LessDepth = 2;
THREE.LessEqualDepth = 3;
THREE.EqualDepth = 4;
THREE.GreaterEqualDepth = 5;
THREE.GreaterDepth = 6;
THREE.NotEqualDepth = 7;
// TEXTURE CONSTANTS
THREE.MultiplyOperation = 0;
THREE.MixOperation = 1;
THREE.AddOperation = 2;
// Tone Mapping modes
THREE.NoToneMapping = 0; // do not do any tone mapping, not even exposure (required for special purpose passes.)
THREE.LinearToneMapping = 1; // only apply exposure.
THREE.ReinhardToneMapping = 2;
THREE.Uncharted2ToneMapping = 3; // John Hable
THREE.CineonToneMapping = 4; // optimized filmic operator by Jim Hejl and Richard Burgess-Dawson
// Mapping modes
THREE.UVMapping = 300;
THREE.CubeReflectionMapping = 301;
THREE.CubeRefractionMapping = 302;
THREE.EquirectangularReflectionMapping = 303;
THREE.EquirectangularRefractionMapping = 304;
THREE.SphericalReflectionMapping = 305;
THREE.CubeUVReflectionMapping = 306;
THREE.CubeUVRefractionMapping = 307;
// Wrapping modes
THREE.RepeatWrapping = 1000;
THREE.ClampToEdgeWrapping = 1001;
THREE.MirroredRepeatWrapping = 1002;
// Filters
THREE.NearestFilter = 1003;
THREE.NearestMipMapNearestFilter = 1004;
THREE.NearestMipMapLinearFilter = 1005;
THREE.LinearFilter = 1006;
THREE.LinearMipMapNearestFilter = 1007;
THREE.LinearMipMapLinearFilter = 1008;
// Data types
THREE.UnsignedByteType = 1009;
THREE.ByteType = 1010;
THREE.ShortType = 1011;
THREE.UnsignedShortType = 1012;
THREE.IntType = 1013;
THREE.UnsignedIntType = 1014;
THREE.FloatType = 1015;
THREE.HalfFloatType = 1025;
// Pixel types
//THREE.UnsignedByteType = 1009;
THREE.UnsignedShort4444Type = 1016;
THREE.UnsignedShort5551Type = 1017;
THREE.UnsignedShort565Type = 1018;
// Pixel formats
THREE.AlphaFormat = 1019;
THREE.RGBFormat = 1020;
THREE.RGBAFormat = 1021;
THREE.LuminanceFormat = 1022;
THREE.LuminanceAlphaFormat = 1023;
// THREE.RGBEFormat handled as THREE.RGBAFormat in shaders
THREE.RGBEFormat = THREE.RGBAFormat; //1024;
THREE.DepthFormat = 1026;
// DDS / ST3C Compressed texture formats
THREE.RGB_S3TC_DXT1_Format = 2001;
THREE.RGBA_S3TC_DXT1_Format = 2002;
THREE.RGBA_S3TC_DXT3_Format = 2003;
THREE.RGBA_S3TC_DXT5_Format = 2004;
// PVRTC compressed texture formats
THREE.RGB_PVRTC_4BPPV1_Format = 2100;
THREE.RGB_PVRTC_2BPPV1_Format = 2101;
THREE.RGBA_PVRTC_4BPPV1_Format = 2102;
THREE.RGBA_PVRTC_2BPPV1_Format = 2103;
// ETC compressed texture formats
THREE.RGB_ETC1_Format = 2151;
// Loop styles for AnimationAction
THREE.LoopOnce = 2200;
THREE.LoopRepeat = 2201;
THREE.LoopPingPong = 2202;
// Interpolation
THREE.InterpolateDiscrete = 2300;
THREE.InterpolateLinear = 2301;
THREE.InterpolateSmooth = 2302;
// Interpolant ending modes
THREE.ZeroCurvatureEnding = 2400;
THREE.ZeroSlopeEnding = 2401;
THREE.WrapAroundEnding = 2402;
// Triangle Draw modes
THREE.TrianglesDrawMode = 0;
THREE.TriangleStripDrawMode = 1;
THREE.TriangleFanDrawMode = 2;
// Texture Encodings
THREE.LinearEncoding = 3000; // No encoding at all.
THREE.sRGBEncoding = 3001;
THREE.GammaEncoding = 3007; // uses GAMMA_FACTOR, for backwards compatibility with WebGLRenderer.gammaInput/gammaOutput
// The following Texture Encodings are for RGB-only (no alpha) HDR light emission sources.
// These encodings should not specified as output encodings except in rare situations.
THREE.RGBEEncoding = 3002; // AKA Radiance.
THREE.LogLuvEncoding = 3003;
THREE.RGBM7Encoding = 3004;
THREE.RGBM16Encoding = 3005;
THREE.RGBDEncoding = 3006; // MaxRange is 256.
// Depth packing strategies
THREE.BasicDepthPacking = 3200; // for writing to float textures for high precision or for visualizing results in RGB buffers
THREE.RGBADepthPacking = 3201; // for packing into RGBA buffers.
// File:src/math/Color.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.Color = function ( color ) {
if ( arguments.length === 3 ) {
return this.fromArray( arguments );
}
return this.set( color );
};
THREE.Color.prototype = {
constructor: THREE.Color,
r: 1, g: 1, b: 1,
set: function ( value ) {
if ( value instanceof THREE.Color ) {
this.copy( value );
} else if ( typeof value === 'number' ) {
this.setHex( value );
} else if ( typeof value === 'string' ) {
this.setStyle( value );
}
return this;
},
setScalar: function ( scalar ) {
this.r = scalar;
this.g = scalar;
this.b = scalar;
},
setHex: function ( hex ) {
hex = Math.floor( hex );
this.r = ( hex >> 16 & 255 ) / 255;
this.g = ( hex >> 8 & 255 ) / 255;
this.b = ( hex & 255 ) / 255;
return this;
},
setRGB: function ( r, g, b ) {
this.r = r;
this.g = g;
this.b = b;
return this;
},
setHSL: function () {
function hue2rgb( p, q, t ) {
if ( t < 0 ) t += 1;
if ( t > 1 ) t -= 1;
if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t;
if ( t < 1 / 2 ) return q;
if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t );
return p;
}
return function ( h, s, l ) {
// h,s,l ranges are in 0.0 - 1.0
h = THREE.Math.euclideanModulo( h, 1 );
s = THREE.Math.clamp( s, 0, 1 );
l = THREE.Math.clamp( l, 0, 1 );
if ( s === 0 ) {
this.r = this.g = this.b = l;
} else {
var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s );
var q = ( 2 * l ) - p;
this.r = hue2rgb( q, p, h + 1 / 3 );
this.g = hue2rgb( q, p, h );
this.b = hue2rgb( q, p, h - 1 / 3 );
}
return this;
};
}(),
setStyle: function ( style ) {
function handleAlpha( string ) {
if ( string === undefined ) return;
if ( parseFloat( string ) < 1 ) {
console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' );
}
}
var m;
if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) {
// rgb / hsl
var color;
var name = m[ 1 ];
var components = m[ 2 ];
switch ( name ) {
case 'rgb':
case 'rgba':
if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// rgb(255,0,0) rgba(255,0,0,0.5)
this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255;
this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255;
this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255;
handleAlpha( color[ 5 ] );
return this;
}
if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100;
this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100;
this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100;
handleAlpha( color[ 5 ] );
return this;
}
break;
case 'hsl':
case 'hsla':
if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
var h = parseFloat( color[ 1 ] ) / 360;
var s = parseInt( color[ 2 ], 10 ) / 100;
var l = parseInt( color[ 3 ], 10 ) / 100;
handleAlpha( color[ 5 ] );
return this.setHSL( h, s, l );
}
break;
}
} else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) {
// hex color
var hex = m[ 1 ];
var size = hex.length;
if ( size === 3 ) {
// #ff0
this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255;
this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255;
this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255;
return this;
} else if ( size === 6 ) {
// #ff0000
this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255;
this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255;
this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255;
return this;
}
}
if ( style && style.length > 0 ) {
// color keywords
var hex = THREE.ColorKeywords[ style ];
if ( hex !== undefined ) {
// red
this.setHex( hex );
} else {
// unknown color
console.warn( 'THREE.Color: Unknown color ' + style );
}
}
return this;
},
clone: function () {
return new this.constructor( this.r, this.g, this.b );
},
copy: function ( color ) {
this.r = color.r;
this.g = color.g;
this.b = color.b;
return this;
},
copyGammaToLinear: function ( color, gammaFactor ) {
if ( gammaFactor === undefined ) gammaFactor = 2.0;
this.r = Math.pow( color.r, gammaFactor );
this.g = Math.pow( color.g, gammaFactor );
this.b = Math.pow( color.b, gammaFactor );
return this;
},
copyLinearToGamma: function ( color, gammaFactor ) {
if ( gammaFactor === undefined ) gammaFactor = 2.0;
var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0;
this.r = Math.pow( color.r, safeInverse );
this.g = Math.pow( color.g, safeInverse );
this.b = Math.pow( color.b, safeInverse );
return this;
},
convertGammaToLinear: function () {
var r = this.r, g = this.g, b = this.b;
this.r = r * r;
this.g = g * g;
this.b = b * b;
return this;
},
convertLinearToGamma: function () {
this.r = Math.sqrt( this.r );
this.g = Math.sqrt( this.g );
this.b = Math.sqrt( this.b );
return this;
},
getHex: function () {
return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0;
},
getHexString: function () {
return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 );
},
getHSL: function ( optionalTarget ) {
// h,s,l ranges are in 0.0 - 1.0
var hsl = optionalTarget || { h: 0, s: 0, l: 0 };
var r = this.r, g = this.g, b = this.b;
var max = Math.max( r, g, b );
var min = Math.min( r, g, b );
var hue, saturation;
var lightness = ( min + max ) / 2.0;
if ( min === max ) {
hue = 0;
saturation = 0;
} else {
var delta = max - min;
saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );
switch ( max ) {
case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break;
case g: hue = ( b - r ) / delta + 2; break;
case b: hue = ( r - g ) / delta + 4; break;
}
hue /= 6;
}
hsl.h = hue;
hsl.s = saturation;
hsl.l = lightness;
return hsl;
},
getStyle: function () {
return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')';
},
offsetHSL: function ( h, s, l ) {
var hsl = this.getHSL();
hsl.h += h; hsl.s += s; hsl.l += l;
this.setHSL( hsl.h, hsl.s, hsl.l );
return this;
},
add: function ( color ) {
this.r += color.r;
this.g += color.g;
this.b += color.b;
return this;
},
addColors: function ( color1, color2 ) {
this.r = color1.r + color2.r;
this.g = color1.g + color2.g;
this.b = color1.b + color2.b;
return this;
},
addScalar: function ( s ) {
this.r += s;
this.g += s;
this.b += s;
return this;
},
multiply: function ( color ) {
this.r *= color.r;
this.g *= color.g;
this.b *= color.b;
return this;
},
multiplyScalar: function ( s ) {
this.r *= s;
this.g *= s;
this.b *= s;
return this;
},
lerp: function ( color, alpha ) {
this.r += ( color.r - this.r ) * alpha;
this.g += ( color.g - this.g ) * alpha;
this.b += ( color.b - this.b ) * alpha;
return this;
},
equals: function ( c ) {
return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.r = array[ offset ];
this.g = array[ offset + 1 ];
this.b = array[ offset + 2 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.r;
array[ offset + 1 ] = this.g;
array[ offset + 2 ] = this.b;
return array;
}
};
THREE.ColorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF,
'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2,
'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50,
'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B,
'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B,
'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F,
'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3,
'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222,
'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700,
'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4,
'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00,
'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3,
'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA,
'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32,
'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3,
'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC,
'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD,
'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6,
'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9,
'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F,
'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE,
'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA,
'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0,
'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 };
// File:src/math/Quaternion.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
*/
THREE.Quaternion = function ( x, y, z, w ) {
this._x = x || 0;
this._y = y || 0;
this._z = z || 0;
this._w = ( w !== undefined ) ? w : 1;
};
THREE.Quaternion.prototype = {
constructor: THREE.Quaternion,
get x () {
return this._x;
},
set x ( value ) {
this._x = value;
this.onChangeCallback();
},
get y () {
return this._y;
},
set y ( value ) {
this._y = value;
this.onChangeCallback();
},
get z () {
return this._z;
},
set z ( value ) {
this._z = value;
this.onChangeCallback();
},
get w () {
return this._w;
},
set w ( value ) {
this._w = value;
this.onChangeCallback();
},
set: function ( x, y, z, w ) {
this._x = x;
this._y = y;
this._z = z;
this._w = w;
this.onChangeCallback();
return this;
},
clone: function () {
return new this.constructor( this._x, this._y, this._z, this._w );
},
copy: function ( quaternion ) {
this._x = quaternion.x;
this._y = quaternion.y;
this._z = quaternion.z;
this._w = quaternion.w;
this.onChangeCallback();
return this;
},
setFromEuler: function ( euler, update ) {
if ( euler instanceof THREE.Euler === false ) {
throw new Error( 'THREE.Quaternion: .setFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );
}
// http://www.mathworks.com/matlabcentral/fileexchange/
// 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
// content/SpinCalc.m
var c1 = Math.cos( euler._x / 2 );
var c2 = Math.cos( euler._y / 2 );
var c3 = Math.cos( euler._z / 2 );
var s1 = Math.sin( euler._x / 2 );
var s2 = Math.sin( euler._y / 2 );
var s3 = Math.sin( euler._z / 2 );
var order = euler.order;
if ( order === 'XYZ' ) {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'YXZ' ) {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
} else if ( order === 'ZXY' ) {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'ZYX' ) {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
} else if ( order === 'YZX' ) {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'XZY' ) {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
}
if ( update !== false ) this.onChangeCallback();
return this;
},
setFromAxisAngle: function ( axis, angle ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
// assumes axis is normalized
var halfAngle = angle / 2, s = Math.sin( halfAngle );
this._x = axis.x * s;
this._y = axis.y * s;
this._z = axis.z * s;
this._w = Math.cos( halfAngle );
this.onChangeCallback();
return this;
},
setFromRotationMatrix: function ( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
var te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],
trace = m11 + m22 + m33,
s;
if ( trace > 0 ) {
s = 0.5 / Math.sqrt( trace + 1.0 );
this._w = 0.25 / s;
this._x = ( m32 - m23 ) * s;
this._y = ( m13 - m31 ) * s;
this._z = ( m21 - m12 ) * s;
} else if ( m11 > m22 && m11 > m33 ) {
s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );
this._w = ( m32 - m23 ) / s;
this._x = 0.25 * s;
this._y = ( m12 + m21 ) / s;
this._z = ( m13 + m31 ) / s;
} else if ( m22 > m33 ) {
s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );
this._w = ( m13 - m31 ) / s;
this._x = ( m12 + m21 ) / s;
this._y = 0.25 * s;
this._z = ( m23 + m32 ) / s;
} else {
s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );
this._w = ( m21 - m12 ) / s;
this._x = ( m13 + m31 ) / s;
this._y = ( m23 + m32 ) / s;
this._z = 0.25 * s;
}
this.onChangeCallback();
return this;
},
setFromUnitVectors: function () {
// http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final
// assumes direction vectors vFrom and vTo are normalized
var v1, r;
var EPS = 0.000001;
return function ( vFrom, vTo ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
r = vFrom.dot( vTo ) + 1;
if ( r < EPS ) {
r = 0;
if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {
v1.set( - vFrom.y, vFrom.x, 0 );
} else {
v1.set( 0, - vFrom.z, vFrom.y );
}
} else {
v1.crossVectors( vFrom, vTo );
}
this._x = v1.x;
this._y = v1.y;
this._z = v1.z;
this._w = r;
this.normalize();
return this;
};
}(),
inverse: function () {
this.conjugate().normalize();
return this;
},
conjugate: function () {
this._x *= - 1;
this._y *= - 1;
this._z *= - 1;
this.onChangeCallback();
return this;
},
dot: function ( v ) {
return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
},
lengthSq: function () {
return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
},
length: function () {
return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );
},
normalize: function () {
var l = this.length();
if ( l === 0 ) {
this._x = 0;
this._y = 0;
this._z = 0;
this._w = 1;
} else {
l = 1 / l;
this._x = this._x * l;
this._y = this._y * l;
this._z = this._z * l;
this._w = this._w * l;
}
this.onChangeCallback();
return this;
},
multiply: function ( q, p ) {
if ( p !== undefined ) {
console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );
return this.multiplyQuaternions( q, p );
}
return this.multiplyQuaternions( this, q );
},
multiplyQuaternions: function ( a, b ) {
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
this.onChangeCallback();
return this;
},
slerp: function ( qb, t ) {
if ( t === 0 ) return this;
if ( t === 1 ) return this.copy( qb );
var x = this._x, y = this._y, z = this._z, w = this._w;
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
if ( cosHalfTheta < 0 ) {
this._w = - qb._w;
this._x = - qb._x;
this._y = - qb._y;
this._z = - qb._z;
cosHalfTheta = - cosHalfTheta;
} else {
this.copy( qb );
}
if ( cosHalfTheta >= 1.0 ) {
this._w = w;
this._x = x;
this._y = y;
this._z = z;
return this;
}
var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta );
if ( Math.abs( sinHalfTheta ) < 0.001 ) {
this._w = 0.5 * ( w + this._w );
this._x = 0.5 * ( x + this._x );
this._y = 0.5 * ( y + this._y );
this._z = 0.5 * ( z + this._z );
return this;
}
var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
this._w = ( w * ratioA + this._w * ratioB );
this._x = ( x * ratioA + this._x * ratioB );
this._y = ( y * ratioA + this._y * ratioB );
this._z = ( z * ratioA + this._z * ratioB );
this.onChangeCallback();
return this;
},
equals: function ( quaternion ) {
return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this._x = array[ offset ];
this._y = array[ offset + 1 ];
this._z = array[ offset + 2 ];
this._w = array[ offset + 3 ];
this.onChangeCallback();
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._w;
return array;
},
onChange: function ( callback ) {
this.onChangeCallback = callback;
return this;
},
onChangeCallback: function () {}
};
Object.assign( THREE.Quaternion, {
slerp: function( qa, qb, qm, t ) {
return qm.copy( qa ).slerp( qb, t );
},
slerpFlat: function(
dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {
// fuzz-free, array-based Quaternion SLERP operation
var x0 = src0[ srcOffset0 + 0 ],
y0 = src0[ srcOffset0 + 1 ],
z0 = src0[ srcOffset0 + 2 ],
w0 = src0[ srcOffset0 + 3 ],
x1 = src1[ srcOffset1 + 0 ],
y1 = src1[ srcOffset1 + 1 ],
z1 = src1[ srcOffset1 + 2 ],
w1 = src1[ srcOffset1 + 3 ];
if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {
var s = 1 - t,
cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
dir = ( cos >= 0 ? 1 : - 1 ),
sqrSin = 1 - cos * cos;
// Skip the Slerp for tiny steps to avoid numeric problems:
if ( sqrSin > Number.EPSILON ) {
var sin = Math.sqrt( sqrSin ),
len = Math.atan2( sin, cos * dir );
s = Math.sin( s * len ) / sin;
t = Math.sin( t * len ) / sin;
}
var tDir = t * dir;
x0 = x0 * s + x1 * tDir;
y0 = y0 * s + y1 * tDir;
z0 = z0 * s + z1 * tDir;
w0 = w0 * s + w1 * tDir;
// Normalize in case we just did a lerp:
if ( s === 1 - t ) {
var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );
x0 *= f;
y0 *= f;
z0 *= f;
w0 *= f;
}
}
dst[ dstOffset ] = x0;
dst[ dstOffset + 1 ] = y0;
dst[ dstOffset + 2 ] = z0;
dst[ dstOffset + 3 ] = w0;
}
} );
// File:src/math/Vector2.js
/**
* @author mrdoob / http://mrdoob.com/
* @author philogb / http://blog.thejit.org/
* @author egraether / http://egraether.com/
* @author zz85 / http://www.lab4games.net/zz85/blog
*/
THREE.Vector2 = function ( x, y ) {
this.x = x || 0;
this.y = y || 0;
};
THREE.Vector2.prototype = {
constructor: THREE.Vector2,
get width() {
return this.x;
},
set width( value ) {
this.x = value;
},
get height() {
return this.y;
},
set height( value ) {
this.y = value;
},
//
set: function ( x, y ) {
this.x = x;
this.y = y;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
return this;
},
multiply: function ( v ) {
this.x *= v.x;
this.y *= v.y;
return this;
},
multiplyScalar: function ( scalar ) {
if ( isFinite( scalar ) ) {
this.x *= scalar;
this.y *= scalar;
} else {
this.x = 0;
this.y = 0;
}
return this;
},
divide: function ( v ) {
this.x /= v.x;
this.y /= v.y;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
return this;
},
clamp: function ( min, max ) {
// This function assumes min < max, if this assumption isn't true it will not operate correctly
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
return this;
},
clampScalar: function () {
var min, max;
return function clampScalar( minVal, maxVal ) {
if ( min === undefined ) {
min = new THREE.Vector2();
max = new THREE.Vector2();
}
min.set( minVal, minVal );
max.set( maxVal, maxVal );
return this.clamp( min, max );
};
}(),
clampLength: function ( min, max ) {
var length = this.length();
this.multiplyScalar( Math.max( min, Math.min( max, length ) ) / length );
return this;
},
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y;
},
lengthSq: function () {
return this.x * this.x + this.y * this.y;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y );
},
lengthManhattan: function() {
return Math.abs( this.x ) + Math.abs( this.y );
},
normalize: function () {
return this.divideScalar( this.length() );
},
angle: function () {
// computes the angle in radians with respect to the positive x-axis
var angle = Math.atan2( this.y, this.x );
if ( angle < 0 ) angle += 2 * Math.PI;
return angle;
},
distanceTo: function ( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
},
distanceToSquared: function ( v ) {
var dx = this.x - v.x, dy = this.y - v.y;
return dx * dx + dy * dy;
},
setLength: function ( length ) {
return this.multiplyScalar( length / this.length() );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
return this;
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
return array;
},
fromAttribute: function ( attribute, index, offset ) {
if ( offset === undefined ) offset = 0;
index = index * attribute.itemSize + offset;
this.x = attribute.array[ index ];
this.y = attribute.array[ index + 1 ];
return this;
},
rotateAround: function ( center, angle ) {
var c = Math.cos( angle ), s = Math.sin( angle );
var x = this.x - center.x;
var y = this.y - center.y;
this.x = x * c - y * s + center.x;
this.y = x * s + y * c + center.y;
return this;
}
};
// File:src/math/Vector3.js
/**
* @author mrdoob / http://mrdoob.com/
* @author *kile / http://kile.stravaganza.org/
* @author philogb / http://blog.thejit.org/
* @author mikael emtinger / http://gomo.se/
* @author egraether / http://egraether.com/
* @author WestLangley / http://github.com/WestLangley
*/
THREE.Vector3 = function ( x, y, z ) {
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
};
THREE.Vector3.prototype = {
constructor: THREE.Vector3,
set: function ( x, y, z ) {
this.x = x;
this.y = y;
this.z = z;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setZ: function ( z ) {
this.z = z;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y, this.z );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
this.z += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
return this;
},
multiply: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' );
return this.multiplyVectors( v, w );
}
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
return this;
},
multiplyScalar: function ( scalar ) {
if ( isFinite( scalar ) ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
} else {
this.x = 0;
this.y = 0;
this.z = 0;
}
return this;
},
multiplyVectors: function ( a, b ) {
this.x = a.x * b.x;
this.y = a.y * b.y;
this.z = a.z * b.z;
return this;
},
applyEuler: function () {
var quaternion;
return function applyEuler( euler ) {
if ( euler instanceof THREE.Euler === false ) {
console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );
}
if ( quaternion === undefined ) quaternion = new THREE.Quaternion();
this.applyQuaternion( quaternion.setFromEuler( euler ) );
return this;
};
}(),
applyAxisAngle: function () {
var quaternion;
return function applyAxisAngle( axis, angle ) {
if ( quaternion === undefined ) quaternion = new THREE.Quaternion();
this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) );
return this;
};
}(),
applyMatrix3: function ( m ) {
var x = this.x;
var y = this.y;
var z = this.z;
var e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;
return this;
},
applyMatrix4: function ( m ) {
// input: THREE.Matrix4 affine matrix
var x = this.x, y = this.y, z = this.z;
var e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ];
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ];
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ];
return this;
},
applyProjection: function ( m ) {
// input: THREE.Matrix4 projection matrix
var x = this.x, y = this.y, z = this.z;
var e = m.elements;
var d = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); // perspective divide
this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * d;
this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * d;
this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * d;
return this;
},
applyQuaternion: function ( q ) {
var x = this.x;
var y = this.y;
var z = this.z;
var qx = q.x;
var qy = q.y;
var qz = q.z;
var qw = q.w;
// calculate quat * vector
var ix = qw * x + qy * z - qz * y;
var iy = qw * y + qz * x - qx * z;
var iz = qw * z + qx * y - qy * x;
var iw = - qx * x - qy * y - qz * z;
// calculate result * inverse quat
this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;
this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;
this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;
return this;
},
project: function () {
var matrix;
return function project( camera ) {
if ( matrix === undefined ) matrix = new THREE.Matrix4();
matrix.multiplyMatrices( camera.projectionMatrix, matrix.getInverse( camera.matrixWorld ) );
return this.applyProjection( matrix );
};
}(),
unproject: function () {
var matrix;
return function unproject( camera ) {
if ( matrix === undefined ) matrix = new THREE.Matrix4();
matrix.multiplyMatrices( camera.matrixWorld, matrix.getInverse( camera.projectionMatrix ) );
return this.applyProjection( matrix );
};
}(),
transformDirection: function ( m ) {
// input: THREE.Matrix4 affine matrix
// vector interpreted as a direction
var x = this.x, y = this.y, z = this.z;
var e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
this.normalize();
return this;
},
divide: function ( v ) {
this.x /= v.x;
this.y /= v.y;
this.z /= v.z;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
return this;
},
clamp: function ( min, max ) {
// This function assumes min < max, if this assumption isn't true it will not operate correctly
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
return this;
},
clampScalar: function () {
var min, max;
return function clampScalar( minVal, maxVal ) {
if ( min === undefined ) {
min = new THREE.Vector3();
max = new THREE.Vector3();
}
min.set( minVal, minVal, minVal );
max.set( maxVal, maxVal, maxVal );
return this.clamp( min, max );
};
}(),
clampLength: function ( min, max ) {
var length = this.length();
this.multiplyScalar( Math.max( min, Math.min( max, length ) ) / length );
return this;
},
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z;
},
lengthSq: function () {
return this.x * this.x + this.y * this.y + this.z * this.z;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );
},
lengthManhattan: function () {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );
},
normalize: function () {
return this.divideScalar( this.length() );
},
setLength: function ( length ) {
return this.multiplyScalar( length / this.length() );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
return this;
},
cross: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' );
return this.crossVectors( v, w );
}
var x = this.x, y = this.y, z = this.z;
this.x = y * v.z - z * v.y;
this.y = z * v.x - x * v.z;
this.z = x * v.y - y * v.x;
return this;
},
crossVectors: function ( a, b ) {
var ax = a.x, ay = a.y, az = a.z;
var bx = b.x, by = b.y, bz = b.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
},
projectOnVector: function () {
var v1, dot;
return function projectOnVector( vector ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
v1.copy( vector ).normalize();
dot = this.dot( v1 );
return this.copy( v1 ).multiplyScalar( dot );
};
}(),
projectOnPlane: function () {
var v1;
return function projectOnPlane( planeNormal ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
v1.copy( this ).projectOnVector( planeNormal );
return this.sub( v1 );
};
}(),
reflect: function () {
// reflect incident vector off plane orthogonal to normal
// normal is assumed to have unit length
var v1;
return function reflect( normal ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );
};
}(),
angleTo: function ( v ) {
var theta = this.dot( v ) / ( Math.sqrt( this.lengthSq() * v.lengthSq() ) );
// clamp, to handle numerical problems
return Math.acos( THREE.Math.clamp( theta, - 1, 1 ) );
},
distanceTo: function ( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
},
distanceToSquared: function ( v ) {
var dx = this.x - v.x;
var dy = this.y - v.y;
var dz = this.z - v.z;
return dx * dx + dy * dy + dz * dz;
},
setFromSpherical: function( s ) {
var sinPhiRadius = Math.sin( s.phi ) * s.radius;
this.x = sinPhiRadius * Math.sin( s.theta );
this.y = Math.cos( s.phi ) * s.radius;
this.z = sinPhiRadius * Math.cos( s.theta );
return this;
},
setFromMatrixPosition: function ( m ) {
return this.setFromMatrixColumn( m, 3 );
},
setFromMatrixScale: function ( m ) {
var sx = this.setFromMatrixColumn( m, 0 ).length();
var sy = this.setFromMatrixColumn( m, 1 ).length();
var sz = this.setFromMatrixColumn( m, 2 ).length();
this.x = sx;
this.y = sy;
this.z = sz;
return this;
},
setFromMatrixColumn: function ( m, index ) {
if ( typeof m === 'number' ) {
console.warn( 'THREE.Vector3: setFromMatrixColumn now expects ( matrix, index ).' );
m = arguments[ 1 ];
index = arguments[ 0 ];
}
return this.fromArray( m.elements, index * 4 );
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
return array;
},
fromAttribute: function ( attribute, index, offset ) {
if ( offset === undefined ) offset = 0;
index = index * attribute.itemSize + offset;
this.x = attribute.array[ index ];
this.y = attribute.array[ index + 1 ];
this.z = attribute.array[ index + 2 ];
return this;
}
};
// File:src/math/Vector4.js
/**
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author philogb / http://blog.thejit.org/
* @author mikael emtinger / http://gomo.se/
* @author egraether / http://egraether.com/
* @author WestLangley / http://github.com/WestLangley
*/
THREE.Vector4 = function ( x, y, z, w ) {
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
this.w = ( w !== undefined ) ? w : 1;
};
THREE.Vector4.prototype = {
constructor: THREE.Vector4,
set: function ( x, y, z, w ) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
this.w = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setZ: function ( z ) {
this.z = z;
return this;
},
setW: function ( w ) {
this.w = w;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
case 3: this.w = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
case 3: return this.w;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y, this.z, this.w );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
this.w = ( v.w !== undefined ) ? v.w : 1;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
this.w += v.w;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
this.z += s;
this.w += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
this.w = a.w + b.w;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
this.w += v.w * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
this.w -= v.w;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
this.w -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
this.w = a.w - b.w;
return this;
},
multiplyScalar: function ( scalar ) {
if ( isFinite( scalar ) ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
this.w *= scalar;
} else {
this.x = 0;
this.y = 0;
this.z = 0;
this.w = 0;
}
return this;
},
applyMatrix4: function ( m ) {
var x = this.x;
var y = this.y;
var z = this.z;
var w = this.w;
var e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
setAxisAngleFromQuaternion: function ( q ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
// q is assumed to be normalized
this.w = 2 * Math.acos( q.w );
var s = Math.sqrt( 1 - q.w * q.w );
if ( s < 0.0001 ) {
this.x = 1;
this.y = 0;
this.z = 0;
} else {
this.x = q.x / s;
this.y = q.y / s;
this.z = q.z / s;
}
return this;
},
setAxisAngleFromRotationMatrix: function ( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
var angle, x, y, z, // variables for result
epsilon = 0.01, // margin to allow for rounding errors
epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees
te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
( Math.abs( m13 - m31 ) < epsilon ) &&
( Math.abs( m23 - m32 ) < epsilon ) ) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonal and zero in other terms
if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
( Math.abs( m13 + m31 ) < epsilon2 ) &&
( Math.abs( m23 + m32 ) < epsilon2 ) &&
( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
// this singularity is identity matrix so angle = 0
this.set( 1, 0, 0, 0 );
return this; // zero angle, arbitrary axis
}
// otherwise this singularity is angle = 180
angle = Math.PI;
var xx = ( m11 + 1 ) / 2;
var yy = ( m22 + 1 ) / 2;
var zz = ( m33 + 1 ) / 2;
var xy = ( m12 + m21 ) / 4;
var xz = ( m13 + m31 ) / 4;
var yz = ( m23 + m32 ) / 4;
if ( ( xx > yy ) && ( xx > zz ) ) {
// m11 is the largest diagonal term
if ( xx < epsilon ) {
x = 0;
y = 0.707106781;
z = 0.707106781;
} else {
x = Math.sqrt( xx );
y = xy / x;
z = xz / x;
}
} else if ( yy > zz ) {
// m22 is the largest diagonal term
if ( yy < epsilon ) {
x = 0.707106781;
y = 0;
z = 0.707106781;
} else {
y = Math.sqrt( yy );
x = xy / y;
z = yz / y;
}
} else {
// m33 is the largest diagonal term so base result on this
if ( zz < epsilon ) {
x = 0.707106781;
y = 0.707106781;
z = 0;
} else {
z = Math.sqrt( zz );
x = xz / z;
y = yz / z;
}
}
this.set( x, y, z, angle );
return this; // return 180 deg rotation
}
// as we have reached here there are no singularities so we can handle normally
var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
( m13 - m31 ) * ( m13 - m31 ) +
( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
if ( Math.abs( s ) < 0.001 ) s = 1;
// prevent divide by zero, should not happen if matrix is orthogonal and should be
// caught by singularity test above, but I've left it in just in case
this.x = ( m32 - m23 ) / s;
this.y = ( m13 - m31 ) / s;
this.z = ( m21 - m12 ) / s;
this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
return this;
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
this.w = Math.min( this.w, v.w );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
this.w = Math.max( this.w, v.w );
return this;
},
clamp: function ( min, max ) {
// This function assumes min < max, if this assumption isn't true it will not operate correctly
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
this.w = Math.max( min.w, Math.min( max.w, this.w ) );
return this;
},
clampScalar: function () {
var min, max;
return function clampScalar( minVal, maxVal ) {
if ( min === undefined ) {
min = new THREE.Vector4();
max = new THREE.Vector4();
}
min.set( minVal, minVal, minVal, minVal );
max.set( maxVal, maxVal, maxVal, maxVal );
return this.clamp( min, max );
};
}(),
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
this.w = Math.floor( this.w );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
this.w = Math.ceil( this.w );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
this.w = Math.round( this.w );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
this.w = - this.w;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
},
lengthSq: function () {
return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
},
lengthManhattan: function () {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
},
normalize: function () {
return this.divideScalar( this.length() );
},
setLength: function ( length ) {
return this.multiplyScalar( length / this.length() );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
this.w += ( v.w - this.w ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
return this;
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
this.w = array[ offset + 3 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
array[ offset + 3 ] = this.w;
return array;
},
fromAttribute: function ( attribute, index, offset ) {
if ( offset === undefined ) offset = 0;
index = index * attribute.itemSize + offset;
this.x = attribute.array[ index ];
this.y = attribute.array[ index + 1 ];
this.z = attribute.array[ index + 2 ];
this.w = attribute.array[ index + 3 ];
return this;
}
};
// File:src/math/Euler.js
/**
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
*/
THREE.Euler = function ( x, y, z, order ) {
this._x = x || 0;
this._y = y || 0;
this._z = z || 0;
this._order = order || THREE.Euler.DefaultOrder;
};
THREE.Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ];
THREE.Euler.DefaultOrder = 'XYZ';
THREE.Euler.prototype = {
constructor: THREE.Euler,
get x () {
return this._x;
},
set x ( value ) {
this._x = value;
this.onChangeCallback();
},
get y () {
return this._y;
},
set y ( value ) {
this._y = value;
this.onChangeCallback();
},
get z () {
return this._z;
},
set z ( value ) {
this._z = value;
this.onChangeCallback();
},
get order () {
return this._order;
},
set order ( value ) {
this._order = value;
this.onChangeCallback();
},
set: function ( x, y, z, order ) {
this._x = x;
this._y = y;
this._z = z;
this._order = order || this._order;
this.onChangeCallback();
return this;
},
clone: function () {
return new this.constructor( this._x, this._y, this._z, this._order );
},
copy: function ( euler ) {
this._x = euler._x;
this._y = euler._y;
this._z = euler._z;
this._order = euler._order;
this.onChangeCallback();
return this;
},
setFromRotationMatrix: function ( m, order, update ) {
var clamp = THREE.Math.clamp;
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
var te = m.elements;
var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ];
var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ];
var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
order = order || this._order;
if ( order === 'XYZ' ) {
this._y = Math.asin( clamp( m13, - 1, 1 ) );
if ( Math.abs( m13 ) < 0.99999 ) {
this._x = Math.atan2( - m23, m33 );
this._z = Math.atan2( - m12, m11 );
} else {
this._x = Math.atan2( m32, m22 );
this._z = 0;
}
} else if ( order === 'YXZ' ) {
this._x = Math.asin( - clamp( m23, - 1, 1 ) );
if ( Math.abs( m23 ) < 0.99999 ) {
this._y = Math.atan2( m13, m33 );
this._z = Math.atan2( m21, m22 );
} else {
this._y = Math.atan2( - m31, m11 );
this._z = 0;
}
} else if ( order === 'ZXY' ) {
this._x = Math.asin( clamp( m32, - 1, 1 ) );
if ( Math.abs( m32 ) < 0.99999 ) {
this._y = Math.atan2( - m31, m33 );
this._z = Math.atan2( - m12, m22 );
} else {
this._y = 0;
this._z = Math.atan2( m21, m11 );
}
} else if ( order === 'ZYX' ) {
this._y = Math.asin( - clamp( m31, - 1, 1 ) );
if ( Math.abs( m31 ) < 0.99999 ) {
this._x = Math.atan2( m32, m33 );
this._z = Math.atan2( m21, m11 );
} else {
this._x = 0;
this._z = Math.atan2( - m12, m22 );
}
} else if ( order === 'YZX' ) {
this._z = Math.asin( clamp( m21, - 1, 1 ) );
if ( Math.abs( m21 ) < 0.99999 ) {
this._x = Math.atan2( - m23, m22 );
this._y = Math.atan2( - m31, m11 );
} else {
this._x = 0;
this._y = Math.atan2( m13, m33 );
}
} else if ( order === 'XZY' ) {
this._z = Math.asin( - clamp( m12, - 1, 1 ) );
if ( Math.abs( m12 ) < 0.99999 ) {
this._x = Math.atan2( m32, m22 );
this._y = Math.atan2( m13, m11 );
} else {
this._x = Math.atan2( - m23, m33 );
this._y = 0;
}
} else {
console.warn( 'THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order );
}
this._order = order;
if ( update !== false ) this.onChangeCallback();
return this;
},
setFromQuaternion: function () {
var matrix;
return function ( q, order, update ) {
if ( matrix === undefined ) matrix = new THREE.Matrix4();
matrix.makeRotationFromQuaternion( q );
this.setFromRotationMatrix( matrix, order, update );
return this;
};
}(),
setFromVector3: function ( v, order ) {
return this.set( v.x, v.y, v.z, order || this._order );
},
reorder: function () {
// WARNING: this discards revolution information -bhouston
var q = new THREE.Quaternion();
return function ( newOrder ) {
q.setFromEuler( this );
this.setFromQuaternion( q, newOrder );
};
}(),
equals: function ( euler ) {
return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );
},
fromArray: function ( array ) {
this._x = array[ 0 ];
this._y = array[ 1 ];
this._z = array[ 2 ];
if ( array[ 3 ] !== undefined ) this._order = array[ 3 ];
this.onChangeCallback();
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._order;
return array;
},
toVector3: function ( optionalResult ) {
if ( optionalResult ) {
return optionalResult.set( this._x, this._y, this._z );
} else {
return new THREE.Vector3( this._x, this._y, this._z );
}
},
onChange: function ( callback ) {
this.onChangeCallback = callback;
return this;
},
onChangeCallback: function () {}
};
// File:src/math/Line3.js
/**
* @author bhouston / http://clara.io
*/
THREE.Line3 = function ( start, end ) {
this.start = ( start !== undefined ) ? start : new THREE.Vector3();
this.end = ( end !== undefined ) ? end : new THREE.Vector3();
};
THREE.Line3.prototype = {
constructor: THREE.Line3,
set: function ( start, end ) {
this.start.copy( start );
this.end.copy( end );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( line ) {
this.start.copy( line.start );
this.end.copy( line.end );
return this;
},
center: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.addVectors( this.start, this.end ).multiplyScalar( 0.5 );
},
delta: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.subVectors( this.end, this.start );
},
distanceSq: function () {
return this.start.distanceToSquared( this.end );
},
distance: function () {
return this.start.distanceTo( this.end );
},
at: function ( t, optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return this.delta( result ).multiplyScalar( t ).add( this.start );
},
closestPointToPointParameter: function () {
var startP = new THREE.Vector3();
var startEnd = new THREE.Vector3();
return function ( point, clampToLine ) {
startP.subVectors( point, this.start );
startEnd.subVectors( this.end, this.start );
var startEnd2 = startEnd.dot( startEnd );
var startEnd_startP = startEnd.dot( startP );
var t = startEnd_startP / startEnd2;
if ( clampToLine ) {
t = THREE.Math.clamp( t, 0, 1 );
}
return t;
};
}(),
closestPointToPoint: function ( point, clampToLine, optionalTarget ) {
var t = this.closestPointToPointParameter( point, clampToLine );
var result = optionalTarget || new THREE.Vector3();
return this.delta( result ).multiplyScalar( t ).add( this.start );
},
applyMatrix4: function ( matrix ) {
this.start.applyMatrix4( matrix );
this.end.applyMatrix4( matrix );
return this;
},
equals: function ( line ) {
return line.start.equals( this.start ) && line.end.equals( this.end );
}
};
// File:src/math/Box2.js
/**
* @author bhouston / http://clara.io
*/
THREE.Box2 = function ( min, max ) {
this.min = ( min !== undefined ) ? min : new THREE.Vector2( + Infinity, + Infinity );
this.max = ( max !== undefined ) ? max : new THREE.Vector2( - Infinity, - Infinity );
};
THREE.Box2.prototype = {
constructor: THREE.Box2,
set: function ( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
},
setFromPoints: function ( points ) {
this.makeEmpty();
for ( var i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
},
setFromCenterAndSize: function () {
var v1 = new THREE.Vector2();
return function ( center, size ) {
var halfSize = v1.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
};
}(),
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
},
makeEmpty: function () {
this.min.x = this.min.y = + Infinity;
this.max.x = this.max.y = - Infinity;
return this;
},
isEmpty: function () {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y );
},
center: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector2();
return result.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
},
size: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector2();
return result.subVectors( this.max, this.min );
},
expandByPoint: function ( point ) {
this.min.min( point );
this.max.max( point );
return this;
},
expandByVector: function ( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
},
expandByScalar: function ( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
},
containsPoint: function ( point ) {
if ( point.x < this.min.x || point.x > this.max.x ||
point.y < this.min.y || point.y > this.max.y ) {
return false;
}
return true;
},
containsBox: function ( box ) {
if ( ( this.min.x <= box.min.x ) && ( box.max.x <= this.max.x ) &&
( this.min.y <= box.min.y ) && ( box.max.y <= this.max.y ) ) {
return true;
}
return false;
},
getParameter: function ( point, optionalTarget ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
var result = optionalTarget || new THREE.Vector2();
return result.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y )
);
},
intersectsBox: function ( box ) {
// using 6 splitting planes to rule out intersections.
if ( box.max.x < this.min.x || box.min.x > this.max.x ||
box.max.y < this.min.y || box.min.y > this.max.y ) {
return false;
}
return true;
},
clampPoint: function ( point, optionalTarget ) {
var result = optionalTarget || new THREE.Vector2();
return result.copy( point ).clamp( this.min, this.max );
},
distanceToPoint: function () {
var v1 = new THREE.Vector2();
return function ( point ) {
var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
return clampedPoint.sub( point ).length();
};
}(),
intersect: function ( box ) {
this.min.max( box.min );
this.max.min( box.max );
return this;
},
union: function ( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
},
translate: function ( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
},
equals: function ( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
};
// File:src/math/Box3.js
/**
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*/
THREE.Box3 = function ( min, max ) {
this.min = ( min !== undefined ) ? min : new THREE.Vector3( + Infinity, + Infinity, + Infinity );
this.max = ( max !== undefined ) ? max : new THREE.Vector3( - Infinity, - Infinity, - Infinity );
};
THREE.Box3.prototype = {
constructor: THREE.Box3,
set: function ( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
},
setFromArray: function ( array ) {
var minX = + Infinity;
var minY = + Infinity;
var minZ = + Infinity;
var maxX = - Infinity;
var maxY = - Infinity;
var maxZ = - Infinity;
for ( var i = 0, l = array.length; i < l; i += 3 ) {
var x = array[ i ];
var y = array[ i + 1 ];
var z = array[ i + 2 ];
if ( x < minX ) minX = x;
if ( y < minY ) minY = y;
if ( z < minZ ) minZ = z;
if ( x > maxX ) maxX = x;
if ( y > maxY ) maxY = y;
if ( z > maxZ ) maxZ = z;
}
this.min.set( minX, minY, minZ );
this.max.set( maxX, maxY, maxZ );
},
setFromPoints: function ( points ) {
this.makeEmpty();
for ( var i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
},
setFromCenterAndSize: function () {
var v1 = new THREE.Vector3();
return function ( center, size ) {
var halfSize = v1.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
};
}(),
setFromObject: function () {
// Computes the world-axis-aligned bounding box of an object (including its children),
// accounting for both the object's, and children's, world transforms
var v1 = new THREE.Vector3();
return function ( object ) {
var scope = this;
object.updateMatrixWorld( true );
this.makeEmpty();
object.traverse( function ( node ) {
var geometry = node.geometry;
if ( geometry !== undefined ) {
if ( geometry instanceof THREE.Geometry ) {
var vertices = geometry.vertices;
for ( var i = 0, il = vertices.length; i < il; i ++ ) {
v1.copy( vertices[ i ] );
v1.applyMatrix4( node.matrixWorld );
scope.expandByPoint( v1 );
}
} else if ( geometry instanceof THREE.BufferGeometry && geometry.attributes[ 'position' ] !== undefined ) {
var positions = geometry.attributes[ 'position' ].array;
for ( var i = 0, il = positions.length; i < il; i += 3 ) {
v1.fromArray( positions, i );
v1.applyMatrix4( node.matrixWorld );
scope.expandByPoint( v1 );
}
}
}
} );
return this;
};
}(),
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
},
makeEmpty: function () {
this.min.x = this.min.y = this.min.z = + Infinity;
this.max.x = this.max.y = this.max.z = - Infinity;
return this;
},
isEmpty: function () {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );
},
center: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
},
size: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.subVectors( this.max, this.min );
},
expandByPoint: function ( point ) {
this.min.min( point );
this.max.max( point );
return this;
},
expandByVector: function ( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
},
expandByScalar: function ( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
},
containsPoint: function ( point ) {
if ( point.x < this.min.x || point.x > this.max.x ||
point.y < this.min.y || point.y > this.max.y ||
point.z < this.min.z || point.z > this.max.z ) {
return false;
}
return true;
},
containsBox: function ( box ) {
if ( ( this.min.x <= box.min.x ) && ( box.max.x <= this.max.x ) &&
( this.min.y <= box.min.y ) && ( box.max.y <= this.max.y ) &&
( this.min.z <= box.min.z ) && ( box.max.z <= this.max.z ) ) {
return true;
}
return false;
},
getParameter: function ( point, optionalTarget ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
var result = optionalTarget || new THREE.Vector3();
return result.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y ),
( point.z - this.min.z ) / ( this.max.z - this.min.z )
);
},
intersectsBox: function ( box ) {
// using 6 splitting planes to rule out intersections.
if ( box.max.x < this.min.x || box.min.x > this.max.x ||
box.max.y < this.min.y || box.min.y > this.max.y ||
box.max.z < this.min.z || box.min.z > this.max.z ) {
return false;
}
return true;
},
intersectsSphere: ( function () {
var closestPoint;
return function intersectsSphere( sphere ) {
if ( closestPoint === undefined ) closestPoint = new THREE.Vector3();
// Find the point on the AABB closest to the sphere center.
this.clampPoint( sphere.center, closestPoint );
// If that point is inside the sphere, the AABB and sphere intersect.
return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );
};
} )(),
intersectsPlane: function ( plane ) {
// We compute the minimum and maximum dot product values. If those values
// are on the same side (back or front) of the plane, then there is no intersection.
var min, max;
if ( plane.normal.x > 0 ) {
min = plane.normal.x * this.min.x;
max = plane.normal.x * this.max.x;
} else {
min = plane.normal.x * this.max.x;
max = plane.normal.x * this.min.x;
}
if ( plane.normal.y > 0 ) {
min += plane.normal.y * this.min.y;
max += plane.normal.y * this.max.y;
} else {
min += plane.normal.y * this.max.y;
max += plane.normal.y * this.min.y;
}
if ( plane.normal.z > 0 ) {
min += plane.normal.z * this.min.z;
max += plane.normal.z * this.max.z;
} else {
min += plane.normal.z * this.max.z;
max += plane.normal.z * this.min.z;
}
return ( min <= plane.constant && max >= plane.constant );
},
clampPoint: function ( point, optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.copy( point ).clamp( this.min, this.max );
},
distanceToPoint: function () {
var v1 = new THREE.Vector3();
return function ( point ) {
var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
return clampedPoint.sub( point ).length();
};
}(),
getBoundingSphere: function () {
var v1 = new THREE.Vector3();
return function ( optionalTarget ) {
var result = optionalTarget || new THREE.Sphere();
result.center = this.center();
result.radius = this.size( v1 ).length() * 0.5;
return result;
};
}(),
intersect: function ( box ) {
this.min.max( box.min );
this.max.min( box.max );
// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
if( this.isEmpty() ) this.makeEmpty();
return this;
},
union: function ( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
},
applyMatrix4: function () {
var points = [
new THREE.Vector3(),
new THREE.Vector3(),
new THREE.Vector3(),
new THREE.Vector3(),
new THREE.Vector3(),
new THREE.Vector3(),
new THREE.Vector3(),
new THREE.Vector3()
];
return function ( matrix ) {
// transform of empty box is an empty box.
if( this.isEmpty() ) return this;
// NOTE: I am using a binary pattern to specify all 2^3 combinations below
points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111
this.setFromPoints( points );
return this;
};
}(),
translate: function ( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
},
equals: function ( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
};
// File:src/math/Matrix3.js
/**
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
* @author tschw
*/
THREE.Matrix3 = function () {
this.elements = new Float32Array( [
1, 0, 0,
0, 1, 0,
0, 0, 1
] );
if ( arguments.length > 0 ) {
console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' );
}
};
THREE.Matrix3.prototype = {
constructor: THREE.Matrix3,
set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {
var te = this.elements;
te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;
return this;
},
identity: function () {
this.set(
1, 0, 0,
0, 1, 0,
0, 0, 1
);
return this;
},
clone: function () {
return new this.constructor().fromArray( this.elements );
},
copy: function ( m ) {
var me = m.elements;
this.set(
me[ 0 ], me[ 3 ], me[ 6 ],
me[ 1 ], me[ 4 ], me[ 7 ],
me[ 2 ], me[ 5 ], me[ 8 ]
);
return this;
},
setFromMatrix4: function( m ) {
var me = m.elements;
this.set(
me[ 0 ], me[ 4 ], me[ 8 ],
me[ 1 ], me[ 5 ], me[ 9 ],
me[ 2 ], me[ 6 ], me[ 10 ]
);
return this;
},
applyToVector3Array: function () {
var v1;
return function ( array, offset, length ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
if ( offset === undefined ) offset = 0;
if ( length === undefined ) length = array.length;
for ( var i = 0, j = offset; i < length; i += 3, j += 3 ) {
v1.fromArray( array, j );
v1.applyMatrix3( this );
v1.toArray( array, j );
}
return array;
};
}(),
applyToBuffer: function () {
var v1;
return function applyToBuffer( buffer, offset, length ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
if ( offset === undefined ) offset = 0;
if ( length === undefined ) length = buffer.length / buffer.itemSize;
for ( var i = 0, j = offset; i < length; i ++, j ++ ) {
v1.x = buffer.getX( j );
v1.y = buffer.getY( j );
v1.z = buffer.getZ( j );
v1.applyMatrix3( this );
buffer.setXYZ( v1.x, v1.y, v1.z );
}
return buffer;
};
}(),
multiplyScalar: function ( s ) {
var te = this.elements;
te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;
return this;
},
determinant: function () {
var te = this.elements;
var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];
return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
},
getInverse: function ( matrix, throwOnDegenerate ) {
if ( matrix instanceof THREE.Matrix4 ) {
console.error( "THREE.Matrix3.getInverse no longer takes a Matrix4 argument." );
}
var me = matrix.elements,
te = this.elements,
n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ],
n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ],
n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ],
t11 = n33 * n22 - n32 * n23,
t12 = n32 * n13 - n33 * n12,
t13 = n23 * n12 - n22 * n13,
det = n11 * t11 + n21 * t12 + n31 * t13;
if ( det === 0 ) {
var msg = "THREE.Matrix3.getInverse(): can't invert matrix, determinant is 0";
if ( throwOnDegenerate || false ) {
throw new Error( msg );
} else {
console.warn( msg );
}
return this.identity();
}
te[ 0 ] = t11;
te[ 1 ] = n31 * n23 - n33 * n21;
te[ 2 ] = n32 * n21 - n31 * n22;
te[ 3 ] = t12;
te[ 4 ] = n33 * n11 - n31 * n13;
te[ 5 ] = n31 * n12 - n32 * n11;
te[ 6 ] = t13;
te[ 7 ] = n21 * n13 - n23 * n11;
te[ 8 ] = n22 * n11 - n21 * n12;
return this.multiplyScalar( 1 / det );
},
transpose: function () {
var tmp, m = this.elements;
tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;
return this;
},
flattenToArrayOffset: function ( array, offset ) {
console.warn( "THREE.Matrix3: .flattenToArrayOffset is deprecated " +
"- just use .toArray instead." );
return this.toArray( array, offset );
},
getNormalMatrix: function ( matrix4 ) {
return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose();
},
transposeIntoArray: function ( r ) {
var m = this.elements;
r[ 0 ] = m[ 0 ];
r[ 1 ] = m[ 3 ];
r[ 2 ] = m[ 6 ];
r[ 3 ] = m[ 1 ];
r[ 4 ] = m[ 4 ];
r[ 5 ] = m[ 7 ];
r[ 6 ] = m[ 2 ];
r[ 7 ] = m[ 5 ];
r[ 8 ] = m[ 8 ];
return this;
},
fromArray: function ( array ) {
this.elements.set( array );
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
var te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
return array;
}
};
// File:src/math/Matrix4.js
/**
* @author mrdoob / http://mrdoob.com/
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author philogb / http://blog.thejit.org/
* @author jordi_ros / http://plattsoft.com
* @author D1plo1d / http://github.com/D1plo1d
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author timknip / http://www.floorplanner.com/
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*/
THREE.Matrix4 = function () {
this.elements = new Float32Array( [
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
] );
if ( arguments.length > 0 ) {
console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );
}
};
THREE.Matrix4.prototype = {
constructor: THREE.Matrix4,
set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
var te = this.elements;
te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;
return this;
},
identity: function () {
this.set(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
},
clone: function () {
return new THREE.Matrix4().fromArray( this.elements );
},
copy: function ( m ) {
this.elements.set( m.elements );
return this;
},
copyPosition: function ( m ) {
var te = this.elements;
var me = m.elements;
te[ 12 ] = me[ 12 ];
te[ 13 ] = me[ 13 ];
te[ 14 ] = me[ 14 ];
return this;
},
extractBasis: function ( xAxis, yAxis, zAxis ) {
xAxis.setFromMatrixColumn( this, 0 );
yAxis.setFromMatrixColumn( this, 1 );
zAxis.setFromMatrixColumn( this, 2 );
return this;
},
makeBasis: function ( xAxis, yAxis, zAxis ) {
this.set(
xAxis.x, yAxis.x, zAxis.x, 0,
xAxis.y, yAxis.y, zAxis.y, 0,
xAxis.z, yAxis.z, zAxis.z, 0,
0, 0, 0, 1
);
return this;
},
extractRotation: function () {
var v1;
return function ( m ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
var te = this.elements;
var me = m.elements;
var scaleX = 1 / v1.setFromMatrixColumn( m, 0 ).length();
var scaleY = 1 / v1.setFromMatrixColumn( m, 1 ).length();
var scaleZ = 1 / v1.setFromMatrixColumn( m, 2 ).length();
te[ 0 ] = me[ 0 ] * scaleX;
te[ 1 ] = me[ 1 ] * scaleX;
te[ 2 ] = me[ 2 ] * scaleX;
te[ 4 ] = me[ 4 ] * scaleY;
te[ 5 ] = me[ 5 ] * scaleY;
te[ 6 ] = me[ 6 ] * scaleY;
te[ 8 ] = me[ 8 ] * scaleZ;
te[ 9 ] = me[ 9 ] * scaleZ;
te[ 10 ] = me[ 10 ] * scaleZ;
return this;
};
}(),
makeRotationFromEuler: function ( euler ) {
if ( euler instanceof THREE.Euler === false ) {
console.error( 'THREE.Matrix: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );
}
var te = this.elements;
var x = euler.x, y = euler.y, z = euler.z;
var a = Math.cos( x ), b = Math.sin( x );
var c = Math.cos( y ), d = Math.sin( y );
var e = Math.cos( z ), f = Math.sin( z );
if ( euler.order === 'XYZ' ) {
var ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = - c * f;
te[ 8 ] = d;
te[ 1 ] = af + be * d;
te[ 5 ] = ae - bf * d;
te[ 9 ] = - b * c;
te[ 2 ] = bf - ae * d;
te[ 6 ] = be + af * d;
te[ 10 ] = a * c;
} else if ( euler.order === 'YXZ' ) {
var ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce + df * b;
te[ 4 ] = de * b - cf;
te[ 8 ] = a * d;
te[ 1 ] = a * f;
te[ 5 ] = a * e;
te[ 9 ] = - b;
te[ 2 ] = cf * b - de;
te[ 6 ] = df + ce * b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZXY' ) {
var ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce - df * b;
te[ 4 ] = - a * f;
te[ 8 ] = de + cf * b;
te[ 1 ] = cf + de * b;
te[ 5 ] = a * e;
te[ 9 ] = df - ce * b;
te[ 2 ] = - a * d;
te[ 6 ] = b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZYX' ) {
var ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = be * d - af;
te[ 8 ] = ae * d + bf;
te[ 1 ] = c * f;
te[ 5 ] = bf * d + ae;
te[ 9 ] = af * d - be;
te[ 2 ] = - d;
te[ 6 ] = b * c;
te[ 10 ] = a * c;
} else if ( euler.order === 'YZX' ) {
var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = bd - ac * f;
te[ 8 ] = bc * f + ad;
te[ 1 ] = f;
te[ 5 ] = a * e;
te[ 9 ] = - b * e;
te[ 2 ] = - d * e;
te[ 6 ] = ad * f + bc;
te[ 10 ] = ac - bd * f;
} else if ( euler.order === 'XZY' ) {
var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = - f;
te[ 8 ] = d * e;
te[ 1 ] = ac * f + bd;
te[ 5 ] = a * e;
te[ 9 ] = ad * f - bc;
te[ 2 ] = bc * f - ad;
te[ 6 ] = b * e;
te[ 10 ] = bd * f + ac;
}
// last column
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0;
// bottom row
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
},
makeRotationFromQuaternion: function ( q ) {
var te = this.elements;
var x = q.x, y = q.y, z = q.z, w = q.w;
var x2 = x + x, y2 = y + y, z2 = z + z;
var xx = x * x2, xy = x * y2, xz = x * z2;
var yy = y * y2, yz = y * z2, zz = z * z2;
var wx = w * x2, wy = w * y2, wz = w * z2;
te[ 0 ] = 1 - ( yy + zz );
te[ 4 ] = xy - wz;
te[ 8 ] = xz + wy;
te[ 1 ] = xy + wz;
te[ 5 ] = 1 - ( xx + zz );
te[ 9 ] = yz - wx;
te[ 2 ] = xz - wy;
te[ 6 ] = yz + wx;
te[ 10 ] = 1 - ( xx + yy );
// last column
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0;
// bottom row
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
},
lookAt: function () {
var x, y, z;
return function ( eye, target, up ) {
if ( x === undefined ) x = new THREE.Vector3();
if ( y === undefined ) y = new THREE.Vector3();
if ( z === undefined ) z = new THREE.Vector3();
var te = this.elements;
z.subVectors( eye, target ).normalize();
if ( z.lengthSq() === 0 ) {
z.z = 1;
}
x.crossVectors( up, z ).normalize();
if ( x.lengthSq() === 0 ) {
z.x += 0.0001;
x.crossVectors( up, z ).normalize();
}
y.crossVectors( z, x );
te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x;
te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y;
te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z;
return this;
};
}(),
multiply: function ( m, n ) {
if ( n !== undefined ) {
console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
return this.multiplyMatrices( m, n );
}
return this.multiplyMatrices( this, m );
},
premultiply: function ( m ) {
return this.multiplyMatrices( m, this );
},
multiplyMatrices: function ( a, b ) {
var ae = a.elements;
var be = b.elements;
var te = this.elements;
var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];
var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
return this;
},
multiplyToArray: function ( a, b, r ) {
var te = this.elements;
this.multiplyMatrices( a, b );
r[ 0 ] = te[ 0 ]; r[ 1 ] = te[ 1 ]; r[ 2 ] = te[ 2 ]; r[ 3 ] = te[ 3 ];
r[ 4 ] = te[ 4 ]; r[ 5 ] = te[ 5 ]; r[ 6 ] = te[ 6 ]; r[ 7 ] = te[ 7 ];
r[ 8 ] = te[ 8 ]; r[ 9 ] = te[ 9 ]; r[ 10 ] = te[ 10 ]; r[ 11 ] = te[ 11 ];
r[ 12 ] = te[ 12 ]; r[ 13 ] = te[ 13 ]; r[ 14 ] = te[ 14 ]; r[ 15 ] = te[ 15 ];
return this;
},
multiplyScalar: function ( s ) {
var te = this.elements;
te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;
return this;
},
applyToVector3Array: function () {
var v1;
return function ( array, offset, length ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
if ( offset === undefined ) offset = 0;
if ( length === undefined ) length = array.length;
for ( var i = 0, j = offset; i < length; i += 3, j += 3 ) {
v1.fromArray( array, j );
v1.applyMatrix4( this );
v1.toArray( array, j );
}
return array;
};
}(),
applyToBuffer: function () {
var v1;
return function applyToBuffer( buffer, offset, length ) {
if ( v1 === undefined ) v1 = new THREE.Vector3();
if ( offset === undefined ) offset = 0;
if ( length === undefined ) length = buffer.length / buffer.itemSize;
for ( var i = 0, j = offset; i < length; i ++, j ++ ) {
v1.x = buffer.getX( j );
v1.y = buffer.getY( j );
v1.z = buffer.getZ( j );
v1.applyMatrix4( this );
buffer.setXYZ( v1.x, v1.y, v1.z );
}
return buffer;
};
}(),
determinant: function () {
var te = this.elements;
var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];
//TODO: make this more efficient
//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
return (
n41 * (
+ n14 * n23 * n32
- n13 * n24 * n32
- n14 * n22 * n33
+ n12 * n24 * n33
+ n13 * n22 * n34
- n12 * n23 * n34
) +
n42 * (
+ n11 * n23 * n34
- n11 * n24 * n33
+ n14 * n21 * n33
- n13 * n21 * n34
+ n13 * n24 * n31
- n14 * n23 * n31
) +
n43 * (
+ n11 * n24 * n32
- n11 * n22 * n34
- n14 * n21 * n32
+ n12 * n21 * n34
+ n14 * n22 * n31
- n12 * n24 * n31
) +
n44 * (
- n13 * n22 * n31
- n11 * n23 * n32
+ n11 * n22 * n33
+ n13 * n21 * n32
- n12 * n21 * n33
+ n12 * n23 * n31
)
);
},
transpose: function () {
var te = this.elements;
var tmp;
tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;
tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;
return this;
},
flattenToArrayOffset: function ( array, offset ) {
console.warn( "THREE.Matrix3: .flattenToArrayOffset is deprecated " +
"- just use .toArray instead." );
return this.toArray( array, offset );
},
getPosition: function () {
var v1;
return function () {
if ( v1 === undefined ) v1 = new THREE.Vector3();
console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' );
return v1.setFromMatrixColumn( this, 3 );
};
}(),
setPosition: function ( v ) {
var te = this.elements;
te[ 12 ] = v.x;
te[ 13 ] = v.y;
te[ 14 ] = v.z;
return this;
},
getInverse: function ( m, throwOnDegenerate ) {
// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
var te = this.elements,
me = m.elements,
n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ],
n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ],
n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ],
n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],
t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
if ( det === 0 ) {
var msg = "THREE.Matrix4.getInverse(): can't invert matrix, determinant is 0";
if ( throwOnDegenerate || false ) {
throw new Error( msg );
} else {
console.warn( msg );
}
return this.identity();
}
te[ 0 ] = t11;
te[ 1 ] = n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44;
te[ 2 ] = n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44;
te[ 3 ] = n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43;
te[ 4 ] = t12;
te[ 5 ] = n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44;
te[ 6 ] = n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44;
te[ 7 ] = n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43;
te[ 8 ] = t13;
te[ 9 ] = n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44;
te[ 10 ] = n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44;
te[ 11 ] = n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43;
te[ 12 ] = t14;
te[ 13 ] = n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34;
te[ 14 ] = n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34;
te[ 15 ] = n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33;
return this.multiplyScalar( 1 / det );
},
scale: function ( v ) {
var te = this.elements;
var x = v.x, y = v.y, z = v.z;
te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;
return this;
},
getMaxScaleOnAxis: function () {
var te = this.elements;
var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];
return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );
},
makeTranslation: function ( x, y, z ) {
this.set(
1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1
);
return this;
},
makeRotationX: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
1, 0, 0, 0,
0, c, - s, 0,
0, s, c, 0,
0, 0, 0, 1
);
return this;
},
makeRotationY: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, 0, s, 0,
0, 1, 0, 0,
- s, 0, c, 0,
0, 0, 0, 1
);
return this;
},
makeRotationZ: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, - s, 0, 0,
s, c, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
},
makeRotationAxis: function ( axis, angle ) {
// Based on http://www.gamedev.net/reference/articles/article1199.asp
var c = Math.cos( angle );
var s = Math.sin( angle );
var t = 1 - c;
var x = axis.x, y = axis.y, z = axis.z;
var tx = t * x, ty = t * y;
this.set(
tx * x + c, tx * y - s * z, tx * z + s * y, 0,
tx * y + s * z, ty * y + c, ty * z - s * x, 0,
tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
0, 0, 0, 1
);
return this;
},
makeScale: function ( x, y, z ) {
this.set(
x, 0, 0, 0,
0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1
);
return this;
},
compose: function ( position, quaternion, scale ) {
this.makeRotationFromQuaternion( quaternion );
this.scale( scale );
this.setPosition( position );
return this;
},
decompose: function () {
var vector, matrix;
return function ( position, quaternion, scale ) {
if ( vector === undefined ) vector = new THREE.Vector3();
if ( matrix === undefined ) matrix = new THREE.Matrix4();
var te = this.elements;
var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();
// if determine is negative, we need to invert one scale
var det = this.determinant();
if ( det < 0 ) {
sx = - sx;
}
position.x = te[ 12 ];
position.y = te[ 13 ];
position.z = te[ 14 ];
// scale the rotation part
matrix.elements.set( this.elements ); // at this point matrix is incomplete so we can't use .copy()
var invSX = 1 / sx;
var invSY = 1 / sy;
var invSZ = 1 / sz;
matrix.elements[ 0 ] *= invSX;
matrix.elements[ 1 ] *= invSX;
matrix.elements[ 2 ] *= invSX;
matrix.elements[ 4 ] *= invSY;
matrix.elements[ 5 ] *= invSY;
matrix.elements[ 6 ] *= invSY;
matrix.elements[ 8 ] *= invSZ;
matrix.elements[ 9 ] *= invSZ;
matrix.elements[ 10 ] *= invSZ;
quaternion.setFromRotationMatrix( matrix );
scale.x = sx;
scale.y = sy;
scale.z = sz;
return this;
};
}(),
makeFrustum: function ( left, right, bottom, top, near, far ) {
var te = this.elements;
var x = 2 * near / ( right - left );
var y = 2 * near / ( top - bottom );
var a = ( right + left ) / ( right - left );
var b = ( top + bottom ) / ( top - bottom );
var c = - ( far + near ) / ( far - near );
var d = - 2 * far * near / ( far - near );
te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0;
te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0;
return this;
},
makePerspective: function ( fov, aspect, near, far ) {
var ymax = near * Math.tan( THREE.Math.DEG2RAD * fov * 0.5 );
var ymin = - ymax;
var xmin = ymin * aspect;
var xmax = ymax * aspect;
return this.makeFrustum( xmin, xmax, ymin, ymax, near, far );
},
makeOrthographic: function ( left, right, top, bottom, near, far ) {
var te = this.elements;
var w = 1.0 / ( right - left );
var h = 1.0 / ( top - bottom );
var p = 1.0 / ( far - near );
var x = ( right + left ) * w;
var y = ( top + bottom ) * h;
var z = ( far + near ) * p;
te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x;
te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1;
return this;
},
equals: function ( matrix ) {
var te = this.elements;
var me = matrix.elements;
for ( var i = 0; i < 16; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
},
fromArray: function ( array ) {
this.elements.set( array );
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
var te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
array[ offset + 9 ] = te[ 9 ];
array[ offset + 10 ] = te[ 10 ];
array[ offset + 11 ] = te[ 11 ];
array[ offset + 12 ] = te[ 12 ];
array[ offset + 13 ] = te[ 13 ];
array[ offset + 14 ] = te[ 14 ];
array[ offset + 15 ] = te[ 15 ];
return array;
}
};
// File:src/math/Ray.js
/**
* @author bhouston / http://clara.io
*/
THREE.Ray = function ( origin, direction ) {
this.origin = ( origin !== undefined ) ? origin : new THREE.Vector3();
this.direction = ( direction !== undefined ) ? direction : new THREE.Vector3();
};
THREE.Ray.prototype = {
constructor: THREE.Ray,
set: function ( origin, direction ) {
this.origin.copy( origin );
this.direction.copy( direction );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( ray ) {
this.origin.copy( ray.origin );
this.direction.copy( ray.direction );
return this;
},
at: function ( t, optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.copy( this.direction ).multiplyScalar( t ).add( this.origin );
},
lookAt: function ( v ) {
this.direction.copy( v ).sub( this.origin ).normalize();
},
recast: function () {
var v1 = new THREE.Vector3();
return function ( t ) {
this.origin.copy( this.at( t, v1 ) );
return this;
};
}(),
closestPointToPoint: function ( point, optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
result.subVectors( point, this.origin );
var directionDistance = result.dot( this.direction );
if ( directionDistance < 0 ) {
return result.copy( this.origin );
}
return result.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
},
distanceToPoint: function ( point ) {
return Math.sqrt( this.distanceSqToPoint( point ) );
},
distanceSqToPoint: function () {
var v1 = new THREE.Vector3();
return function ( point ) {
var directionDistance = v1.subVectors( point, this.origin ).dot( this.direction );
// point behind the ray
if ( directionDistance < 0 ) {
return this.origin.distanceToSquared( point );
}
v1.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
return v1.distanceToSquared( point );
};
}(),
distanceSqToSegment: function () {
var segCenter = new THREE.Vector3();
var segDir = new THREE.Vector3();
var diff = new THREE.Vector3();
return function ( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {
// from http://www.geometrictools.com/LibMathematics/Distance/Wm5DistRay3Segment3.cpp
// It returns the min distance between the ray and the segment
// defined by v0 and v1
// It can also set two optional targets :
// - The closest point on the ray
// - The closest point on the segment
segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
segDir.copy( v1 ).sub( v0 ).normalize();
diff.copy( this.origin ).sub( segCenter );
var segExtent = v0.distanceTo( v1 ) * 0.5;
var a01 = - this.direction.dot( segDir );
var b0 = diff.dot( this.direction );
var b1 = - diff.dot( segDir );
var c = diff.lengthSq();
var det = Math.abs( 1 - a01 * a01 );
var s0, s1, sqrDist, extDet;
if ( det > 0 ) {
// The ray and segment are not parallel.
s0 = a01 * b1 - b0;
s1 = a01 * b0 - b1;
extDet = segExtent * det;
if ( s0 >= 0 ) {
if ( s1 >= - extDet ) {
if ( s1 <= extDet ) {
// region 0
// Minimum at interior points of ray and segment.
var invDet = 1 / det;
s0 *= invDet;
s1 *= invDet;
sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;
} else {
// region 1
s1 = segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
// region 5
s1 = - segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
if ( s1 <= - extDet ) {
// region 4
s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
} else if ( s1 <= extDet ) {
// region 3
s0 = 0;
s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = s1 * ( s1 + 2 * b1 ) + c;
} else {
// region 2
s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
}
} else {
// Ray and segment are parallel.
s1 = ( a01 > 0 ) ? - segExtent : segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
if ( optionalPointOnRay ) {
optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin );
}
if ( optionalPointOnSegment ) {
optionalPointOnSegment.copy( segDir ).multiplyScalar( s1 ).add( segCenter );
}
return sqrDist;
};
}(),
intersectSphere: function () {
var v1 = new THREE.Vector3();
return function ( sphere, optionalTarget ) {
v1.subVectors( sphere.center, this.origin );
var tca = v1.dot( this.direction );
var d2 = v1.dot( v1 ) - tca * tca;
var radius2 = sphere.radius * sphere.radius;
if ( d2 > radius2 ) return null;
var thc = Math.sqrt( radius2 - d2 );
// t0 = first intersect point - entrance on front of sphere
var t0 = tca - thc;
// t1 = second intersect point - exit point on back of sphere
var t1 = tca + thc;
// test to see if both t0 and t1 are behind the ray - if so, return null
if ( t0 < 0 && t1 < 0 ) return null;
// test to see if t0 is behind the ray:
// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
// in order to always return an intersect point that is in front of the ray.
if ( t0 < 0 ) return this.at( t1, optionalTarget );
// else t0 is in front of the ray, so return the first collision point scaled by t0
return this.at( t0, optionalTarget );
};
}(),
intersectsSphere: function ( sphere ) {
return this.distanceToPoint( sphere.center ) <= sphere.radius;
},
distanceToPlane: function ( plane ) {
var denominator = plane.normal.dot( this.direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( plane.distanceToPoint( this.origin ) === 0 ) {
return 0;
}
// Null is preferable to undefined since undefined means.... it is undefined
return null;
}
var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;
// Return if the ray never intersects the plane
return t >= 0 ? t : null;
},
intersectPlane: function ( plane, optionalTarget ) {
var t = this.distanceToPlane( plane );
if ( t === null ) {
return null;
}
return this.at( t, optionalTarget );
},
intersectsPlane: function ( plane ) {
// check if the ray lies on the plane first
var distToPoint = plane.distanceToPoint( this.origin );
if ( distToPoint === 0 ) {
return true;
}
var denominator = plane.normal.dot( this.direction );
if ( denominator * distToPoint < 0 ) {
return true;
}
// ray origin is behind the plane (and is pointing behind it)
return false;
},
intersectBox: function ( box, optionalTarget ) {
var tmin, tmax, tymin, tymax, tzmin, tzmax;
var invdirx = 1 / this.direction.x,
invdiry = 1 / this.direction.y,
invdirz = 1 / this.direction.z;
var origin = this.origin;
if ( invdirx >= 0 ) {
tmin = ( box.min.x - origin.x ) * invdirx;
tmax = ( box.max.x - origin.x ) * invdirx;
} else {
tmin = ( box.max.x - origin.x ) * invdirx;
tmax = ( box.min.x - origin.x ) * invdirx;
}
if ( invdiry >= 0 ) {
tymin = ( box.min.y - origin.y ) * invdiry;
tymax = ( box.max.y - origin.y ) * invdiry;
} else {
tymin = ( box.max.y - origin.y ) * invdiry;
tymax = ( box.min.y - origin.y ) * invdiry;
}
if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null;
// These lines also handle the case where tmin or tmax is NaN
// (result of 0 * Infinity). x !== x returns true if x is NaN
if ( tymin > tmin || tmin !== tmin ) tmin = tymin;
if ( tymax < tmax || tmax !== tmax ) tmax = tymax;
if ( invdirz >= 0 ) {
tzmin = ( box.min.z - origin.z ) * invdirz;
tzmax = ( box.max.z - origin.z ) * invdirz;
} else {
tzmin = ( box.max.z - origin.z ) * invdirz;
tzmax = ( box.min.z - origin.z ) * invdirz;
}
if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null;
if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin;
if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax;
//return point closest to the ray (positive side)
if ( tmax < 0 ) return null;
return this.at( tmin >= 0 ? tmin : tmax, optionalTarget );
},
intersectsBox: ( function () {
var v = new THREE.Vector3();
return function ( box ) {
return this.intersectBox( box, v ) !== null;
};
} )(),
intersectTriangle: function () {
// Compute the offset origin, edges, and normal.
var diff = new THREE.Vector3();
var edge1 = new THREE.Vector3();
var edge2 = new THREE.Vector3();
var normal = new THREE.Vector3();
return function ( a, b, c, backfaceCulling, optionalTarget ) {
// from http://www.geometrictools.com/LibMathematics/Intersection/Wm5IntrRay3Triangle3.cpp
edge1.subVectors( b, a );
edge2.subVectors( c, a );
normal.crossVectors( edge1, edge2 );
// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
var DdN = this.direction.dot( normal );
var sign;
if ( DdN > 0 ) {
if ( backfaceCulling ) return null;
sign = 1;
} else if ( DdN < 0 ) {
sign = - 1;
DdN = - DdN;
} else {
return null;
}
diff.subVectors( this.origin, a );
var DdQxE2 = sign * this.direction.dot( edge2.crossVectors( diff, edge2 ) );
// b1 < 0, no intersection
if ( DdQxE2 < 0 ) {
return null;
}
var DdE1xQ = sign * this.direction.dot( edge1.cross( diff ) );
// b2 < 0, no intersection
if ( DdE1xQ < 0 ) {
return null;
}
// b1+b2 > 1, no intersection
if ( DdQxE2 + DdE1xQ > DdN ) {
return null;
}
// Line intersects triangle, check if ray does.
var QdN = - sign * diff.dot( normal );
// t < 0, no intersection
if ( QdN < 0 ) {
return null;
}
// Ray intersects triangle.
return this.at( QdN / DdN, optionalTarget );
};
}(),
applyMatrix4: function ( matrix4 ) {
this.direction.add( this.origin ).applyMatrix4( matrix4 );
this.origin.applyMatrix4( matrix4 );
this.direction.sub( this.origin );
this.direction.normalize();
return this;
},
equals: function ( ray ) {
return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );
}
};
// File:src/math/Sphere.js
/**
* @author bhouston / http://clara.io
* @author mrdoob / http://mrdoob.com/
*/
THREE.Sphere = function ( center, radius ) {
this.center = ( center !== undefined ) ? center : new THREE.Vector3();
this.radius = ( radius !== undefined ) ? radius : 0;
};
THREE.Sphere.prototype = {
constructor: THREE.Sphere,
set: function ( center, radius ) {
this.center.copy( center );
this.radius = radius;
return this;
},
setFromPoints: function () {
var box = new THREE.Box3();
return function ( points, optionalCenter ) {
var center = this.center;
if ( optionalCenter !== undefined ) {
center.copy( optionalCenter );
} else {
box.setFromPoints( points ).center( center );
}
var maxRadiusSq = 0;
for ( var i = 0, il = points.length; i < il; i ++ ) {
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );
}
this.radius = Math.sqrt( maxRadiusSq );
return this;
};
}(),
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( sphere ) {
this.center.copy( sphere.center );
this.radius = sphere.radius;
return this;
},
empty: function () {
return ( this.radius <= 0 );
},
containsPoint: function ( point ) {
return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );
},
distanceToPoint: function ( point ) {
return ( point.distanceTo( this.center ) - this.radius );
},
intersectsSphere: function ( sphere ) {
var radiusSum = this.radius + sphere.radius;
return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );
},
intersectsBox: function ( box ) {
return box.intersectsSphere( this );
},
intersectsPlane: function ( plane ) {
// We use the following equation to compute the signed distance from
// the center of the sphere to the plane.
//
// distance = q * n - d
//
// If this distance is greater than the radius of the sphere,
// then there is no intersection.
return Math.abs( this.center.dot( plane.normal ) - plane.constant ) <= this.radius;
},
clampPoint: function ( point, optionalTarget ) {
var deltaLengthSq = this.center.distanceToSquared( point );
var result = optionalTarget || new THREE.Vector3();
result.copy( point );
if ( deltaLengthSq > ( this.radius * this.radius ) ) {
result.sub( this.center ).normalize();
result.multiplyScalar( this.radius ).add( this.center );
}
return result;
},
getBoundingBox: function ( optionalTarget ) {
var box = optionalTarget || new THREE.Box3();
box.set( this.center, this.center );
box.expandByScalar( this.radius );
return box;
},
applyMatrix4: function ( matrix ) {
this.center.applyMatrix4( matrix );
this.radius = this.radius * matrix.getMaxScaleOnAxis();
return this;
},
translate: function ( offset ) {
this.center.add( offset );
return this;
},
equals: function ( sphere ) {
return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );
}
};
// File:src/math/Frustum.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author bhouston / http://clara.io
*/
THREE.Frustum = function ( p0, p1, p2, p3, p4, p5 ) {
this.planes = [
( p0 !== undefined ) ? p0 : new THREE.Plane(),
( p1 !== undefined ) ? p1 : new THREE.Plane(),
( p2 !== undefined ) ? p2 : new THREE.Plane(),
( p3 !== undefined ) ? p3 : new THREE.Plane(),
( p4 !== undefined ) ? p4 : new THREE.Plane(),
( p5 !== undefined ) ? p5 : new THREE.Plane()
];
};
THREE.Frustum.prototype = {
constructor: THREE.Frustum,
set: function ( p0, p1, p2, p3, p4, p5 ) {
var planes = this.planes;
planes[ 0 ].copy( p0 );
planes[ 1 ].copy( p1 );
planes[ 2 ].copy( p2 );
planes[ 3 ].copy( p3 );
planes[ 4 ].copy( p4 );
planes[ 5 ].copy( p5 );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( frustum ) {
var planes = this.planes;
for ( var i = 0; i < 6; i ++ ) {
planes[ i ].copy( frustum.planes[ i ] );
}
return this;
},
setFromMatrix: function ( m ) {
var planes = this.planes;
var me = m.elements;
var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];
var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];
var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];
var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];
planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();
planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();
planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();
planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();
planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();
planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();
return this;
},
intersectsObject: function () {
var sphere = new THREE.Sphere();
return function ( object ) {
var geometry = object.geometry;
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere );
sphere.applyMatrix4( object.matrixWorld );
return this.intersectsSphere( sphere );
};
}(),
intersectsSphere: function ( sphere ) {
var planes = this.planes;
var center = sphere.center;
var negRadius = - sphere.radius;
for ( var i = 0; i < 6; i ++ ) {
var distance = planes[ i ].distanceToPoint( center );
if ( distance < negRadius ) {
return false;
}
}
return true;
},
intersectsBox: function () {
var p1 = new THREE.Vector3(),
p2 = new THREE.Vector3();
return function ( box ) {
var planes = this.planes;
for ( var i = 0; i < 6 ; i ++ ) {
var plane = planes[ i ];
p1.x = plane.normal.x > 0 ? box.min.x : box.max.x;
p2.x = plane.normal.x > 0 ? box.max.x : box.min.x;
p1.y = plane.normal.y > 0 ? box.min.y : box.max.y;
p2.y = plane.normal.y > 0 ? box.max.y : box.min.y;
p1.z = plane.normal.z > 0 ? box.min.z : box.max.z;
p2.z = plane.normal.z > 0 ? box.max.z : box.min.z;
var d1 = plane.distanceToPoint( p1 );
var d2 = plane.distanceToPoint( p2 );
// if both outside plane, no intersection
if ( d1 < 0 && d2 < 0 ) {
return false;
}
}
return true;
};
}(),
containsPoint: function ( point ) {
var planes = this.planes;
for ( var i = 0; i < 6; i ++ ) {
if ( planes[ i ].distanceToPoint( point ) < 0 ) {
return false;
}
}
return true;
}
};
// File:src/math/Plane.js
/**
* @author bhouston / http://clara.io
*/
THREE.Plane = function ( normal, constant ) {
this.normal = ( normal !== undefined ) ? normal : new THREE.Vector3( 1, 0, 0 );
this.constant = ( constant !== undefined ) ? constant : 0;
};
THREE.Plane.prototype = {
constructor: THREE.Plane,
set: function ( normal, constant ) {
this.normal.copy( normal );
this.constant = constant;
return this;
},
setComponents: function ( x, y, z, w ) {
this.normal.set( x, y, z );
this.constant = w;
return this;
},
setFromNormalAndCoplanarPoint: function ( normal, point ) {
this.normal.copy( normal );
this.constant = - point.dot( this.normal ); // must be this.normal, not normal, as this.normal is normalized
return this;
},
setFromCoplanarPoints: function () {
var v1 = new THREE.Vector3();
var v2 = new THREE.Vector3();
return function ( a, b, c ) {
var normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize();
// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
this.setFromNormalAndCoplanarPoint( normal, a );
return this;
};
}(),
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( plane ) {
this.normal.copy( plane.normal );
this.constant = plane.constant;
return this;
},
normalize: function () {
// Note: will lead to a divide by zero if the plane is invalid.
var inverseNormalLength = 1.0 / this.normal.length();
this.normal.multiplyScalar( inverseNormalLength );
this.constant *= inverseNormalLength;
return this;
},
negate: function () {
this.constant *= - 1;
this.normal.negate();
return this;
},
distanceToPoint: function ( point ) {
return this.normal.dot( point ) + this.constant;
},
distanceToSphere: function ( sphere ) {
return this.distanceToPoint( sphere.center ) - sphere.radius;
},
projectPoint: function ( point, optionalTarget ) {
return this.orthoPoint( point, optionalTarget ).sub( point ).negate();
},
orthoPoint: function ( point, optionalTarget ) {
var perpendicularMagnitude = this.distanceToPoint( point );
var result = optionalTarget || new THREE.Vector3();
return result.copy( this.normal ).multiplyScalar( perpendicularMagnitude );
},
intersectLine: function () {
var v1 = new THREE.Vector3();
return function ( line, optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
var direction = line.delta( v1 );
var denominator = this.normal.dot( direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( this.distanceToPoint( line.start ) === 0 ) {
return result.copy( line.start );
}
// Unsure if this is the correct method to handle this case.
return undefined;
}
var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;
if ( t < 0 || t > 1 ) {
return undefined;
}
return result.copy( direction ).multiplyScalar( t ).add( line.start );
};
}(),
intersectsLine: function ( line ) {
// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
var startSign = this.distanceToPoint( line.start );
var endSign = this.distanceToPoint( line.end );
return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );
},
intersectsBox: function ( box ) {
return box.intersectsPlane( this );
},
intersectsSphere: function ( sphere ) {
return sphere.intersectsPlane( this );
},
coplanarPoint: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.copy( this.normal ).multiplyScalar( - this.constant );
},
applyMatrix4: function () {
var v1 = new THREE.Vector3();
var m1 = new THREE.Matrix3();
return function ( matrix, optionalNormalMatrix ) {
var referencePoint = this.coplanarPoint( v1 ).applyMatrix4( matrix );
// transform normal based on theory here:
// http://www.songho.ca/opengl/gl_normaltransform.html
var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix );
var normal = this.normal.applyMatrix3( normalMatrix ).normalize();
// recalculate constant (like in setFromNormalAndCoplanarPoint)
this.constant = - referencePoint.dot( normal );
return this;
};
}(),
translate: function ( offset ) {
this.constant = this.constant - offset.dot( this.normal );
return this;
},
equals: function ( plane ) {
return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );
}
};
// File:src/math/Spherical.js
/**
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*
* Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
*
* The poles (phi) are at the positive and negative y axis.
* The equator starts at positive z.
*/
THREE.Spherical = function ( radius, phi, theta ) {
this.radius = ( radius !== undefined ) ? radius : 1.0;
this.phi = ( phi !== undefined ) ? phi : 0; // up / down towards top and bottom pole
this.theta = ( theta !== undefined ) ? theta : 0; // around the equator of the sphere
return this;
};
THREE.Spherical.prototype = {
constructor: THREE.Spherical,
set: function ( radius, phi, theta ) {
this.radius = radius;
this.phi = phi;
this.theta = theta;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( other ) {
this.radius.copy( other.radius );
this.phi.copy( other.phi );
this.theta.copy( other.theta );
return this;
},
// restrict phi to be betwee EPS and PI-EPS
makeSafe: function() {
var EPS = 0.000001;
this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) );
},
setFromVector3: function( vec3 ) {
this.radius = vec3.length();
if ( this.radius === 0 ) {
this.theta = 0;
this.phi = 0;
} else {
this.theta = Math.atan2( vec3.x, vec3.z ); // equator angle around y-up axis
this.phi = Math.acos( THREE.Math.clamp( vec3.y / this.radius, - 1, 1 ) ); // polar angle
}
return this;
},
};
// File:src/math/Math.js
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
THREE.Math = {
DEG2RAD: Math.PI / 180,
RAD2DEG: 180 / Math.PI,
generateUUID: function () {
// http://www.broofa.com/Tools/Math.uuid.htm
var chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'.split( '' );
var uuid = new Array( 36 );
var rnd = 0, r;
return function () {
for ( var i = 0; i < 36; i ++ ) {
if ( i === 8 || i === 13 || i === 18 || i === 23 ) {
uuid[ i ] = '-';
} else if ( i === 14 ) {
uuid[ i ] = '4';
} else {
if ( rnd <= 0x02 ) rnd = 0x2000000 + ( Math.random() * 0x1000000 ) | 0;
r = rnd & 0xf;
rnd = rnd >> 4;
uuid[ i ] = chars[ ( i === 19 ) ? ( r & 0x3 ) | 0x8 : r ];
}
}
return uuid.join( '' );
};
}(),
clamp: function ( value, min, max ) {
return Math.max( min, Math.min( max, value ) );
},
// compute euclidian modulo of m % n
// https://en.wikipedia.org/wiki/Modulo_operation
euclideanModulo: function ( n, m ) {
return ( ( n % m ) + m ) % m;
},
// Linear mapping from range <a1, a2> to range <b1, b2>
mapLinear: function ( x, a1, a2, b1, b2 ) {
return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );
},
// http://en.wikipedia.org/wiki/Smoothstep
smoothstep: function ( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * ( 3 - 2 * x );
},
smootherstep: function ( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * x * ( x * ( x * 6 - 15 ) + 10 );
},
random16: function () {
console.warn( 'THREE.Math.random16() has been deprecated. Use Math.random() instead.' );
return Math.random();
},
// Random integer from <low, high> interval
randInt: function ( low, high ) {
return low + Math.floor( Math.random() * ( high - low + 1 ) );
},
// Random float from <low, high> interval
randFloat: function ( low, high ) {
return low + Math.random() * ( high - low );
},
// Random float from <-range/2, range/2> interval
randFloatSpread: function ( range ) {
return range * ( 0.5 - Math.random() );
},
degToRad: function ( degrees ) {
return degrees * THREE.Math.DEG2RAD;
},
radToDeg: function ( radians ) {
return radians * THREE.Math.RAD2DEG;
},
isPowerOfTwo: function ( value ) {
return ( value & ( value - 1 ) ) === 0 && value !== 0;
},
nearestPowerOfTwo: function ( value ) {
return Math.pow( 2, Math.round( Math.log( value ) / Math.LN2 ) );
},
nextPowerOfTwo: function ( value ) {
value --;
value |= value >> 1;
value |= value >> 2;
value |= value >> 4;
value |= value >> 8;
value |= value >> 16;
value ++;
return value;
}
};
// File:src/math/Spline.js
/**
* Spline from Tween.js, slightly optimized (and trashed)
* http://sole.github.com/tween.js/examples/05_spline.html
*
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Spline = function ( points ) {
this.points = points;
var c = [], v3 = { x: 0, y: 0, z: 0 },
point, intPoint, weight, w2, w3,
pa, pb, pc, pd;
this.initFromArray = function ( a ) {
this.points = [];
for ( var i = 0; i < a.length; i ++ ) {
this.points[ i ] = { x: a[ i ][ 0 ], y: a[ i ][ 1 ], z: a[ i ][ 2 ] };
}
};
this.getPoint = function ( k ) {
point = ( this.points.length - 1 ) * k;
intPoint = Math.floor( point );
weight = point - intPoint;
c[ 0 ] = intPoint === 0 ? intPoint : intPoint - 1;
c[ 1 ] = intPoint;
c[ 2 ] = intPoint > this.points.length - 2 ? this.points.length - 1 : intPoint + 1;
c[ 3 ] = intPoint > this.points.length - 3 ? this.points.length - 1 : intPoint + 2;
pa = this.points[ c[ 0 ] ];
pb = this.points[ c[ 1 ] ];
pc = this.points[ c[ 2 ] ];
pd = this.points[ c[ 3 ] ];
w2 = weight * weight;
w3 = weight * w2;
v3.x = interpolate( pa.x, pb.x, pc.x, pd.x, weight, w2, w3 );
v3.y = interpolate( pa.y, pb.y, pc.y, pd.y, weight, w2, w3 );
v3.z = interpolate( pa.z, pb.z, pc.z, pd.z, weight, w2, w3 );
return v3;
};
this.getControlPointsArray = function () {
var i, p, l = this.points.length,
coords = [];
for ( i = 0; i < l; i ++ ) {
p = this.points[ i ];
coords[ i ] = [ p.x, p.y, p.z ];
}
return coords;
};
// approximate length by summing linear segments
this.getLength = function ( nSubDivisions ) {
var i, index, nSamples, position,
point = 0, intPoint = 0, oldIntPoint = 0,
oldPosition = new THREE.Vector3(),
tmpVec = new THREE.Vector3(),
chunkLengths = [],
totalLength = 0;
// first point has 0 length
chunkLengths[ 0 ] = 0;
if ( ! nSubDivisions ) nSubDivisions = 100;
nSamples = this.points.length * nSubDivisions;
oldPosition.copy( this.points[ 0 ] );
for ( i = 1; i < nSamples; i ++ ) {
index = i / nSamples;
position = this.getPoint( index );
tmpVec.copy( position );
totalLength += tmpVec.distanceTo( oldPosition );
oldPosition.copy( position );
point = ( this.points.length - 1 ) * index;
intPoint = Math.floor( point );
if ( intPoint !== oldIntPoint ) {
chunkLengths[ intPoint ] = totalLength;
oldIntPoint = intPoint;
}
}
// last point ends with total length
chunkLengths[ chunkLengths.length ] = totalLength;
return { chunks: chunkLengths, total: totalLength };
};
this.reparametrizeByArcLength = function ( samplingCoef ) {
var i, j,
index, indexCurrent, indexNext,
realDistance,
sampling, position,
newpoints = [],
tmpVec = new THREE.Vector3(),
sl = this.getLength();
newpoints.push( tmpVec.copy( this.points[ 0 ] ).clone() );
for ( i = 1; i < this.points.length; i ++ ) {
//tmpVec.copy( this.points[ i - 1 ] );
//linearDistance = tmpVec.distanceTo( this.points[ i ] );
realDistance = sl.chunks[ i ] - sl.chunks[ i - 1 ];
sampling = Math.ceil( samplingCoef * realDistance / sl.total );
indexCurrent = ( i - 1 ) / ( this.points.length - 1 );
indexNext = i / ( this.points.length - 1 );
for ( j = 1; j < sampling - 1; j ++ ) {
index = indexCurrent + j * ( 1 / sampling ) * ( indexNext - indexCurrent );
position = this.getPoint( index );
newpoints.push( tmpVec.copy( position ).clone() );
}
newpoints.push( tmpVec.copy( this.points[ i ] ).clone() );
}
this.points = newpoints;
};
// Catmull-Rom
function interpolate( p0, p1, p2, p3, t, t2, t3 ) {
var v0 = ( p2 - p0 ) * 0.5,
v1 = ( p3 - p1 ) * 0.5;
return ( 2 * ( p1 - p2 ) + v0 + v1 ) * t3 + ( - 3 * ( p1 - p2 ) - 2 * v0 - v1 ) * t2 + v0 * t + p1;
}
};
// File:src/math/Triangle.js
/**
* @author bhouston / http://clara.io
* @author mrdoob / http://mrdoob.com/
*/
THREE.Triangle = function ( a, b, c ) {
this.a = ( a !== undefined ) ? a : new THREE.Vector3();
this.b = ( b !== undefined ) ? b : new THREE.Vector3();
this.c = ( c !== undefined ) ? c : new THREE.Vector3();
};
THREE.Triangle.normal = function () {
var v0 = new THREE.Vector3();
return function ( a, b, c, optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
result.subVectors( c, b );
v0.subVectors( a, b );
result.cross( v0 );
var resultLengthSq = result.lengthSq();
if ( resultLengthSq > 0 ) {
return result.multiplyScalar( 1 / Math.sqrt( resultLengthSq ) );
}
return result.set( 0, 0, 0 );
};
}();
// static/instance method to calculate barycentric coordinates
// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
THREE.Triangle.barycoordFromPoint = function () {
var v0 = new THREE.Vector3();
var v1 = new THREE.Vector3();
var v2 = new THREE.Vector3();
return function ( point, a, b, c, optionalTarget ) {
v0.subVectors( c, a );
v1.subVectors( b, a );
v2.subVectors( point, a );
var dot00 = v0.dot( v0 );
var dot01 = v0.dot( v1 );
var dot02 = v0.dot( v2 );
var dot11 = v1.dot( v1 );
var dot12 = v1.dot( v2 );
var denom = ( dot00 * dot11 - dot01 * dot01 );
var result = optionalTarget || new THREE.Vector3();
// collinear or singular triangle
if ( denom === 0 ) {
// arbitrary location outside of triangle?
// not sure if this is the best idea, maybe should be returning undefined
return result.set( - 2, - 1, - 1 );
}
var invDenom = 1 / denom;
var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;
// barycentric coordinates must always sum to 1
return result.set( 1 - u - v, v, u );
};
}();
THREE.Triangle.containsPoint = function () {
var v1 = new THREE.Vector3();
return function ( point, a, b, c ) {
var result = THREE.Triangle.barycoordFromPoint( point, a, b, c, v1 );
return ( result.x >= 0 ) && ( result.y >= 0 ) && ( ( result.x + result.y ) <= 1 );
};
}();
THREE.Triangle.prototype = {
constructor: THREE.Triangle,
set: function ( a, b, c ) {
this.a.copy( a );
this.b.copy( b );
this.c.copy( c );
return this;
},
setFromPointsAndIndices: function ( points, i0, i1, i2 ) {
this.a.copy( points[ i0 ] );
this.b.copy( points[ i1 ] );
this.c.copy( points[ i2 ] );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( triangle ) {
this.a.copy( triangle.a );
this.b.copy( triangle.b );
this.c.copy( triangle.c );
return this;
},
area: function () {
var v0 = new THREE.Vector3();
var v1 = new THREE.Vector3();
return function () {
v0.subVectors( this.c, this.b );
v1.subVectors( this.a, this.b );
return v0.cross( v1 ).length() * 0.5;
};
}(),
midpoint: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
return result.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );
},
normal: function ( optionalTarget ) {
return THREE.Triangle.normal( this.a, this.b, this.c, optionalTarget );
},
plane: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Plane();
return result.setFromCoplanarPoints( this.a, this.b, this.c );
},
barycoordFromPoint: function ( point, optionalTarget ) {
return THREE.Triangle.barycoordFromPoint( point, this.a, this.b, this.c, optionalTarget );
},
containsPoint: function ( point ) {
return THREE.Triangle.containsPoint( point, this.a, this.b, this.c );
},
closestPointToPoint: function () {
var plane, edgeList, projectedPoint, closestPoint;
return function closestPointToPoint( point, optionalTarget ) {
if ( plane === undefined ) {
plane = new THREE.Plane();
edgeList = [ new THREE.Line3(), new THREE.Line3(), new THREE.Line3() ];
projectedPoint = new THREE.Vector3();
closestPoint = new THREE.Vector3();
}
var result = optionalTarget || new THREE.Vector3();
var minDistance = Infinity;
// project the point onto the plane of the triangle
plane.setFromCoplanarPoints( this.a, this.b, this.c );
plane.projectPoint( point, projectedPoint );
// check if the projection lies within the triangle
if( this.containsPoint( projectedPoint ) === true ) {
// if so, this is the closest point
result.copy( projectedPoint );
} else {
// if not, the point falls outside the triangle. the result is the closest point to the triangle's edges or vertices
edgeList[ 0 ].set( this.a, this.b );
edgeList[ 1 ].set( this.b, this.c );
edgeList[ 2 ].set( this.c, this.a );
for( var i = 0; i < edgeList.length; i ++ ) {
edgeList[ i ].closestPointToPoint( projectedPoint, true, closestPoint );
var distance = projectedPoint.distanceToSquared( closestPoint );
if( distance < minDistance ) {
minDistance = distance;
result.copy( closestPoint );
}
}
}
return result;
};
}(),
equals: function ( triangle ) {
return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );
}
};
// File:src/math/Interpolant.js
/**
* Abstract base class of interpolants over parametric samples.
*
* The parameter domain is one dimensional, typically the time or a path
* along a curve defined by the data.
*
* The sample values can have any dimensionality and derived classes may
* apply special interpretations to the data.
*
* This class provides the interval seek in a Template Method, deferring
* the actual interpolation to derived classes.
*
* Time complexity is O(1) for linear access crossing at most two points
* and O(log N) for random access, where N is the number of positions.
*
* References:
*
* http://www.oodesign.com/template-method-pattern.html
*
* @author tschw
*/
THREE.Interpolant = function(
parameterPositions, sampleValues, sampleSize, resultBuffer ) {
this.parameterPositions = parameterPositions;
this._cachedIndex = 0;
this.resultBuffer = resultBuffer !== undefined ?
resultBuffer : new sampleValues.constructor( sampleSize );
this.sampleValues = sampleValues;
this.valueSize = sampleSize;
};
THREE.Interpolant.prototype = {
constructor: THREE.Interpolant,
evaluate: function( t ) {
var pp = this.parameterPositions,
i1 = this._cachedIndex,
t1 = pp[ i1 ],
t0 = pp[ i1 - 1 ];
validate_interval: {
seek: {
var right;
linear_scan: {
//- See http://jsperf.com/comparison-to-undefined/3
//- slower code:
//-
//- if ( t >= t1 || t1 === undefined ) {
forward_scan: if ( ! ( t < t1 ) ) {
for ( var giveUpAt = i1 + 2; ;) {
if ( t1 === undefined ) {
if ( t < t0 ) break forward_scan;
// after end
i1 = pp.length;
this._cachedIndex = i1;
return this.afterEnd_( i1 - 1, t, t0 );
}
if ( i1 === giveUpAt ) break; // this loop
t0 = t1;
t1 = pp[ ++ i1 ];
if ( t < t1 ) {
// we have arrived at the sought interval
break seek;
}
}
// prepare binary search on the right side of the index
right = pp.length;
break linear_scan;
}
//- slower code:
//- if ( t < t0 || t0 === undefined ) {
if ( ! ( t >= t0 ) ) {
// looping?
var t1global = pp[ 1 ];
if ( t < t1global ) {
i1 = 2; // + 1, using the scan for the details
t0 = t1global;
}
// linear reverse scan
for ( var giveUpAt = i1 - 2; ;) {
if ( t0 === undefined ) {
// before start
this._cachedIndex = 0;
return this.beforeStart_( 0, t, t1 );
}
if ( i1 === giveUpAt ) break; // this loop
t1 = t0;
t0 = pp[ -- i1 - 1 ];
if ( t >= t0 ) {
// we have arrived at the sought interval
break seek;
}
}
// prepare binary search on the left side of the index
right = i1;
i1 = 0;
break linear_scan;
}
// the interval is valid
break validate_interval;
} // linear scan
// binary search
while ( i1 < right ) {
var mid = ( i1 + right ) >>> 1;
if ( t < pp[ mid ] ) {
right = mid;
} else {
i1 = mid + 1;
}
}
t1 = pp[ i1 ];
t0 = pp[ i1 - 1 ];
// check boundary cases, again
if ( t0 === undefined ) {
this._cachedIndex = 0;
return this.beforeStart_( 0, t, t1 );
}
if ( t1 === undefined ) {
i1 = pp.length;
this._cachedIndex = i1;
return this.afterEnd_( i1 - 1, t0, t );
}
} // seek
this._cachedIndex = i1;
this.intervalChanged_( i1, t0, t1 );
} // validate_interval
return this.interpolate_( i1, t0, t, t1 );
},
settings: null, // optional, subclass-specific settings structure
// Note: The indirection allows central control of many interpolants.
// --- Protected interface
DefaultSettings_: {},
getSettings_: function() {
return this.settings || this.DefaultSettings_;
},
copySampleValue_: function( index ) {
// copies a sample value to the result buffer
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset = index * stride;
for ( var i = 0; i !== stride; ++ i ) {
result[ i ] = values[ offset + i ];
}
return result;
},
// Template methods for derived classes:
interpolate_: function( i1, t0, t, t1 ) {
throw new Error( "call to abstract method" );
// implementations shall return this.resultBuffer
},
intervalChanged_: function( i1, t0, t1 ) {
// empty
}
};
Object.assign( THREE.Interpolant.prototype, {
beforeStart_: //( 0, t, t0 ), returns this.resultBuffer
THREE.Interpolant.prototype.copySampleValue_,
afterEnd_: //( N-1, tN-1, t ), returns this.resultBuffer
THREE.Interpolant.prototype.copySampleValue_
} );
// File:src/math/interpolants/CubicInterpolant.js
/**
* Fast and simple cubic spline interpolant.
*
* It was derived from a Hermitian construction setting the first derivative
* at each sample position to the linear slope between neighboring positions
* over their parameter interval.
*
* @author tschw
*/
THREE.CubicInterpolant = function(
parameterPositions, sampleValues, sampleSize, resultBuffer ) {
THREE.Interpolant.call(
this, parameterPositions, sampleValues, sampleSize, resultBuffer );
this._weightPrev = -0;
this._offsetPrev = -0;
this._weightNext = -0;
this._offsetNext = -0;
};
THREE.CubicInterpolant.prototype =
Object.assign( Object.create( THREE.Interpolant.prototype ), {
constructor: THREE.CubicInterpolant,
DefaultSettings_: {
endingStart: THREE.ZeroCurvatureEnding,
endingEnd: THREE.ZeroCurvatureEnding
},
intervalChanged_: function( i1, t0, t1 ) {
var pp = this.parameterPositions,
iPrev = i1 - 2,
iNext = i1 + 1,
tPrev = pp[ iPrev ],
tNext = pp[ iNext ];
if ( tPrev === undefined ) {
switch ( this.getSettings_().endingStart ) {
case THREE.ZeroSlopeEnding:
// f'(t0) = 0
iPrev = i1;
tPrev = 2 * t0 - t1;
break;
case THREE.WrapAroundEnding:
// use the other end of the curve
iPrev = pp.length - 2;
tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ];
break;
default: // ZeroCurvatureEnding
// f''(t0) = 0 a.k.a. Natural Spline
iPrev = i1;
tPrev = t1;
}
}
if ( tNext === undefined ) {
switch ( this.getSettings_().endingEnd ) {
case THREE.ZeroSlopeEnding:
// f'(tN) = 0
iNext = i1;
tNext = 2 * t1 - t0;
break;
case THREE.WrapAroundEnding:
// use the other end of the curve
iNext = 1;
tNext = t1 + pp[ 1 ] - pp[ 0 ];
break;
default: // ZeroCurvatureEnding
// f''(tN) = 0, a.k.a. Natural Spline
iNext = i1 - 1;
tNext = t0;
}
}
var halfDt = ( t1 - t0 ) * 0.5,
stride = this.valueSize;
this._weightPrev = halfDt / ( t0 - tPrev );
this._weightNext = halfDt / ( tNext - t1 );
this._offsetPrev = iPrev * stride;
this._offsetNext = iNext * stride;
},
interpolate_: function( i1, t0, t, t1 ) {
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
o1 = i1 * stride, o0 = o1 - stride,
oP = this._offsetPrev, oN = this._offsetNext,
wP = this._weightPrev, wN = this._weightNext,
p = ( t - t0 ) / ( t1 - t0 ),
pp = p * p,
ppp = pp * p;
// evaluate polynomials
var sP = - wP * ppp + 2 * wP * pp - wP * p;
var s0 = ( 1 + wP ) * ppp + (-1.5 - 2 * wP ) * pp + ( -0.5 + wP ) * p + 1;
var s1 = (-1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p;
var sN = wN * ppp - wN * pp;
// combine data linearly
for ( var i = 0; i !== stride; ++ i ) {
result[ i ] =
sP * values[ oP + i ] +
s0 * values[ o0 + i ] +
s1 * values[ o1 + i ] +
sN * values[ oN + i ];
}
return result;
}
} );
// File:src/math/interpolants/DiscreteInterpolant.js
/**
*
* Interpolant that evaluates to the sample value at the position preceeding
* the parameter.
*
* @author tschw
*/
THREE.DiscreteInterpolant = function(
parameterPositions, sampleValues, sampleSize, resultBuffer ) {
THREE.Interpolant.call(
this, parameterPositions, sampleValues, sampleSize, resultBuffer );
};
THREE.DiscreteInterpolant.prototype =
Object.assign( Object.create( THREE.Interpolant.prototype ), {
constructor: THREE.DiscreteInterpolant,
interpolate_: function( i1, t0, t, t1 ) {
return this.copySampleValue_( i1 - 1 );
}
} );
// File:src/math/interpolants/LinearInterpolant.js
/**
* @author tschw
*/
THREE.LinearInterpolant = function(
parameterPositions, sampleValues, sampleSize, resultBuffer ) {
THREE.Interpolant.call(
this, parameterPositions, sampleValues, sampleSize, resultBuffer );
};
THREE.LinearInterpolant.prototype =
Object.assign( Object.create( THREE.Interpolant.prototype ), {
constructor: THREE.LinearInterpolant,
interpolate_: function( i1, t0, t, t1 ) {
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset1 = i1 * stride,
offset0 = offset1 - stride,
weight1 = ( t - t0 ) / ( t1 - t0 ),
weight0 = 1 - weight1;
for ( var i = 0; i !== stride; ++ i ) {
result[ i ] =
values[ offset0 + i ] * weight0 +
values[ offset1 + i ] * weight1;
}
return result;
}
} );
// File:src/math/interpolants/QuaternionLinearInterpolant.js
/**
* Spherical linear unit quaternion interpolant.
*
* @author tschw
*/
THREE.QuaternionLinearInterpolant = function(
parameterPositions, sampleValues, sampleSize, resultBuffer ) {
THREE.Interpolant.call(
this, parameterPositions, sampleValues, sampleSize, resultBuffer );
};
THREE.QuaternionLinearInterpolant.prototype =
Object.assign( Object.create( THREE.Interpolant.prototype ), {
constructor: THREE.QuaternionLinearInterpolant,
interpolate_: function( i1, t0, t, t1 ) {
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset = i1 * stride,
alpha = ( t - t0 ) / ( t1 - t0 );
for ( var end = offset + stride; offset !== end; offset += 4 ) {
THREE.Quaternion.slerpFlat( result, 0,
values, offset - stride, values, offset, alpha );
}
return result;
}
} );
// File:src/core/Clock.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.Clock = function ( autoStart ) {
this.autoStart = ( autoStart !== undefined ) ? autoStart : true;
this.startTime = 0;
this.oldTime = 0;
this.elapsedTime = 0;
this.running = false;
};
THREE.Clock.prototype = {
constructor: THREE.Clock,
start: function () {
this.startTime = ( performance || Date ).now();
this.oldTime = this.startTime;
this.running = true;
},
stop: function () {
this.getElapsedTime();
this.running = false;
},
getElapsedTime: function () {
this.getDelta();
return this.elapsedTime;
},
getDelta: function () {
var diff = 0;
if ( this.autoStart && ! this.running ) {
this.start();
}
if ( this.running ) {
var newTime = ( performance || Date ).now();
diff = ( newTime - this.oldTime ) / 1000;
this.oldTime = newTime;
this.elapsedTime += diff;
}
return diff;
}
};
// File:src/core/EventDispatcher.js
/**
* https://github.com/mrdoob/eventdispatcher.js/
*/
THREE.EventDispatcher = function () {};
THREE.EventDispatcher.prototype = {
constructor: THREE.EventDispatcher,
apply: function ( object ) {
object.addEventListener = THREE.EventDispatcher.prototype.addEventListener;
object.hasEventListener = THREE.EventDispatcher.prototype.hasEventListener;
object.removeEventListener = THREE.EventDispatcher.prototype.removeEventListener;
object.dispatchEvent = THREE.EventDispatcher.prototype.dispatchEvent;
},
addEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) this._listeners = {};
var listeners = this._listeners;
if ( listeners[ type ] === undefined ) {
listeners[ type ] = [];
}
if ( listeners[ type ].indexOf( listener ) === - 1 ) {
listeners[ type ].push( listener );
}
},
hasEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) return false;
var listeners = this._listeners;
if ( listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1 ) {
return true;
}
return false;
},
removeEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) return;
var listeners = this._listeners;
var listenerArray = listeners[ type ];
if ( listenerArray !== undefined ) {
var index = listenerArray.indexOf( listener );
if ( index !== - 1 ) {
listenerArray.splice( index, 1 );
}
}
},
dispatchEvent: function ( event ) {
if ( this._listeners === undefined ) return;
var listeners = this._listeners;
var listenerArray = listeners[ event.type ];
if ( listenerArray !== undefined ) {
event.target = this;
var array = [];
var length = listenerArray.length;
for ( var i = 0; i < length; i ++ ) {
array[ i ] = listenerArray[ i ];
}
for ( var i = 0; i < length; i ++ ) {
array[ i ].call( this, event );
}
}
}
};
// File:src/core/Layers.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.Layers = function () {
this.mask = 1;
};
THREE.Layers.prototype = {
constructor: THREE.Layers,
set: function ( channel ) {
this.mask = 1 << channel;
},
enable: function ( channel ) {
this.mask |= 1 << channel;
},
toggle: function ( channel ) {
this.mask ^= 1 << channel;
},
disable: function ( channel ) {
this.mask &= ~ ( 1 << channel );
},
test: function ( layers ) {
return ( this.mask & layers.mask ) !== 0;
}
};
// File:src/core/Raycaster.js
/**
* @author mrdoob / http://mrdoob.com/
* @author bhouston / http://clara.io/
* @author stephomi / http://stephaneginier.com/
*/
( function ( THREE ) {
THREE.Raycaster = function ( origin, direction, near, far ) {
this.ray = new THREE.Ray( origin, direction );
// direction is assumed to be normalized (for accurate distance calculations)
this.near = near || 0;
this.far = far || Infinity;
this.params = {
Mesh: {},
Line: {},
LOD: {},
Points: { threshold: 1 },
Sprite: {}
};
Object.defineProperties( this.params, {
PointCloud: {
get: function () {
console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' );
return this.Points;
}
}
} );
};
function ascSort( a, b ) {
return a.distance - b.distance;
}
function intersectObject( object, raycaster, intersects, recursive ) {
if ( object.visible === false ) return;
object.raycast( raycaster, intersects );
if ( recursive === true ) {
var children = object.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
intersectObject( children[ i ], raycaster, intersects, true );
}
}
}
//
THREE.Raycaster.prototype = {
constructor: THREE.Raycaster,
linePrecision: 1,
set: function ( origin, direction ) {
// direction is assumed to be normalized (for accurate distance calculations)
this.ray.set( origin, direction );
},
setFromCamera: function ( coords, camera ) {
if ( camera instanceof THREE.PerspectiveCamera ) {
this.ray.origin.setFromMatrixPosition( camera.matrixWorld );
this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize();
} else if ( camera instanceof THREE.OrthographicCamera ) {
this.ray.origin.set( coords.x, coords.y, - 1 ).unproject( camera );
this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld );
} else {
console.error( 'THREE.Raycaster: Unsupported camera type.' );
}
},
intersectObject: function ( object, recursive ) {
var intersects = [];
intersectObject( object, this, intersects, recursive );
intersects.sort( ascSort );
return intersects;
},
intersectObjects: function ( objects, recursive ) {
var intersects = [];
if ( Array.isArray( objects ) === false ) {
console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' );
return intersects;
}
for ( var i = 0, l = objects.length; i < l; i ++ ) {
intersectObject( objects[ i ], this, intersects, recursive );
}
intersects.sort( ascSort );
return intersects;
}
};
}( THREE ) );
// File:src/core/Object3D.js
/**
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author elephantatwork / www.elephantatwork.ch
*/
THREE.Object3D = function () {
Object.defineProperty( this, 'id', { value: THREE.Object3DIdCount ++ } );
this.uuid = THREE.Math.generateUUID();
this.name = '';
this.type = 'Object3D';
this.parent = null;
this.children = [];
this.up = THREE.Object3D.DefaultUp.clone();
var position = new THREE.Vector3();
var rotation = new THREE.Euler();
var quaternion = new THREE.Quaternion();
var scale = new THREE.Vector3( 1, 1, 1 );
function onRotationChange() {
quaternion.setFromEuler( rotation, false );
}
function onQuaternionChange() {
rotation.setFromQuaternion( quaternion, undefined, false );
}
rotation.onChange( onRotationChange );
quaternion.onChange( onQuaternionChange );
Object.defineProperties( this, {
position: {
enumerable: true,
value: position
},
rotation: {
enumerable: true,
value: rotation
},
quaternion: {
enumerable: true,
value: quaternion
},
scale: {
enumerable: true,
value: scale
},
modelViewMatrix: {
value: new THREE.Matrix4()
},
normalMatrix: {
value: new THREE.Matrix3()
}
} );
this.rotationAutoUpdate = true;
this.matrix = new THREE.Matrix4();
this.matrixWorld = new THREE.Matrix4();
this.matrixAutoUpdate = THREE.Object3D.DefaultMatrixAutoUpdate;
this.matrixWorldNeedsUpdate = false;
this.layers = new THREE.Layers();
this.visible = true;
this.castShadow = false;
this.receiveShadow = false;
this.frustumCulled = true;
this.renderOrder = 0;
this.userData = {};
};
THREE.Object3D.DefaultUp = new THREE.Vector3( 0, 1, 0 );
THREE.Object3D.DefaultMatrixAutoUpdate = true;
THREE.Object3D.prototype = {
constructor: THREE.Object3D,
applyMatrix: function ( matrix ) {
this.matrix.multiplyMatrices( matrix, this.matrix );
this.matrix.decompose( this.position, this.quaternion, this.scale );
},
setRotationFromAxisAngle: function ( axis, angle ) {
// assumes axis is normalized
this.quaternion.setFromAxisAngle( axis, angle );
},
setRotationFromEuler: function ( euler ) {
this.quaternion.setFromEuler( euler, true );
},
setRotationFromMatrix: function ( m ) {
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
this.quaternion.setFromRotationMatrix( m );
},
setRotationFromQuaternion: function ( q ) {
// assumes q is normalized
this.quaternion.copy( q );
},
rotateOnAxis: function () {
// rotate object on axis in object space
// axis is assumed to be normalized
var q1 = new THREE.Quaternion();
return function ( axis, angle ) {
q1.setFromAxisAngle( axis, angle );
this.quaternion.multiply( q1 );
return this;
};
}(),
rotateX: function () {
var v1 = new THREE.Vector3( 1, 0, 0 );
return function ( angle ) {
return this.rotateOnAxis( v1, angle );
};
}(),
rotateY: function () {
var v1 = new THREE.Vector3( 0, 1, 0 );
return function ( angle ) {
return this.rotateOnAxis( v1, angle );
};
}(),
rotateZ: function () {
var v1 = new THREE.Vector3( 0, 0, 1 );
return function ( angle ) {
return this.rotateOnAxis( v1, angle );
};
}(),
translateOnAxis: function () {
// translate object by distance along axis in object space
// axis is assumed to be normalized
var v1 = new THREE.Vector3();
return function ( axis, distance ) {
v1.copy( axis ).applyQuaternion( this.quaternion );
this.position.add( v1.multiplyScalar( distance ) );
return this;
};
}(),
translateX: function () {
var v1 = new THREE.Vector3( 1, 0, 0 );
return function ( distance ) {
return this.translateOnAxis( v1, distance );
};
}(),
translateY: function () {
var v1 = new THREE.Vector3( 0, 1, 0 );
return function ( distance ) {
return this.translateOnAxis( v1, distance );
};
}(),
translateZ: function () {
var v1 = new THREE.Vector3( 0, 0, 1 );
return function ( distance ) {
return this.translateOnAxis( v1, distance );
};
}(),
localToWorld: function ( vector ) {
return vector.applyMatrix4( this.matrixWorld );
},
worldToLocal: function () {
var m1 = new THREE.Matrix4();
return function ( vector ) {
return vector.applyMatrix4( m1.getInverse( this.matrixWorld ) );
};
}(),
lookAt: function () {
// This routine does not support objects with rotated and/or translated parent(s)
var m1 = new THREE.Matrix4();
return function ( vector ) {
m1.lookAt( vector, this.position, this.up );
this.quaternion.setFromRotationMatrix( m1 );
};
}(),
add: function ( object ) {
if ( arguments.length > 1 ) {
for ( var i = 0; i < arguments.length; i ++ ) {
this.add( arguments[ i ] );
}
return this;
}
if ( object === this ) {
console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object );
return this;
}
if ( object instanceof THREE.Object3D ) {
if ( object.parent !== null ) {
object.parent.remove( object );
}
object.parent = this;
object.dispatchEvent( { type: 'added' } );
this.children.push( object );
} else {
console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object );
}
return this;
},
remove: function ( object ) {
if ( arguments.length > 1 ) {
for ( var i = 0; i < arguments.length; i ++ ) {
this.remove( arguments[ i ] );
}
}
var index = this.children.indexOf( object );
if ( index !== - 1 ) {
object.parent = null;
object.dispatchEvent( { type: 'removed' } );
this.children.splice( index, 1 );
}
},
getObjectById: function ( id ) {
return this.getObjectByProperty( 'id', id );
},
getObjectByName: function ( name ) {
return this.getObjectByProperty( 'name', name );
},
getObjectByProperty: function ( name, value ) {
if ( this[ name ] === value ) return this;
for ( var i = 0, l = this.children.length; i < l; i ++ ) {
var child = this.children[ i ];
var object = child.getObjectByProperty( name, value );
if ( object !== undefined ) {
return object;
}
}
return undefined;
},
getWorldPosition: function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
this.updateMatrixWorld( true );
return result.setFromMatrixPosition( this.matrixWorld );
},
getWorldQuaternion: function () {
var position = new THREE.Vector3();
var scale = new THREE.Vector3();
return function ( optionalTarget ) {
var result = optionalTarget || new THREE.Quaternion();
this.updateMatrixWorld( true );
this.matrixWorld.decompose( position, result, scale );
return result;
};
}(),
getWorldRotation: function () {
var quaternion = new THREE.Quaternion();
return function ( optionalTarget ) {
var result = optionalTarget || new THREE.Euler();
this.getWorldQuaternion( quaternion );
return result.setFromQuaternion( quaternion, this.rotation.order, false );
};
}(),
getWorldScale: function () {
var position = new THREE.Vector3();
var quaternion = new THREE.Quaternion();
return function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
this.updateMatrixWorld( true );
this.matrixWorld.decompose( position, quaternion, result );
return result;
};
}(),
getWorldDirection: function () {
var quaternion = new THREE.Quaternion();
return function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
this.getWorldQuaternion( quaternion );
return result.set( 0, 0, 1 ).applyQuaternion( quaternion );
};
}(),
raycast: function () {},
traverse: function ( callback ) {
callback( this );
var children = this.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverse( callback );
}
},
traverseVisible: function ( callback ) {
if ( this.visible === false ) return;
callback( this );
var children = this.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverseVisible( callback );
}
},
traverseAncestors: function ( callback ) {
var parent = this.parent;
if ( parent !== null ) {
callback( parent );
parent.traverseAncestors( callback );
}
},
updateMatrix: function () {
this.matrix.compose( this.position, this.quaternion, this.scale );
this.matrixWorldNeedsUpdate = true;
},
updateMatrixWorld: function ( force ) {
if ( this.matrixAutoUpdate === true ) this.updateMatrix();
if ( this.matrixWorldNeedsUpdate === true || force === true ) {
if ( this.parent === null ) {
this.matrixWorld.copy( this.matrix );
} else {
this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
}
this.matrixWorldNeedsUpdate = false;
force = true;
}
// update children
for ( var i = 0, l = this.children.length; i < l; i ++ ) {
this.children[ i ].updateMatrixWorld( force );
}
},
toJSON: function ( meta ) {
// meta is '' when called from JSON.stringify
var isRootObject = ( meta === undefined || meta === '' );
var output = {};
// meta is a hash used to collect geometries, materials.
// not providing it implies that this is the root object
// being serialized.
if ( isRootObject ) {
// initialize meta obj
meta = {
geometries: {},
materials: {},
textures: {},
images: {}
};
output.metadata = {
version: 4.4,
type: 'Object',
generator: 'Object3D.toJSON'
};
}
// standard Object3D serialization
var object = {};
object.uuid = this.uuid;
object.type = this.type;
if ( this.name !== '' ) object.name = this.name;
if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData;
if ( this.castShadow === true ) object.castShadow = true;
if ( this.receiveShadow === true ) object.receiveShadow = true;
if ( this.visible === false ) object.visible = false;
object.matrix = this.matrix.toArray();
//
if ( this.geometry !== undefined ) {
if ( meta.geometries[ this.geometry.uuid ] === undefined ) {
meta.geometries[ this.geometry.uuid ] = this.geometry.toJSON( meta );
}
object.geometry = this.geometry.uuid;
}
if ( this.material !== undefined ) {
if ( meta.materials[ this.material.uuid ] === undefined ) {
meta.materials[ this.material.uuid ] = this.material.toJSON( meta );
}
object.material = this.material.uuid;
}
//
if ( this.children.length > 0 ) {
object.children = [];
for ( var i = 0; i < this.children.length; i ++ ) {
object.children.push( this.children[ i ].toJSON( meta ).object );
}
}
if ( isRootObject ) {
var geometries = extractFromCache( meta.geometries );
var materials = extractFromCache( meta.materials );
var textures = extractFromCache( meta.textures );
var images = extractFromCache( meta.images );
if ( geometries.length > 0 ) output.geometries = geometries;
if ( materials.length > 0 ) output.materials = materials;
if ( textures.length > 0 ) output.textures = textures;
if ( images.length > 0 ) output.images = images;
}
output.object = object;
return output;
// extract data from the cache hash
// remove metadata on each item
// and return as array
function extractFromCache ( cache ) {
var values = [];
for ( var key in cache ) {
var data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
},
clone: function ( recursive ) {
return new this.constructor().copy( this, recursive );
},
copy: function ( source, recursive ) {
if ( recursive === undefined ) recursive = true;
this.name = source.name;
this.up.copy( source.up );
this.position.copy( source.position );
this.quaternion.copy( source.quaternion );
this.scale.copy( source.scale );
this.rotationAutoUpdate = source.rotationAutoUpdate;
this.matrix.copy( source.matrix );
this.matrixWorld.copy( source.matrixWorld );
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
this.visible = source.visible;
this.castShadow = source.castShadow;
this.receiveShadow = source.receiveShadow;
this.frustumCulled = source.frustumCulled;
this.renderOrder = source.renderOrder;
this.userData = JSON.parse( JSON.stringify( source.userData ) );
if ( recursive === true ) {
for ( var i = 0; i < source.children.length; i ++ ) {
var child = source.children[ i ];
this.add( child.clone() );
}
}
return this;
}
};
THREE.EventDispatcher.prototype.apply( THREE.Object3D.prototype );
THREE.Object3DIdCount = 0;
// File:src/core/Face3.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Face3 = function ( a, b, c, normal, color, materialIndex ) {
this.a = a;
this.b = b;
this.c = c;
this.normal = normal instanceof THREE.Vector3 ? normal : new THREE.Vector3();
this.vertexNormals = Array.isArray( normal ) ? normal : [];
this.color = color instanceof THREE.Color ? color : new THREE.Color();
this.vertexColors = Array.isArray( color ) ? color : [];
this.materialIndex = materialIndex !== undefined ? materialIndex : 0;
};
THREE.Face3.prototype = {
constructor: THREE.Face3,
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.a = source.a;
this.b = source.b;
this.c = source.c;
this.normal.copy( source.normal );
this.color.copy( source.color );
this.materialIndex = source.materialIndex;
for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) {
this.vertexNormals[ i ] = source.vertexNormals[ i ].clone();
}
for ( var i = 0, il = source.vertexColors.length; i < il; i ++ ) {
this.vertexColors[ i ] = source.vertexColors[ i ].clone();
}
return this;
}
};
// File:src/core/BufferAttribute.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.BufferAttribute = function ( array, itemSize, normalized ) {
this.uuid = THREE.Math.generateUUID();
this.array = array;
this.itemSize = itemSize;
this.dynamic = false;
this.updateRange = { offset: 0, count: - 1 };
this.version = 0;
this.normalized = normalized === true;
};
THREE.BufferAttribute.prototype = {
constructor: THREE.BufferAttribute,
get count() {
return this.array.length / this.itemSize;
},
set needsUpdate( value ) {
if ( value === true ) this.version ++;
},
setDynamic: function ( value ) {
this.dynamic = value;
return this;
},
copy: function ( source ) {
this.array = new source.array.constructor( source.array );
this.itemSize = source.itemSize;
this.dynamic = source.dynamic;
return this;
},
copyAt: function ( index1, attribute, index2 ) {
index1 *= this.itemSize;
index2 *= attribute.itemSize;
for ( var i = 0, l = this.itemSize; i < l; i ++ ) {
this.array[ index1 + i ] = attribute.array[ index2 + i ];
}
return this;
},
copyArray: function ( array ) {
this.array.set( array );
return this;
},
copyColorsArray: function ( colors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = colors.length; i < l; i ++ ) {
var color = colors[ i ];
if ( color === undefined ) {
console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i );
color = new THREE.Color();
}
array[ offset ++ ] = color.r;
array[ offset ++ ] = color.g;
array[ offset ++ ] = color.b;
}
return this;
},
copyIndicesArray: function ( indices ) {
var array = this.array, offset = 0;
for ( var i = 0, l = indices.length; i < l; i ++ ) {
var index = indices[ i ];
array[ offset ++ ] = index.a;
array[ offset ++ ] = index.b;
array[ offset ++ ] = index.c;
}
return this;
},
copyVector2sArray: function ( vectors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = vectors.length; i < l; i ++ ) {
var vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i );
vector = new THREE.Vector2();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
}
return this;
},
copyVector3sArray: function ( vectors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = vectors.length; i < l; i ++ ) {
var vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i );
vector = new THREE.Vector3();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
array[ offset ++ ] = vector.z;
}
return this;
},
copyVector4sArray: function ( vectors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = vectors.length; i < l; i ++ ) {
var vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i );
vector = new THREE.Vector4();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
array[ offset ++ ] = vector.z;
array[ offset ++ ] = vector.w;
}
return this;
},
set: function ( value, offset ) {
if ( offset === undefined ) offset = 0;
this.array.set( value, offset );
return this;
},
getX: function ( index ) {
return this.array[ index * this.itemSize ];
},
setX: function ( index, x ) {
this.array[ index * this.itemSize ] = x;
return this;
},
getY: function ( index ) {
return this.array[ index * this.itemSize + 1 ];
},
setY: function ( index, y ) {
this.array[ index * this.itemSize + 1 ] = y;
return this;
},
getZ: function ( index ) {
return this.array[ index * this.itemSize + 2 ];
},
setZ: function ( index, z ) {
this.array[ index * this.itemSize + 2 ] = z;
return this;
},
getW: function ( index ) {
return this.array[ index * this.itemSize + 3 ];
},
setW: function ( index, w ) {
this.array[ index * this.itemSize + 3 ] = w;
return this;
},
setXY: function ( index, x, y ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
return this;
},
setXYZ: function ( index, x, y, z ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
return this;
},
setXYZW: function ( index, x, y, z, w ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
this.array[ index + 3 ] = w;
return this;
},
clone: function () {
return new this.constructor().copy( this );
}
};
//
THREE.Int8Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Int8Array( array ), itemSize );
};
THREE.Uint8Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Uint8Array( array ), itemSize );
};
THREE.Uint8ClampedAttribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Uint8ClampedArray( array ), itemSize );
};
THREE.Int16Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Int16Array( array ), itemSize );
};
THREE.Uint16Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Uint16Array( array ), itemSize );
};
THREE.Int32Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Int32Array( array ), itemSize );
};
THREE.Uint32Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Uint32Array( array ), itemSize );
};
THREE.Float32Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Float32Array( array ), itemSize );
};
THREE.Float64Attribute = function ( array, itemSize ) {
return new THREE.BufferAttribute( new Float64Array( array ), itemSize );
};
// Deprecated
THREE.DynamicBufferAttribute = function ( array, itemSize ) {
console.warn( 'THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setDynamic( true ) instead.' );
return new THREE.BufferAttribute( array, itemSize ).setDynamic( true );
};
// File:src/core/InstancedBufferAttribute.js
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
THREE.InstancedBufferAttribute = function ( array, itemSize, meshPerAttribute ) {
THREE.BufferAttribute.call( this, array, itemSize );
this.meshPerAttribute = meshPerAttribute || 1;
};
THREE.InstancedBufferAttribute.prototype = Object.create( THREE.BufferAttribute.prototype );
THREE.InstancedBufferAttribute.prototype.constructor = THREE.InstancedBufferAttribute;
THREE.InstancedBufferAttribute.prototype.copy = function ( source ) {
THREE.BufferAttribute.prototype.copy.call( this, source );
this.meshPerAttribute = source.meshPerAttribute;
return this;
};
// File:src/core/InterleavedBuffer.js
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
THREE.InterleavedBuffer = function ( array, stride ) {
this.uuid = THREE.Math.generateUUID();
this.array = array;
this.stride = stride;
this.dynamic = false;
this.updateRange = { offset: 0, count: - 1 };
this.version = 0;
};
THREE.InterleavedBuffer.prototype = {
constructor: THREE.InterleavedBuffer,
get length () {
return this.array.length;
},
get count () {
return this.array.length / this.stride;
},
set needsUpdate( value ) {
if ( value === true ) this.version ++;
},
setDynamic: function ( value ) {
this.dynamic = value;
return this;
},
copy: function ( source ) {
this.array = new source.array.constructor( source.array );
this.stride = source.stride;
this.dynamic = source.dynamic;
return this;
},
copyAt: function ( index1, attribute, index2 ) {
index1 *= this.stride;
index2 *= attribute.stride;
for ( var i = 0, l = this.stride; i < l; i ++ ) {
this.array[ index1 + i ] = attribute.array[ index2 + i ];
}
return this;
},
set: function ( value, offset ) {
if ( offset === undefined ) offset = 0;
this.array.set( value, offset );
return this;
},
clone: function () {
return new this.constructor().copy( this );
}
};
// File:src/core/InstancedInterleavedBuffer.js
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
THREE.InstancedInterleavedBuffer = function ( array, stride, meshPerAttribute ) {
THREE.InterleavedBuffer.call( this, array, stride );
this.meshPerAttribute = meshPerAttribute || 1;
};
THREE.InstancedInterleavedBuffer.prototype = Object.create( THREE.InterleavedBuffer.prototype );
THREE.InstancedInterleavedBuffer.prototype.constructor = THREE.InstancedInterleavedBuffer;
THREE.InstancedInterleavedBuffer.prototype.copy = function ( source ) {
THREE.InterleavedBuffer.prototype.copy.call( this, source );
this.meshPerAttribute = source.meshPerAttribute;
return this;
};
// File:src/core/InterleavedBufferAttribute.js
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
THREE.InterleavedBufferAttribute = function ( interleavedBuffer, itemSize, offset ) {
this.uuid = THREE.Math.generateUUID();
this.data = interleavedBuffer;
this.itemSize = itemSize;
this.offset = offset;
};
THREE.InterleavedBufferAttribute.prototype = {
constructor: THREE.InterleavedBufferAttribute,
get length() {
console.warn( 'THREE.BufferAttribute: .length has been deprecated. Please use .count.' );
return this.array.length;
},
get count() {
return this.data.count;
},
setX: function ( index, x ) {
this.data.array[ index * this.data.stride + this.offset ] = x;
return this;
},
setY: function ( index, y ) {
this.data.array[ index * this.data.stride + this.offset + 1 ] = y;
return this;
},
setZ: function ( index, z ) {
this.data.array[ index * this.data.stride + this.offset + 2 ] = z;
return this;
},
setW: function ( index, w ) {
this.data.array[ index * this.data.stride + this.offset + 3 ] = w;
return this;
},
getX: function ( index ) {
return this.data.array[ index * this.data.stride + this.offset ];
},
getY: function ( index ) {
return this.data.array[ index * this.data.stride + this.offset + 1 ];
},
getZ: function ( index ) {
return this.data.array[ index * this.data.stride + this.offset + 2 ];
},
getW: function ( index ) {
return this.data.array[ index * this.data.stride + this.offset + 3 ];
},
setXY: function ( index, x, y ) {
index = index * this.data.stride + this.offset;
this.data.array[ index + 0 ] = x;
this.data.array[ index + 1 ] = y;
return this;
},
setXYZ: function ( index, x, y, z ) {
index = index * this.data.stride + this.offset;
this.data.array[ index + 0 ] = x;
this.data.array[ index + 1 ] = y;
this.data.array[ index + 2 ] = z;
return this;
},
setXYZW: function ( index, x, y, z, w ) {
index = index * this.data.stride + this.offset;
this.data.array[ index + 0 ] = x;
this.data.array[ index + 1 ] = y;
this.data.array[ index + 2 ] = z;
this.data.array[ index + 3 ] = w;
return this;
}
};
// File:src/core/Geometry.js
/**
* @author mrdoob / http://mrdoob.com/
* @author kile / http://kile.stravaganza.org/
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author bhouston / http://clara.io
*/
THREE.Geometry = function () {
Object.defineProperty( this, 'id', { value: THREE.GeometryIdCount ++ } );
this.uuid = THREE.Math.generateUUID();
this.name = '';
this.type = 'Geometry';
this.vertices = [];
this.colors = [];
this.faces = [];
this.faceVertexUvs = [ [] ];
this.morphTargets = [];
this.morphNormals = [];
this.skinWeights = [];
this.skinIndices = [];
this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null;
// update flags
this.verticesNeedUpdate = false;
this.elementsNeedUpdate = false;
this.uvsNeedUpdate = false;
this.normalsNeedUpdate = false;
this.colorsNeedUpdate = false;
this.lineDistancesNeedUpdate = false;
this.groupsNeedUpdate = false;
};
THREE.Geometry.prototype = {
constructor: THREE.Geometry,
applyMatrix: function ( matrix ) {
var normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix );
for ( var i = 0, il = this.vertices.length; i < il; i ++ ) {
var vertex = this.vertices[ i ];
vertex.applyMatrix4( matrix );
}
for ( var i = 0, il = this.faces.length; i < il; i ++ ) {
var face = this.faces[ i ];
face.normal.applyMatrix3( normalMatrix ).normalize();
for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {
face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize();
}
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
this.verticesNeedUpdate = true;
this.normalsNeedUpdate = true;
return this;
},
rotateX: function () {
// rotate geometry around world x-axis
var m1;
return function rotateX( angle ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeRotationX( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateY: function () {
// rotate geometry around world y-axis
var m1;
return function rotateY( angle ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeRotationY( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateZ: function () {
// rotate geometry around world z-axis
var m1;
return function rotateZ( angle ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeRotationZ( angle );
this.applyMatrix( m1 );
return this;
};
}(),
translate: function () {
// translate geometry
var m1;
return function translate( x, y, z ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeTranslation( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
scale: function () {
// scale geometry
var m1;
return function scale( x, y, z ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeScale( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
lookAt: function () {
var obj;
return function lookAt( vector ) {
if ( obj === undefined ) obj = new THREE.Object3D();
obj.lookAt( vector );
obj.updateMatrix();
this.applyMatrix( obj.matrix );
};
}(),
fromBufferGeometry: function ( geometry ) {
var scope = this;
var indices = geometry.index !== null ? geometry.index.array : undefined;
var attributes = geometry.attributes;
var positions = attributes.position.array;
var normals = attributes.normal !== undefined ? attributes.normal.array : undefined;
var colors = attributes.color !== undefined ? attributes.color.array : undefined;
var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined;
var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined;
if ( uvs2 !== undefined ) this.faceVertexUvs[ 1 ] = [];
var tempNormals = [];
var tempUVs = [];
var tempUVs2 = [];
for ( var i = 0, j = 0; i < positions.length; i += 3, j += 2 ) {
scope.vertices.push( new THREE.Vector3( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ) );
if ( normals !== undefined ) {
tempNormals.push( new THREE.Vector3( normals[ i ], normals[ i + 1 ], normals[ i + 2 ] ) );
}
if ( colors !== undefined ) {
scope.colors.push( new THREE.Color( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ) );
}
if ( uvs !== undefined ) {
tempUVs.push( new THREE.Vector2( uvs[ j ], uvs[ j + 1 ] ) );
}
if ( uvs2 !== undefined ) {
tempUVs2.push( new THREE.Vector2( uvs2[ j ], uvs2[ j + 1 ] ) );
}
}
function addFace( a, b, c, materialIndex ) {
var vertexNormals = normals !== undefined ? [ tempNormals[ a ].clone(), tempNormals[ b ].clone(), tempNormals[ c ].clone() ] : [];
var vertexColors = colors !== undefined ? [ scope.colors[ a ].clone(), scope.colors[ b ].clone(), scope.colors[ c ].clone() ] : [];
var face = new THREE.Face3( a, b, c, vertexNormals, vertexColors, materialIndex );
scope.faces.push( face );
if ( uvs !== undefined ) {
scope.faceVertexUvs[ 0 ].push( [ tempUVs[ a ].clone(), tempUVs[ b ].clone(), tempUVs[ c ].clone() ] );
}
if ( uvs2 !== undefined ) {
scope.faceVertexUvs[ 1 ].push( [ tempUVs2[ a ].clone(), tempUVs2[ b ].clone(), tempUVs2[ c ].clone() ] );
}
}
if ( indices !== undefined ) {
var groups = geometry.groups;
if ( groups.length > 0 ) {
for ( var i = 0; i < groups.length; i ++ ) {
var group = groups[ i ];
var start = group.start;
var count = group.count;
for ( var j = start, jl = start + count; j < jl; j += 3 ) {
addFace( indices[ j ], indices[ j + 1 ], indices[ j + 2 ], group.materialIndex );
}
}
} else {
for ( var i = 0; i < indices.length; i += 3 ) {
addFace( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] );
}
}
} else {
for ( var i = 0; i < positions.length / 3; i += 3 ) {
addFace( i, i + 1, i + 2 );
}
}
this.computeFaceNormals();
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
return this;
},
center: function () {
this.computeBoundingBox();
var offset = this.boundingBox.center().negate();
this.translate( offset.x, offset.y, offset.z );
return offset;
},
normalize: function () {
this.computeBoundingSphere();
var center = this.boundingSphere.center;
var radius = this.boundingSphere.radius;
var s = radius === 0 ? 1 : 1.0 / radius;
var matrix = new THREE.Matrix4();
matrix.set(
s, 0, 0, - s * center.x,
0, s, 0, - s * center.y,
0, 0, s, - s * center.z,
0, 0, 0, 1
);
this.applyMatrix( matrix );
return this;
},
computeFaceNormals: function () {
var cb = new THREE.Vector3(), ab = new THREE.Vector3();
for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) {
var face = this.faces[ f ];
var vA = this.vertices[ face.a ];
var vB = this.vertices[ face.b ];
var vC = this.vertices[ face.c ];
cb.subVectors( vC, vB );
ab.subVectors( vA, vB );
cb.cross( ab );
cb.normalize();
face.normal.copy( cb );
}
},
computeVertexNormals: function ( areaWeighted ) {
if ( areaWeighted === undefined ) areaWeighted = true;
var v, vl, f, fl, face, vertices;
vertices = new Array( this.vertices.length );
for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ] = new THREE.Vector3();
}
if ( areaWeighted ) {
// vertex normals weighted by triangle areas
// http://www.iquilezles.org/www/articles/normals/normals.htm
var vA, vB, vC;
var cb = new THREE.Vector3(), ab = new THREE.Vector3();
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
vA = this.vertices[ face.a ];
vB = this.vertices[ face.b ];
vC = this.vertices[ face.c ];
cb.subVectors( vC, vB );
ab.subVectors( vA, vB );
cb.cross( ab );
vertices[ face.a ].add( cb );
vertices[ face.b ].add( cb );
vertices[ face.c ].add( cb );
}
} else {
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
vertices[ face.a ].add( face.normal );
vertices[ face.b ].add( face.normal );
vertices[ face.c ].add( face.normal );
}
}
for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ].normalize();
}
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
var vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
vertexNormals[ 0 ].copy( vertices[ face.a ] );
vertexNormals[ 1 ].copy( vertices[ face.b ] );
vertexNormals[ 2 ].copy( vertices[ face.c ] );
} else {
vertexNormals[ 0 ] = vertices[ face.a ].clone();
vertexNormals[ 1 ] = vertices[ face.b ].clone();
vertexNormals[ 2 ] = vertices[ face.c ].clone();
}
}
if ( this.faces.length > 0 ) {
this.normalsNeedUpdate = true;
}
},
computeMorphNormals: function () {
var i, il, f, fl, face;
// save original normals
// - create temp variables on first access
// otherwise just copy (for faster repeated calls)
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
if ( ! face.__originalFaceNormal ) {
face.__originalFaceNormal = face.normal.clone();
} else {
face.__originalFaceNormal.copy( face.normal );
}
if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = [];
for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) {
if ( ! face.__originalVertexNormals[ i ] ) {
face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone();
} else {
face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] );
}
}
}
// use temp geometry to compute face and vertex normals for each morph
var tmpGeo = new THREE.Geometry();
tmpGeo.faces = this.faces;
for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) {
// create on first access
if ( ! this.morphNormals[ i ] ) {
this.morphNormals[ i ] = {};
this.morphNormals[ i ].faceNormals = [];
this.morphNormals[ i ].vertexNormals = [];
var dstNormalsFace = this.morphNormals[ i ].faceNormals;
var dstNormalsVertex = this.morphNormals[ i ].vertexNormals;
var faceNormal, vertexNormals;
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
faceNormal = new THREE.Vector3();
vertexNormals = { a: new THREE.Vector3(), b: new THREE.Vector3(), c: new THREE.Vector3() };
dstNormalsFace.push( faceNormal );
dstNormalsVertex.push( vertexNormals );
}
}
var morphNormals = this.morphNormals[ i ];
// set vertices to morph target
tmpGeo.vertices = this.morphTargets[ i ].vertices;
// compute morph normals
tmpGeo.computeFaceNormals();
tmpGeo.computeVertexNormals();
// store morph normals
var faceNormal, vertexNormals;
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
faceNormal = morphNormals.faceNormals[ f ];
vertexNormals = morphNormals.vertexNormals[ f ];
faceNormal.copy( face.normal );
vertexNormals.a.copy( face.vertexNormals[ 0 ] );
vertexNormals.b.copy( face.vertexNormals[ 1 ] );
vertexNormals.c.copy( face.vertexNormals[ 2 ] );
}
}
// restore original normals
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
face.normal = face.__originalFaceNormal;
face.vertexNormals = face.__originalVertexNormals;
}
},
computeTangents: function () {
console.warn( 'THREE.Geometry: .computeTangents() has been removed.' );
},
computeLineDistances: function () {
var d = 0;
var vertices = this.vertices;
for ( var i = 0, il = vertices.length; i < il; i ++ ) {
if ( i > 0 ) {
d += vertices[ i ].distanceTo( vertices[ i - 1 ] );
}
this.lineDistances[ i ] = d;
}
},
computeBoundingBox: function () {
if ( this.boundingBox === null ) {
this.boundingBox = new THREE.Box3();
}
this.boundingBox.setFromPoints( this.vertices );
},
computeBoundingSphere: function () {
if ( this.boundingSphere === null ) {
this.boundingSphere = new THREE.Sphere();
}
this.boundingSphere.setFromPoints( this.vertices );
},
merge: function ( geometry, matrix, materialIndexOffset ) {
if ( geometry instanceof THREE.Geometry === false ) {
console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry );
return;
}
var normalMatrix,
vertexOffset = this.vertices.length,
vertices1 = this.vertices,
vertices2 = geometry.vertices,
faces1 = this.faces,
faces2 = geometry.faces,
uvs1 = this.faceVertexUvs[ 0 ],
uvs2 = geometry.faceVertexUvs[ 0 ];
if ( materialIndexOffset === undefined ) materialIndexOffset = 0;
if ( matrix !== undefined ) {
normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix );
}
// vertices
for ( var i = 0, il = vertices2.length; i < il; i ++ ) {
var vertex = vertices2[ i ];
var vertexCopy = vertex.clone();
if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix );
vertices1.push( vertexCopy );
}
// faces
for ( i = 0, il = faces2.length; i < il; i ++ ) {
var face = faces2[ i ], faceCopy, normal, color,
faceVertexNormals = face.vertexNormals,
faceVertexColors = face.vertexColors;
faceCopy = new THREE.Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset );
faceCopy.normal.copy( face.normal );
if ( normalMatrix !== undefined ) {
faceCopy.normal.applyMatrix3( normalMatrix ).normalize();
}
for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) {
normal = faceVertexNormals[ j ].clone();
if ( normalMatrix !== undefined ) {
normal.applyMatrix3( normalMatrix ).normalize();
}
faceCopy.vertexNormals.push( normal );
}
faceCopy.color.copy( face.color );
for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) {
color = faceVertexColors[ j ];
faceCopy.vertexColors.push( color.clone() );
}
faceCopy.materialIndex = face.materialIndex + materialIndexOffset;
faces1.push( faceCopy );
}
// uvs
for ( i = 0, il = uvs2.length; i < il; i ++ ) {
var uv = uvs2[ i ], uvCopy = [];
if ( uv === undefined ) {
continue;
}
for ( var j = 0, jl = uv.length; j < jl; j ++ ) {
uvCopy.push( uv[ j ].clone() );
}
uvs1.push( uvCopy );
}
},
mergeMesh: function ( mesh ) {
if ( mesh instanceof THREE.Mesh === false ) {
console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh );
return;
}
mesh.matrixAutoUpdate && mesh.updateMatrix();
this.merge( mesh.geometry, mesh.matrix );
},
/*
* Checks for duplicate vertices with hashmap.
* Duplicated vertices are removed
* and faces' vertices are updated.
*/
mergeVertices: function () {
var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique)
var unique = [], changes = [];
var v, key;
var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001
var precision = Math.pow( 10, precisionPoints );
var i, il, face;
var indices, j, jl;
for ( i = 0, il = this.vertices.length; i < il; i ++ ) {
v = this.vertices[ i ];
key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision );
if ( verticesMap[ key ] === undefined ) {
verticesMap[ key ] = i;
unique.push( this.vertices[ i ] );
changes[ i ] = unique.length - 1;
} else {
//console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]);
changes[ i ] = changes[ verticesMap[ key ] ];
}
}
// if faces are completely degenerate after merging vertices, we
// have to remove them from the geometry.
var faceIndicesToRemove = [];
for ( i = 0, il = this.faces.length; i < il; i ++ ) {
face = this.faces[ i ];
face.a = changes[ face.a ];
face.b = changes[ face.b ];
face.c = changes[ face.c ];
indices = [ face.a, face.b, face.c ];
var dupIndex = - 1;
// if any duplicate vertices are found in a Face3
// we have to remove the face as nothing can be saved
for ( var n = 0; n < 3; n ++ ) {
if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) {
dupIndex = n;
faceIndicesToRemove.push( i );
break;
}
}
}
for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) {
var idx = faceIndicesToRemove[ i ];
this.faces.splice( idx, 1 );
for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) {
this.faceVertexUvs[ j ].splice( idx, 1 );
}
}
// Use unique set of vertices
var diff = this.vertices.length - unique.length;
this.vertices = unique;
return diff;
},
sortFacesByMaterialIndex: function () {
var faces = this.faces;
var length = faces.length;
// tag faces
for ( var i = 0; i < length; i ++ ) {
faces[ i ]._id = i;
}
// sort faces
function materialIndexSort( a, b ) {
return a.materialIndex - b.materialIndex;
}
faces.sort( materialIndexSort );
// sort uvs
var uvs1 = this.faceVertexUvs[ 0 ];
var uvs2 = this.faceVertexUvs[ 1 ];
var newUvs1, newUvs2;
if ( uvs1 && uvs1.length === length ) newUvs1 = [];
if ( uvs2 && uvs2.length === length ) newUvs2 = [];
for ( var i = 0; i < length; i ++ ) {
var id = faces[ i ]._id;
if ( newUvs1 ) newUvs1.push( uvs1[ id ] );
if ( newUvs2 ) newUvs2.push( uvs2[ id ] );
}
if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1;
if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2;
},
toJSON: function () {
var data = {
metadata: {
version: 4.4,
type: 'Geometry',
generator: 'Geometry.toJSON'
}
};
// standard Geometry serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.parameters !== undefined ) {
var parameters = this.parameters;
for ( var key in parameters ) {
if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
}
return data;
}
var vertices = [];
for ( var i = 0; i < this.vertices.length; i ++ ) {
var vertex = this.vertices[ i ];
vertices.push( vertex.x, vertex.y, vertex.z );
}
var faces = [];
var normals = [];
var normalsHash = {};
var colors = [];
var colorsHash = {};
var uvs = [];
var uvsHash = {};
for ( var i = 0; i < this.faces.length; i ++ ) {
var face = this.faces[ i ];
var hasMaterial = true;
var hasFaceUv = false; // deprecated
var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined;
var hasFaceNormal = face.normal.length() > 0;
var hasFaceVertexNormal = face.vertexNormals.length > 0;
var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1;
var hasFaceVertexColor = face.vertexColors.length > 0;
var faceType = 0;
faceType = setBit( faceType, 0, 0 ); // isQuad
faceType = setBit( faceType, 1, hasMaterial );
faceType = setBit( faceType, 2, hasFaceUv );
faceType = setBit( faceType, 3, hasFaceVertexUv );
faceType = setBit( faceType, 4, hasFaceNormal );
faceType = setBit( faceType, 5, hasFaceVertexNormal );
faceType = setBit( faceType, 6, hasFaceColor );
faceType = setBit( faceType, 7, hasFaceVertexColor );
faces.push( faceType );
faces.push( face.a, face.b, face.c );
faces.push( face.materialIndex );
if ( hasFaceVertexUv ) {
var faceVertexUvs = this.faceVertexUvs[ 0 ][ i ];
faces.push(
getUvIndex( faceVertexUvs[ 0 ] ),
getUvIndex( faceVertexUvs[ 1 ] ),
getUvIndex( faceVertexUvs[ 2 ] )
);
}
if ( hasFaceNormal ) {
faces.push( getNormalIndex( face.normal ) );
}
if ( hasFaceVertexNormal ) {
var vertexNormals = face.vertexNormals;
faces.push(
getNormalIndex( vertexNormals[ 0 ] ),
getNormalIndex( vertexNormals[ 1 ] ),
getNormalIndex( vertexNormals[ 2 ] )
);
}
if ( hasFaceColor ) {
faces.push( getColorIndex( face.color ) );
}
if ( hasFaceVertexColor ) {
var vertexColors = face.vertexColors;
faces.push(
getColorIndex( vertexColors[ 0 ] ),
getColorIndex( vertexColors[ 1 ] ),
getColorIndex( vertexColors[ 2 ] )
);
}
}
function setBit( value, position, enabled ) {
return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) );
}
function getNormalIndex( normal ) {
var hash = normal.x.toString() + normal.y.toString() + normal.z.toString();
if ( normalsHash[ hash ] !== undefined ) {
return normalsHash[ hash ];
}
normalsHash[ hash ] = normals.length / 3;
normals.push( normal.x, normal.y, normal.z );
return normalsHash[ hash ];
}
function getColorIndex( color ) {
var hash = color.r.toString() + color.g.toString() + color.b.toString();
if ( colorsHash[ hash ] !== undefined ) {
return colorsHash[ hash ];
}
colorsHash[ hash ] = colors.length;
colors.push( color.getHex() );
return colorsHash[ hash ];
}
function getUvIndex( uv ) {
var hash = uv.x.toString() + uv.y.toString();
if ( uvsHash[ hash ] !== undefined ) {
return uvsHash[ hash ];
}
uvsHash[ hash ] = uvs.length / 2;
uvs.push( uv.x, uv.y );
return uvsHash[ hash ];
}
data.data = {};
data.data.vertices = vertices;
data.data.normals = normals;
if ( colors.length > 0 ) data.data.colors = colors;
if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility
data.data.faces = faces;
return data;
},
clone: function () {
/*
// Handle primitives
var parameters = this.parameters;
if ( parameters !== undefined ) {
var values = [];
for ( var key in parameters ) {
values.push( parameters[ key ] );
}
var geometry = Object.create( this.constructor.prototype );
this.constructor.apply( geometry, values );
return geometry;
}
return new this.constructor().copy( this );
*/
return new THREE.Geometry().copy( this );
},
copy: function ( source ) {
this.vertices = [];
this.faces = [];
this.faceVertexUvs = [ [] ];
var vertices = source.vertices;
for ( var i = 0, il = vertices.length; i < il; i ++ ) {
this.vertices.push( vertices[ i ].clone() );
}
var faces = source.faces;
for ( var i = 0, il = faces.length; i < il; i ++ ) {
this.faces.push( faces[ i ].clone() );
}
for ( var i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) {
var faceVertexUvs = source.faceVertexUvs[ i ];
if ( this.faceVertexUvs[ i ] === undefined ) {
this.faceVertexUvs[ i ] = [];
}
for ( var j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) {
var uvs = faceVertexUvs[ j ], uvsCopy = [];
for ( var k = 0, kl = uvs.length; k < kl; k ++ ) {
var uv = uvs[ k ];
uvsCopy.push( uv.clone() );
}
this.faceVertexUvs[ i ].push( uvsCopy );
}
}
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
};
THREE.EventDispatcher.prototype.apply( THREE.Geometry.prototype );
THREE.GeometryIdCount = 0;
// File:src/core/DirectGeometry.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.DirectGeometry = function () {
Object.defineProperty( this, 'id', { value: THREE.GeometryIdCount ++ } );
this.uuid = THREE.Math.generateUUID();
this.name = '';
this.type = 'DirectGeometry';
this.indices = [];
this.vertices = [];
this.normals = [];
this.colors = [];
this.uvs = [];
this.uvs2 = [];
this.groups = [];
this.morphTargets = {};
this.skinWeights = [];
this.skinIndices = [];
// this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null;
// update flags
this.verticesNeedUpdate = false;
this.normalsNeedUpdate = false;
this.colorsNeedUpdate = false;
this.uvsNeedUpdate = false;
this.groupsNeedUpdate = false;
};
THREE.DirectGeometry.prototype = {
constructor: THREE.DirectGeometry,
computeBoundingBox: THREE.Geometry.prototype.computeBoundingBox,
computeBoundingSphere: THREE.Geometry.prototype.computeBoundingSphere,
computeFaceNormals: function () {
console.warn( 'THREE.DirectGeometry: computeFaceNormals() is not a method of this type of geometry.' );
},
computeVertexNormals: function () {
console.warn( 'THREE.DirectGeometry: computeVertexNormals() is not a method of this type of geometry.' );
},
computeGroups: function ( geometry ) {
var group;
var groups = [];
var materialIndex;
var faces = geometry.faces;
for ( var i = 0; i < faces.length; i ++ ) {
var face = faces[ i ];
// materials
if ( face.materialIndex !== materialIndex ) {
materialIndex = face.materialIndex;
if ( group !== undefined ) {
group.count = ( i * 3 ) - group.start;
groups.push( group );
}
group = {
start: i * 3,
materialIndex: materialIndex
};
}
}
if ( group !== undefined ) {
group.count = ( i * 3 ) - group.start;
groups.push( group );
}
this.groups = groups;
},
fromGeometry: function ( geometry ) {
var faces = geometry.faces;
var vertices = geometry.vertices;
var faceVertexUvs = geometry.faceVertexUvs;
var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0;
var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0;
// morphs
var morphTargets = geometry.morphTargets;
var morphTargetsLength = morphTargets.length;
var morphTargetsPosition;
if ( morphTargetsLength > 0 ) {
morphTargetsPosition = [];
for ( var i = 0; i < morphTargetsLength; i ++ ) {
morphTargetsPosition[ i ] = [];
}
this.morphTargets.position = morphTargetsPosition;
}
var morphNormals = geometry.morphNormals;
var morphNormalsLength = morphNormals.length;
var morphTargetsNormal;
if ( morphNormalsLength > 0 ) {
morphTargetsNormal = [];
for ( var i = 0; i < morphNormalsLength; i ++ ) {
morphTargetsNormal[ i ] = [];
}
this.morphTargets.normal = morphTargetsNormal;
}
// skins
var skinIndices = geometry.skinIndices;
var skinWeights = geometry.skinWeights;
var hasSkinIndices = skinIndices.length === vertices.length;
var hasSkinWeights = skinWeights.length === vertices.length;
//
for ( var i = 0; i < faces.length; i ++ ) {
var face = faces[ i ];
this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] );
var vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] );
} else {
var normal = face.normal;
this.normals.push( normal, normal, normal );
}
var vertexColors = face.vertexColors;
if ( vertexColors.length === 3 ) {
this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] );
} else {
var color = face.color;
this.colors.push( color, color, color );
}
if ( hasFaceVertexUv === true ) {
var vertexUvs = faceVertexUvs[ 0 ][ i ];
if ( vertexUvs !== undefined ) {
this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
} else {
console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i );
this.uvs.push( new THREE.Vector2(), new THREE.Vector2(), new THREE.Vector2() );
}
}
if ( hasFaceVertexUv2 === true ) {
var vertexUvs = faceVertexUvs[ 1 ][ i ];
if ( vertexUvs !== undefined ) {
this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
} else {
console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i );
this.uvs2.push( new THREE.Vector2(), new THREE.Vector2(), new THREE.Vector2() );
}
}
// morphs
for ( var j = 0; j < morphTargetsLength; j ++ ) {
var morphTarget = morphTargets[ j ].vertices;
morphTargetsPosition[ j ].push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] );
}
for ( var j = 0; j < morphNormalsLength; j ++ ) {
var morphNormal = morphNormals[ j ].vertexNormals[ i ];
morphTargetsNormal[ j ].push( morphNormal.a, morphNormal.b, morphNormal.c );
}
// skins
if ( hasSkinIndices ) {
this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] );
}
if ( hasSkinWeights ) {
this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] );
}
}
this.computeGroups( geometry );
this.verticesNeedUpdate = geometry.verticesNeedUpdate;
this.normalsNeedUpdate = geometry.normalsNeedUpdate;
this.colorsNeedUpdate = geometry.colorsNeedUpdate;
this.uvsNeedUpdate = geometry.uvsNeedUpdate;
this.groupsNeedUpdate = geometry.groupsNeedUpdate;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
};
THREE.EventDispatcher.prototype.apply( THREE.DirectGeometry.prototype );
// File:src/core/BufferGeometry.js
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
THREE.BufferGeometry = function () {
Object.defineProperty( this, 'id', { value: THREE.GeometryIdCount ++ } );
this.uuid = THREE.Math.generateUUID();
this.name = '';
this.type = 'BufferGeometry';
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
this.drawRange = { start: 0, count: Infinity };
};
THREE.BufferGeometry.prototype = {
constructor: THREE.BufferGeometry,
getIndex: function () {
return this.index;
},
setIndex: function ( index ) {
this.index = index;
},
addAttribute: function ( name, attribute ) {
if ( attribute instanceof THREE.BufferAttribute === false && attribute instanceof THREE.InterleavedBufferAttribute === false ) {
console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' );
this.addAttribute( name, new THREE.BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) );
return;
}
if ( name === 'index' ) {
console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' );
this.setIndex( attribute );
return;
}
this.attributes[ name ] = attribute;
return this;
},
getAttribute: function ( name ) {
return this.attributes[ name ];
},
removeAttribute: function ( name ) {
delete this.attributes[ name ];
return this;
},
addGroup: function ( start, count, materialIndex ) {
this.groups.push( {
start: start,
count: count,
materialIndex: materialIndex !== undefined ? materialIndex : 0
} );
},
clearGroups: function () {
this.groups = [];
},
setDrawRange: function ( start, count ) {
this.drawRange.start = start;
this.drawRange.count = count;
},
applyMatrix: function ( matrix ) {
var position = this.attributes.position;
if ( position !== undefined ) {
matrix.applyToVector3Array( position.array );
position.needsUpdate = true;
}
var normal = this.attributes.normal;
if ( normal !== undefined ) {
var normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix );
normalMatrix.applyToVector3Array( normal.array );
normal.needsUpdate = true;
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
return this;
},
rotateX: function () {
// rotate geometry around world x-axis
var m1;
return function rotateX( angle ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeRotationX( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateY: function () {
// rotate geometry around world y-axis
var m1;
return function rotateY( angle ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeRotationY( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateZ: function () {
// rotate geometry around world z-axis
var m1;
return function rotateZ( angle ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeRotationZ( angle );
this.applyMatrix( m1 );
return this;
};
}(),
translate: function () {
// translate geometry
var m1;
return function translate( x, y, z ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeTranslation( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
scale: function () {
// scale geometry
var m1;
return function scale( x, y, z ) {
if ( m1 === undefined ) m1 = new THREE.Matrix4();
m1.makeScale( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
lookAt: function () {
var obj;
return function lookAt( vector ) {
if ( obj === undefined ) obj = new THREE.Object3D();
obj.lookAt( vector );
obj.updateMatrix();
this.applyMatrix( obj.matrix );
};
}(),
center: function () {
this.computeBoundingBox();
var offset = this.boundingBox.center().negate();
this.translate( offset.x, offset.y, offset.z );
return offset;
},
setFromObject: function ( object ) {
// console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this );
var geometry = object.geometry;
if ( object instanceof THREE.Points || object instanceof THREE.Line ) {
var positions = new THREE.Float32Attribute( geometry.vertices.length * 3, 3 );
var colors = new THREE.Float32Attribute( geometry.colors.length * 3, 3 );
this.addAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) );
this.addAttribute( 'color', colors.copyColorsArray( geometry.colors ) );
if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) {
var lineDistances = new THREE.Float32Attribute( geometry.lineDistances.length, 1 );
this.addAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) );
}
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
} else if ( object instanceof THREE.Mesh ) {
if ( geometry instanceof THREE.Geometry ) {
this.fromGeometry( geometry );
}
}
return this;
},
updateFromObject: function ( object ) {
var geometry = object.geometry;
if ( object instanceof THREE.Mesh ) {
var direct = geometry.__directGeometry;
if ( direct === undefined ) {
return this.fromGeometry( geometry );
}
direct.verticesNeedUpdate = geometry.verticesNeedUpdate;
direct.normalsNeedUpdate = geometry.normalsNeedUpdate;
direct.colorsNeedUpdate = geometry.colorsNeedUpdate;
direct.uvsNeedUpdate = geometry.uvsNeedUpdate;
direct.groupsNeedUpdate = geometry.groupsNeedUpdate;
geometry.verticesNeedUpdate = false;
geometry.normalsNeedUpdate = false;
geometry.colorsNeedUpdate = false;
geometry.uvsNeedUpdate = false;
geometry.groupsNeedUpdate = false;
geometry = direct;
}
if ( geometry.verticesNeedUpdate === true ) {
var attribute = this.attributes.position;
if ( attribute !== undefined ) {
attribute.copyVector3sArray( geometry.vertices );
attribute.needsUpdate = true;
}
geometry.verticesNeedUpdate = false;
}
if ( geometry.normalsNeedUpdate === true ) {
var attribute = this.attributes.normal;
if ( attribute !== undefined ) {
attribute.copyVector3sArray( geometry.normals );
attribute.needsUpdate = true;
}
geometry.normalsNeedUpdate = false;
}
if ( geometry.colorsNeedUpdate === true ) {
var attribute = this.attributes.color;
if ( attribute !== undefined ) {
attribute.copyColorsArray( geometry.colors );
attribute.needsUpdate = true;
}
geometry.colorsNeedUpdate = false;
}
if ( geometry.uvsNeedUpdate ) {
var attribute = this.attributes.uv;
if ( attribute !== undefined ) {
attribute.copyVector2sArray( geometry.uvs );
attribute.needsUpdate = true;
}
geometry.uvsNeedUpdate = false;
}
if ( geometry.lineDistancesNeedUpdate ) {
var attribute = this.attributes.lineDistance;
if ( attribute !== undefined ) {
attribute.copyArray( geometry.lineDistances );
attribute.needsUpdate = true;
}
geometry.lineDistancesNeedUpdate = false;
}
if ( geometry.groupsNeedUpdate ) {
geometry.computeGroups( object.geometry );
this.groups = geometry.groups;
geometry.groupsNeedUpdate = false;
}
return this;
},
fromGeometry: function ( geometry ) {
geometry.__directGeometry = new THREE.DirectGeometry().fromGeometry( geometry );
return this.fromDirectGeometry( geometry.__directGeometry );
},
fromDirectGeometry: function ( geometry ) {
var positions = new Float32Array( geometry.vertices.length * 3 );
this.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) );
if ( geometry.normals.length > 0 ) {
var normals = new Float32Array( geometry.normals.length * 3 );
this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) );
}
if ( geometry.colors.length > 0 ) {
var colors = new Float32Array( geometry.colors.length * 3 );
this.addAttribute( 'color', new THREE.BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) );
}
if ( geometry.uvs.length > 0 ) {
var uvs = new Float32Array( geometry.uvs.length * 2 );
this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) );
}
if ( geometry.uvs2.length > 0 ) {
var uvs2 = new Float32Array( geometry.uvs2.length * 2 );
this.addAttribute( 'uv2', new THREE.BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) );
}
if ( geometry.indices.length > 0 ) {
var TypeArray = geometry.vertices.length > 65535 ? Uint32Array : Uint16Array;
var indices = new TypeArray( geometry.indices.length * 3 );
this.setIndex( new THREE.BufferAttribute( indices, 1 ).copyIndicesArray( geometry.indices ) );
}
// groups
this.groups = geometry.groups;
// morphs
for ( var name in geometry.morphTargets ) {
var array = [];
var morphTargets = geometry.morphTargets[ name ];
for ( var i = 0, l = morphTargets.length; i < l; i ++ ) {
var morphTarget = morphTargets[ i ];
var attribute = new THREE.Float32Attribute( morphTarget.length * 3, 3 );
array.push( attribute.copyVector3sArray( morphTarget ) );
}
this.morphAttributes[ name ] = array;
}
// skinning
if ( geometry.skinIndices.length > 0 ) {
var skinIndices = new THREE.Float32Attribute( geometry.skinIndices.length * 4, 4 );
this.addAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) );
}
if ( geometry.skinWeights.length > 0 ) {
var skinWeights = new THREE.Float32Attribute( geometry.skinWeights.length * 4, 4 );
this.addAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) );
}
//
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
return this;
},
computeBoundingBox: function () {
if ( this.boundingBox === null ) {
this.boundingBox = new THREE.Box3();
}
var positions = this.attributes.position.array;
if ( positions !== undefined ) {
this.boundingBox.setFromArray( positions );
} else {
this.boundingBox.makeEmpty();
}
if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );
}
},
computeBoundingSphere: function () {
var box = new THREE.Box3();
var vector = new THREE.Vector3();
return function () {
if ( this.boundingSphere === null ) {
this.boundingSphere = new THREE.Sphere();
}
var positions = this.attributes.position.array;
if ( positions ) {
var center = this.boundingSphere.center;
box.setFromArray( positions );
box.center( center );
// hoping to find a boundingSphere with a radius smaller than the
// boundingSphere of the boundingBox: sqrt(3) smaller in the best case
var maxRadiusSq = 0;
for ( var i = 0, il = positions.length; i < il; i += 3 ) {
vector.fromArray( positions, i );
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( vector ) );
}
this.boundingSphere.radius = Math.sqrt( maxRadiusSq );
if ( isNaN( this.boundingSphere.radius ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );
}
}
};
}(),
computeFaceNormals: function () {
// backwards compatibility
},
computeVertexNormals: function () {
var index = this.index;
var attributes = this.attributes;
var groups = this.groups;
if ( attributes.position ) {
var positions = attributes.position.array;
if ( attributes.normal === undefined ) {
this.addAttribute( 'normal', new THREE.BufferAttribute( new Float32Array( positions.length ), 3 ) );
} else {
// reset existing normals to zero
var array = attributes.normal.array;
for ( var i = 0, il = array.length; i < il; i ++ ) {
array[ i ] = 0;
}
}
var normals = attributes.normal.array;
var vA, vB, vC,
pA = new THREE.Vector3(),
pB = new THREE.Vector3(),
pC = new THREE.Vector3(),
cb = new THREE.Vector3(),
ab = new THREE.Vector3();
// indexed elements
if ( index ) {
var indices = index.array;
if ( groups.length === 0 ) {
this.addGroup( 0, indices.length );
}
for ( var j = 0, jl = groups.length; j < jl; ++ j ) {
var group = groups[ j ];
var start = group.start;
var count = group.count;
for ( var i = start, il = start + count; i < il; i += 3 ) {
vA = indices[ i + 0 ] * 3;
vB = indices[ i + 1 ] * 3;
vC = indices[ i + 2 ] * 3;
pA.fromArray( positions, vA );
pB.fromArray( positions, vB );
pC.fromArray( positions, vC );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
normals[ vA ] += cb.x;
normals[ vA + 1 ] += cb.y;
normals[ vA + 2 ] += cb.z;
normals[ vB ] += cb.x;
normals[ vB + 1 ] += cb.y;
normals[ vB + 2 ] += cb.z;
normals[ vC ] += cb.x;
normals[ vC + 1 ] += cb.y;
normals[ vC + 2 ] += cb.z;
}
}
} else {
// non-indexed elements (unconnected triangle soup)
for ( var i = 0, il = positions.length; i < il; i += 9 ) {
pA.fromArray( positions, i );
pB.fromArray( positions, i + 3 );
pC.fromArray( positions, i + 6 );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
normals[ i ] = cb.x;
normals[ i + 1 ] = cb.y;
normals[ i + 2 ] = cb.z;
normals[ i + 3 ] = cb.x;
normals[ i + 4 ] = cb.y;
normals[ i + 5 ] = cb.z;
normals[ i + 6 ] = cb.x;
normals[ i + 7 ] = cb.y;
normals[ i + 8 ] = cb.z;
}
}
this.normalizeNormals();
attributes.normal.needsUpdate = true;
}
},
merge: function ( geometry, offset ) {
if ( geometry instanceof THREE.BufferGeometry === false ) {
console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry );
return;
}
if ( offset === undefined ) offset = 0;
var attributes = this.attributes;
for ( var key in attributes ) {
if ( geometry.attributes[ key ] === undefined ) continue;
var attribute1 = attributes[ key ];
var attributeArray1 = attribute1.array;
var attribute2 = geometry.attributes[ key ];
var attributeArray2 = attribute2.array;
var attributeSize = attribute2.itemSize;
for ( var i = 0, j = attributeSize * offset; i < attributeArray2.length; i ++, j ++ ) {
attributeArray1[ j ] = attributeArray2[ i ];
}
}
return this;
},
normalizeNormals: function () {
var normals = this.attributes.normal.array;
var x, y, z, n;
for ( var i = 0, il = normals.length; i < il; i += 3 ) {
x = normals[ i ];
y = normals[ i + 1 ];
z = normals[ i + 2 ];
n = 1.0 / Math.sqrt( x * x + y * y + z * z );
normals[ i ] *= n;
normals[ i + 1 ] *= n;
normals[ i + 2 ] *= n;
}
},
toNonIndexed: function () {
if ( this.index === null ) {
console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' );
return this;
}
var geometry2 = new THREE.BufferGeometry();
var indices = this.index.array;
var attributes = this.attributes;
for ( var name in attributes ) {
var attribute = attributes[ name ];
var array = attribute.array;
var itemSize = attribute.itemSize;
var array2 = new array.constructor( indices.length * itemSize );
var index = 0, index2 = 0;
for ( var i = 0, l = indices.length; i < l; i ++ ) {
index = indices[ i ] * itemSize;
for ( var j = 0; j < itemSize; j ++ ) {
array2[ index2 ++ ] = array[ index ++ ];
}
}
geometry2.addAttribute( name, new THREE.BufferAttribute( array2, itemSize ) );
}
return geometry2;
},
toJSON: function () {
var data = {
metadata: {
version: 4.4,
type: 'BufferGeometry',
generator: 'BufferGeometry.toJSON'
}
};
// standard BufferGeometry serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.parameters !== undefined ) {
var parameters = this.parameters;
for ( var key in parameters ) {
if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
}
return data;
}
data.data = { attributes: {} };
var index = this.index;
if ( index !== null ) {
var array = Array.prototype.slice.call( index.array );
data.data.index = {
type: index.array.constructor.name,
array: array
};
}
var attributes = this.attributes;
for ( var key in attributes ) {
var attribute = attributes[ key ];
var array = Array.prototype.slice.call( attribute.array );
data.data.attributes[ key ] = {
itemSize: attribute.itemSize,
type: attribute.array.constructor.name,
array: array,
normalized: attribute.normalized
};
}
var groups = this.groups;
if ( groups.length > 0 ) {
data.data.groups = JSON.parse( JSON.stringify( groups ) );
}
var boundingSphere = this.boundingSphere;
if ( boundingSphere !== null ) {
data.data.boundingSphere = {
center: boundingSphere.center.toArray(),
radius: boundingSphere.radius
};
}
return data;
},
clone: function () {
/*
// Handle primitives
var parameters = this.parameters;
if ( parameters !== undefined ) {
var values = [];
for ( var key in parameters ) {
values.push( parameters[ key ] );
}
var geometry = Object.create( this.constructor.prototype );
this.constructor.apply( geometry, values );
return geometry;
}
return new this.constructor().copy( this );
*/
return new THREE.BufferGeometry().copy( this );
},
copy: function ( source ) {
var index = source.index;
if ( index !== null ) {
this.setIndex( index.clone() );
}
var attributes = source.attributes;
for ( var name in attributes ) {
var attribute = attributes[ name ];
this.addAttribute( name, attribute.clone() );
}
var groups = source.groups;
for ( var i = 0, l = groups.length; i < l; i ++ ) {
var group = groups[ i ];
this.addGroup( group.start, group.count, group.materialIndex );
}
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
};
THREE.EventDispatcher.prototype.apply( THREE.BufferGeometry.prototype );
THREE.BufferGeometry.MaxIndex = 65535;
// File:src/core/InstancedBufferGeometry.js
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
THREE.InstancedBufferGeometry = function () {
THREE.BufferGeometry.call( this );
this.type = 'InstancedBufferGeometry';
this.maxInstancedCount = undefined;
};
THREE.InstancedBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.InstancedBufferGeometry.prototype.constructor = THREE.InstancedBufferGeometry;
THREE.InstancedBufferGeometry.prototype.addGroup = function ( start, count, instances ) {
this.groups.push( {
start: start,
count: count,
instances: instances
} );
};
THREE.InstancedBufferGeometry.prototype.copy = function ( source ) {
var index = source.index;
if ( index !== null ) {
this.setIndex( index.clone() );
}
var attributes = source.attributes;
for ( var name in attributes ) {
var attribute = attributes[ name ];
this.addAttribute( name, attribute.clone() );
}
var groups = source.groups;
for ( var i = 0, l = groups.length; i < l; i ++ ) {
var group = groups[ i ];
this.addGroup( group.start, group.count, group.instances );
}
return this;
};
THREE.EventDispatcher.prototype.apply( THREE.InstancedBufferGeometry.prototype );
// File:src/core/Uniform.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.Uniform = function ( value ) {
if ( typeof value === 'string' ) {
console.warn( 'THREE.Uniform: Type parameter is no longer needed.' );
value = arguments[ 1 ];
}
this.value = value;
this.dynamic = false;
};
THREE.Uniform.prototype = {
constructor: THREE.Uniform,
onUpdate: function ( callback ) {
this.dynamic = true;
this.onUpdateCallback = callback;
return this;
}
};
// File:src/animation/AnimationClip.js
/**
*
* Reusable set of Tracks that represent an animation.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
*/
THREE.AnimationClip = function ( name, duration, tracks ) {
this.name = name || THREE.Math.generateUUID();
this.tracks = tracks;
this.duration = ( duration !== undefined ) ? duration : -1;
// this means it should figure out its duration by scanning the tracks
if ( this.duration < 0 ) {
this.resetDuration();
}
// maybe only do these on demand, as doing them here could potentially slow down loading
// but leaving these here during development as this ensures a lot of testing of these functions
this.trim();
this.optimize();
};
THREE.AnimationClip.prototype = {
constructor: THREE.AnimationClip,
resetDuration: function() {
var tracks = this.tracks,
duration = 0;
for ( var i = 0, n = tracks.length; i !== n; ++ i ) {
var track = this.tracks[ i ];
duration = Math.max(
duration, track.times[ track.times.length - 1 ] );
}
this.duration = duration;
},
trim: function() {
for ( var i = 0; i < this.tracks.length; i ++ ) {
this.tracks[ i ].trim( 0, this.duration );
}
return this;
},
optimize: function() {
for ( var i = 0; i < this.tracks.length; i ++ ) {
this.tracks[ i ].optimize();
}
return this;
}
};
// Static methods:
Object.assign( THREE.AnimationClip, {
parse: function( json ) {
var tracks = [],
jsonTracks = json.tracks,
frameTime = 1.0 / ( json.fps || 1.0 );
for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) {
tracks.push( THREE.KeyframeTrack.parse( jsonTracks[ i ] ).scale( frameTime ) );
}
return new THREE.AnimationClip( json.name, json.duration, tracks );
},
toJSON: function( clip ) {
var tracks = [],
clipTracks = clip.tracks;
var json = {
'name': clip.name,
'duration': clip.duration,
'tracks': tracks
};
for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) {
tracks.push( THREE.KeyframeTrack.toJSON( clipTracks[ i ] ) );
}
return json;
},
CreateFromMorphTargetSequence: function( name, morphTargetSequence, fps, noLoop ) {
var numMorphTargets = morphTargetSequence.length;
var tracks = [];
for ( var i = 0; i < numMorphTargets; i ++ ) {
var times = [];
var values = [];
times.push(
( i + numMorphTargets - 1 ) % numMorphTargets,
i,
( i + 1 ) % numMorphTargets );
values.push( 0, 1, 0 );
var order = THREE.AnimationUtils.getKeyframeOrder( times );
times = THREE.AnimationUtils.sortedArray( times, 1, order );
values = THREE.AnimationUtils.sortedArray( values, 1, order );
// if there is a key at the first frame, duplicate it as the
// last frame as well for perfect loop.
if ( ! noLoop && times[ 0 ] === 0 ) {
times.push( numMorphTargets );
values.push( values[ 0 ] );
}
tracks.push(
new THREE.NumberKeyframeTrack(
'.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']',
times, values
).scale( 1.0 / fps ) );
}
return new THREE.AnimationClip( name, -1, tracks );
},
findByName: function( clipArray, name ) {
for ( var i = 0; i < clipArray.length; i ++ ) {
if ( clipArray[ i ].name === name ) {
return clipArray[ i ];
}
}
return null;
},
CreateClipsFromMorphTargetSequences: function( morphTargets, fps, noLoop ) {
var animationToMorphTargets = {};
// tested with https://regex101.com/ on trick sequences
// such flamingo_flyA_003, flamingo_run1_003, crdeath0059
var pattern = /^([\w-]*?)([\d]+)$/;
// sort morph target names into animation groups based
// patterns like Walk_001, Walk_002, Run_001, Run_002
for ( var i = 0, il = morphTargets.length; i < il; i ++ ) {
var morphTarget = morphTargets[ i ];
var parts = morphTarget.name.match( pattern );
if ( parts && parts.length > 1 ) {
var name = parts[ 1 ];
var animationMorphTargets = animationToMorphTargets[ name ];
if ( ! animationMorphTargets ) {
animationToMorphTargets[ name ] = animationMorphTargets = [];
}
animationMorphTargets.push( morphTarget );
}
}
var clips = [];
for ( var name in animationToMorphTargets ) {
clips.push( THREE.AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) );
}
return clips;
},
// parse the animation.hierarchy format
parseAnimation: function( animation, bones, nodeName ) {
if ( ! animation ) {
console.error( " no animation in JSONLoader data" );
return null;
}
var addNonemptyTrack = function(
trackType, trackName, animationKeys, propertyName, destTracks ) {
// only return track if there are actually keys.
if ( animationKeys.length !== 0 ) {
var times = [];
var values = [];
THREE.AnimationUtils.flattenJSON(
animationKeys, times, values, propertyName );
// empty keys are filtered out, so check again
if ( times.length !== 0 ) {
destTracks.push( new trackType( trackName, times, values ) );
}
}
};
var tracks = [];
var clipName = animation.name || 'default';
// automatic length determination in AnimationClip.
var duration = animation.length || -1;
var fps = animation.fps || 30;
var hierarchyTracks = animation.hierarchy || [];
for ( var h = 0; h < hierarchyTracks.length; h ++ ) {
var animationKeys = hierarchyTracks[ h ].keys;
// skip empty tracks
if ( ! animationKeys || animationKeys.length == 0 ) continue;
// process morph targets in a way exactly compatible
// with AnimationHandler.init( animation )
if ( animationKeys[0].morphTargets ) {
// figure out all morph targets used in this track
var morphTargetNames = {};
for ( var k = 0; k < animationKeys.length; k ++ ) {
if ( animationKeys[k].morphTargets ) {
for ( var m = 0; m < animationKeys[k].morphTargets.length; m ++ ) {
morphTargetNames[ animationKeys[k].morphTargets[m] ] = -1;
}
}
}
// create a track for each morph target with all zero
// morphTargetInfluences except for the keys in which
// the morphTarget is named.
for ( var morphTargetName in morphTargetNames ) {
var times = [];
var values = [];
for ( var m = 0;
m !== animationKeys[k].morphTargets.length; ++ m ) {
var animationKey = animationKeys[k];
times.push( animationKey.time );
values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 )
}
tracks.push( new THREE.NumberKeyframeTrack(
'.morphTargetInfluence[' + morphTargetName + ']', times, values ) );
}
duration = morphTargetNames.length * ( fps || 1.0 );
} else {
// ...assume skeletal animation
var boneName = '.bones[' + bones[ h ].name + ']';
addNonemptyTrack(
THREE.VectorKeyframeTrack, boneName + '.position',
animationKeys, 'pos', tracks );
addNonemptyTrack(
THREE.QuaternionKeyframeTrack, boneName + '.quaternion',
animationKeys, 'rot', tracks );
addNonemptyTrack(
THREE.VectorKeyframeTrack, boneName + '.scale',
animationKeys, 'scl', tracks );
}
}
if ( tracks.length === 0 ) {
return null;
}
var clip = new THREE.AnimationClip( clipName, duration, tracks );
return clip;
}
} );
// File:src/animation/AnimationMixer.js
/**
*
* Player for AnimationClips.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.AnimationMixer = function( root ) {
this._root = root;
this._initMemoryManager();
this._accuIndex = 0;
this.time = 0;
this.timeScale = 1.0;
};
THREE.AnimationMixer.prototype = {
constructor: THREE.AnimationMixer,
// return an action for a clip optionally using a custom root target
// object (this method allocates a lot of dynamic memory in case a
// previously unknown clip/root combination is specified)
clipAction: function( clip, optionalRoot ) {
var root = optionalRoot || this._root,
rootUuid = root.uuid,
clipName = ( typeof clip === 'string' ) ? clip : clip.name,
clipObject = ( clip !== clipName ) ? clip : null,
actionsForClip = this._actionsByClip[ clipName ],
prototypeAction;
if ( actionsForClip !== undefined ) {
var existingAction =
actionsForClip.actionByRoot[ rootUuid ];
if ( existingAction !== undefined ) {
return existingAction;
}
// we know the clip, so we don't have to parse all
// the bindings again but can just copy
prototypeAction = actionsForClip.knownActions[ 0 ];
// also, take the clip from the prototype action
clipObject = prototypeAction._clip;
if ( clip !== clipName && clip !== clipObject ) {
throw new Error(
"Different clips with the same name detected!" );
}
}
// clip must be known when specified via string
if ( clipObject === null ) return null;
// allocate all resources required to run it
var newAction = new THREE.
AnimationMixer._Action( this, clipObject, optionalRoot );
this._bindAction( newAction, prototypeAction );
// and make the action known to the memory manager
this._addInactiveAction( newAction, clipName, rootUuid );
return newAction;
},
// get an existing action
existingAction: function( clip, optionalRoot ) {
var root = optionalRoot || this._root,
rootUuid = root.uuid,
clipName = ( typeof clip === 'string' ) ? clip : clip.name,
actionsForClip = this._actionsByClip[ clipName ];
if ( actionsForClip !== undefined ) {
return actionsForClip.actionByRoot[ rootUuid ] || null;
}
return null;
},
// deactivates all previously scheduled actions
stopAllAction: function() {
var actions = this._actions,
nActions = this._nActiveActions,
bindings = this._bindings,
nBindings = this._nActiveBindings;
this._nActiveActions = 0;
this._nActiveBindings = 0;
for ( var i = 0; i !== nActions; ++ i ) {
actions[ i ].reset();
}
for ( var i = 0; i !== nBindings; ++ i ) {
bindings[ i ].useCount = 0;
}
return this;
},
// advance the time and update apply the animation
update: function( deltaTime ) {
deltaTime *= this.timeScale;
var actions = this._actions,
nActions = this._nActiveActions,
time = this.time += deltaTime,
timeDirection = Math.sign( deltaTime ),
accuIndex = this._accuIndex ^= 1;
// run active actions
for ( var i = 0; i !== nActions; ++ i ) {
var action = actions[ i ];
if ( action.enabled ) {
action._update( time, deltaTime, timeDirection, accuIndex );
}
}
// update scene graph
var bindings = this._bindings,
nBindings = this._nActiveBindings;
for ( var i = 0; i !== nBindings; ++ i ) {
bindings[ i ].apply( accuIndex );
}
return this;
},
// return this mixer's root target object
getRoot: function() {
return this._root;
},
// free all resources specific to a particular clip
uncacheClip: function( clip ) {
var actions = this._actions,
clipName = clip.name,
actionsByClip = this._actionsByClip,
actionsForClip = actionsByClip[ clipName ];
if ( actionsForClip !== undefined ) {
// note: just calling _removeInactiveAction would mess up the
// iteration state and also require updating the state we can
// just throw away
var actionsToRemove = actionsForClip.knownActions;
for ( var i = 0, n = actionsToRemove.length; i !== n; ++ i ) {
var action = actionsToRemove[ i ];
this._deactivateAction( action );
var cacheIndex = action._cacheIndex,
lastInactiveAction = actions[ actions.length - 1 ];
action._cacheIndex = null;
action._byClipCacheIndex = null;
lastInactiveAction._cacheIndex = cacheIndex;
actions[ cacheIndex ] = lastInactiveAction;
actions.pop();
this._removeInactiveBindingsForAction( action );
}
delete actionsByClip[ clipName ];
}
},
// free all resources specific to a particular root target object
uncacheRoot: function( root ) {
var rootUuid = root.uuid,
actionsByClip = this._actionsByClip;
for ( var clipName in actionsByClip ) {
var actionByRoot = actionsByClip[ clipName ].actionByRoot,
action = actionByRoot[ rootUuid ];
if ( action !== undefined ) {
this._deactivateAction( action );
this._removeInactiveAction( action );
}
}
var bindingsByRoot = this._bindingsByRootAndName,
bindingByName = bindingsByRoot[ rootUuid ];
if ( bindingByName !== undefined ) {
for ( var trackName in bindingByName ) {
var binding = bindingByName[ trackName ];
binding.restoreOriginalState();
this._removeInactiveBinding( binding );
}
}
},
// remove a targeted clip from the cache
uncacheAction: function( clip, optionalRoot ) {
var action = this.existingAction( clip, optionalRoot );
if ( action !== null ) {
this._deactivateAction( action );
this._removeInactiveAction( action );
}
}
};
THREE.EventDispatcher.prototype.apply( THREE.AnimationMixer.prototype );
THREE.AnimationMixer._Action =
function( mixer, clip, localRoot ) {
this._mixer = mixer;
this._clip = clip;
this._localRoot = localRoot || null;
var tracks = clip.tracks,
nTracks = tracks.length,
interpolants = new Array( nTracks );
var interpolantSettings = {
endingStart: THREE.ZeroCurvatureEnding,
endingEnd: THREE.ZeroCurvatureEnding
};
for ( var i = 0; i !== nTracks; ++ i ) {
var interpolant = tracks[ i ].createInterpolant( null );
interpolants[ i ] = interpolant;
interpolant.settings = interpolantSettings
}
this._interpolantSettings = interpolantSettings;
this._interpolants = interpolants; // bound by the mixer
// inside: PropertyMixer (managed by the mixer)
this._propertyBindings = new Array( nTracks );
this._cacheIndex = null; // for the memory manager
this._byClipCacheIndex = null; // for the memory manager
this._timeScaleInterpolant = null;
this._weightInterpolant = null;
this.loop = THREE.LoopRepeat;
this._loopCount = -1;
// global mixer time when the action is to be started
// it's set back to 'null' upon start of the action
this._startTime = null;
// scaled local time of the action
// gets clamped or wrapped to 0..clip.duration according to loop
this.time = 0;
this.timeScale = 1;
this._effectiveTimeScale = 1;
this.weight = 1;
this._effectiveWeight = 1;
this.repetitions = Infinity; // no. of repetitions when looping
this.paused = false; // false -> zero effective time scale
this.enabled = true; // true -> zero effective weight
this.clampWhenFinished = false; // keep feeding the last frame?
this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate
this.zeroSlopeAtEnd = true; // clips for start, loop and end
};
THREE.AnimationMixer._Action.prototype = {
constructor: THREE.AnimationMixer._Action,
// State & Scheduling
play: function() {
this._mixer._activateAction( this );
return this;
},
stop: function() {
this._mixer._deactivateAction( this );
return this.reset();
},
reset: function() {
this.paused = false;
this.enabled = true;
this.time = 0; // restart clip
this._loopCount = -1; // forget previous loops
this._startTime = null; // forget scheduling
return this.stopFading().stopWarping();
},
isRunning: function() {
var start = this._startTime;
return this.enabled && ! this.paused && this.timeScale !== 0 &&
this._startTime === null && this._mixer._isActiveAction( this )
},
// return true when play has been called
isScheduled: function() {
return this._mixer._isActiveAction( this );
},
startAt: function( time ) {
this._startTime = time;
return this;
},
setLoop: function( mode, repetitions ) {
this.loop = mode;
this.repetitions = repetitions;
return this;
},
// Weight
// set the weight stopping any scheduled fading
// although .enabled = false yields an effective weight of zero, this
// method does *not* change .enabled, because it would be confusing
setEffectiveWeight: function( weight ) {
this.weight = weight;
// note: same logic as when updated at runtime
this._effectiveWeight = this.enabled ? weight : 0;
return this.stopFading();
},
// return the weight considering fading and .enabled
getEffectiveWeight: function() {
return this._effectiveWeight;
},
fadeIn: function( duration ) {
return this._scheduleFading( duration, 0, 1 );
},
fadeOut: function( duration ) {
return this._scheduleFading( duration, 1, 0 );
},
crossFadeFrom: function( fadeOutAction, duration, warp ) {
var mixer = this._mixer;
fadeOutAction.fadeOut( duration );
this.fadeIn( duration );
if( warp ) {
var fadeInDuration = this._clip.duration,
fadeOutDuration = fadeOutAction._clip.duration,
startEndRatio = fadeOutDuration / fadeInDuration,
endStartRatio = fadeInDuration / fadeOutDuration;
fadeOutAction.warp( 1.0, startEndRatio, duration );
this.warp( endStartRatio, 1.0, duration );
}
return this;
},
crossFadeTo: function( fadeInAction, duration, warp ) {
return fadeInAction.crossFadeFrom( this, duration, warp );
},
stopFading: function() {
var weightInterpolant = this._weightInterpolant;
if ( weightInterpolant !== null ) {
this._weightInterpolant = null;
this._mixer._takeBackControlInterpolant( weightInterpolant );
}
return this;
},
// Time Scale Control
// set the weight stopping any scheduled warping
// although .paused = true yields an effective time scale of zero, this
// method does *not* change .paused, because it would be confusing
setEffectiveTimeScale: function( timeScale ) {
this.timeScale = timeScale;
this._effectiveTimeScale = this.paused ? 0 :timeScale;
return this.stopWarping();
},
// return the time scale considering warping and .paused
getEffectiveTimeScale: function() {
return this._effectiveTimeScale;
},
setDuration: function( duration ) {
this.timeScale = this._clip.duration / duration;
return this.stopWarping();
},
syncWith: function( action ) {
this.time = action.time;
this.timeScale = action.timeScale;
return this.stopWarping();
},
halt: function( duration ) {
return this.warp( this._currentTimeScale, 0, duration );
},
warp: function( startTimeScale, endTimeScale, duration ) {
var mixer = this._mixer, now = mixer.time,
interpolant = this._timeScaleInterpolant,
timeScale = this.timeScale;
if ( interpolant === null ) {
interpolant = mixer._lendControlInterpolant(),
this._timeScaleInterpolant = interpolant;
}
var times = interpolant.parameterPositions,
values = interpolant.sampleValues;
times[ 0 ] = now;
times[ 1 ] = now + duration;
values[ 0 ] = startTimeScale / timeScale;
values[ 1 ] = endTimeScale / timeScale;
return this;
},
stopWarping: function() {
var timeScaleInterpolant = this._timeScaleInterpolant;
if ( timeScaleInterpolant !== null ) {
this._timeScaleInterpolant = null;
this._mixer._takeBackControlInterpolant( timeScaleInterpolant );
}
return this;
},
// Object Accessors
getMixer: function() {
return this._mixer;
},
getClip: function() {
return this._clip;
},
getRoot: function() {
return this._localRoot || this._mixer._root;
},
// Interna
_update: function( time, deltaTime, timeDirection, accuIndex ) {
// called by the mixer
var startTime = this._startTime;
if ( startTime !== null ) {
// check for scheduled start of action
var timeRunning = ( time - startTime ) * timeDirection;
if ( timeRunning < 0 || timeDirection === 0 ) {
return; // yet to come / don't decide when delta = 0
}
// start
this._startTime = null; // unschedule
deltaTime = timeDirection * timeRunning;
}
// apply time scale and advance time
deltaTime *= this._updateTimeScale( time );
var clipTime = this._updateTime( deltaTime );
// note: _updateTime may disable the action resulting in
// an effective weight of 0
var weight = this._updateWeight( time );
if ( weight > 0 ) {
var interpolants = this._interpolants;
var propertyMixers = this._propertyBindings;
for ( var j = 0, m = interpolants.length; j !== m; ++ j ) {
interpolants[ j ].evaluate( clipTime );
propertyMixers[ j ].accumulate( accuIndex, weight );
}
}
},
_updateWeight: function( time ) {
var weight = 0;
if ( this.enabled ) {
weight = this.weight;
var interpolant = this._weightInterpolant;
if ( interpolant !== null ) {
var interpolantValue = interpolant.evaluate( time )[ 0 ];
weight *= interpolantValue;
if ( time > interpolant.parameterPositions[ 1 ] ) {
this.stopFading();
if ( interpolantValue === 0 ) {
// faded out, disable
this.enabled = false;
}
}
}
}
this._effectiveWeight = weight;
return weight;
},
_updateTimeScale: function( time ) {
var timeScale = 0;
if ( ! this.paused ) {
timeScale = this.timeScale;
var interpolant = this._timeScaleInterpolant;
if ( interpolant !== null ) {
var interpolantValue = interpolant.evaluate( time )[ 0 ];
timeScale *= interpolantValue;
if ( time > interpolant.parameterPositions[ 1 ] ) {
this.stopWarping();
if ( timeScale === 0 ) {
// motion has halted, pause
this.pause = true;
} else {
// warp done - apply final time scale
this.timeScale = timeScale;
}
}
}
}
this._effectiveTimeScale = timeScale;
return timeScale;
},
_updateTime: function( deltaTime ) {
var time = this.time + deltaTime;
if ( deltaTime === 0 ) return time;
var duration = this._clip.duration,
loop = this.loop,
loopCount = this._loopCount,
pingPong = false;
switch ( loop ) {
case THREE.LoopOnce:
if ( loopCount === -1 ) {
// just started
this.loopCount = 0;
this._setEndings( true, true, false );
}
if ( time >= duration ) {
time = duration;
} else if ( time < 0 ) {
time = 0;
} else break;
// reached the end
if ( this.clampWhenFinished ) this.pause = true;
else this.enabled = false;
this._mixer.dispatchEvent( {
type: 'finished', action: this,
direction: deltaTime < 0 ? -1 : 1
} );
break;
case THREE.LoopPingPong:
pingPong = true;
case THREE.LoopRepeat:
if ( loopCount === -1 ) {
// just started
if ( deltaTime > 0 ) {
loopCount = 0;
this._setEndings(
true, this.repetitions === 0, pingPong );
} else {
// when looping in reverse direction, the initial
// transition through zero counts as a repetition,
// so leave loopCount at -1
this._setEndings(
this.repetitions === 0, true, pingPong );
}
}
if ( time >= duration || time < 0 ) {
// wrap around
var loopDelta = Math.floor( time / duration ); // signed
time -= duration * loopDelta;
loopCount += Math.abs( loopDelta );
var pending = this.repetitions - loopCount;
if ( pending < 0 ) {
// stop (switch state, clamp time, fire event)
if ( this.clampWhenFinished ) this.paused = true;
else this.enabled = false;
time = deltaTime > 0 ? duration : 0;
this._mixer.dispatchEvent( {
type: 'finished', action: this,
direction: deltaTime > 0 ? 1 : -1
} );
break;
} else if ( pending === 0 ) {
// transition to last round
var atStart = deltaTime < 0;
this._setEndings( atStart, ! atStart, pingPong );
} else {
this._setEndings( false, false, pingPong );
}
this._loopCount = loopCount;
this._mixer.dispatchEvent( {
type: 'loop', action: this, loopDelta: loopDelta
} );
}
if ( loop === THREE.LoopPingPong && ( loopCount & 1 ) === 1 ) {
// invert time for the "pong round"
this.time = time;
return duration - time;
}
break;
}
this.time = time;
return time;
},
_setEndings: function( atStart, atEnd, pingPong ) {
var settings = this._interpolantSettings;
if ( pingPong ) {
settings.endingStart = THREE.ZeroSlopeEnding;
settings.endingEnd = THREE.ZeroSlopeEnding;
} else {
// assuming for LoopOnce atStart == atEnd == true
if ( atStart ) {
settings.endingStart = this.zeroSlopeAtStart ?
THREE.ZeroSlopeEnding : THREE.ZeroCurvatureEnding;
} else {
settings.endingStart = THREE.WrapAroundEnding;
}
if ( atEnd ) {
settings.endingEnd = this.zeroSlopeAtEnd ?
THREE.ZeroSlopeEnding : THREE.ZeroCurvatureEnding;
} else {
settings.endingEnd = THREE.WrapAroundEnding;
}
}
},
_scheduleFading: function( duration, weightNow, weightThen ) {
var mixer = this._mixer, now = mixer.time,
interpolant = this._weightInterpolant;
if ( interpolant === null ) {
interpolant = mixer._lendControlInterpolant(),
this._weightInterpolant = interpolant;
}
var times = interpolant.parameterPositions,
values = interpolant.sampleValues;
times[ 0 ] = now; values[ 0 ] = weightNow;
times[ 1 ] = now + duration; values[ 1 ] = weightThen;
return this;
}
};
// Implementation details:
Object.assign( THREE.AnimationMixer.prototype, {
_bindAction: function( action, prototypeAction ) {
var root = action._localRoot || this._root,
tracks = action._clip.tracks,
nTracks = tracks.length,
bindings = action._propertyBindings,
interpolants = action._interpolants,
rootUuid = root.uuid,
bindingsByRoot = this._bindingsByRootAndName,
bindingsByName = bindingsByRoot[ rootUuid ];
if ( bindingsByName === undefined ) {
bindingsByName = {};
bindingsByRoot[ rootUuid ] = bindingsByName;
}
for ( var i = 0; i !== nTracks; ++ i ) {
var track = tracks[ i ],
trackName = track.name,
binding = bindingsByName[ trackName ];
if ( binding !== undefined ) {
bindings[ i ] = binding;
} else {
binding = bindings[ i ];
if ( binding !== undefined ) {
// existing binding, make sure the cache knows
if ( binding._cacheIndex === null ) {
++ binding.referenceCount;
this._addInactiveBinding( binding, rootUuid, trackName );
}
continue;
}
var path = prototypeAction && prototypeAction.
_propertyBindings[ i ].binding.parsedPath;
binding = new THREE.PropertyMixer(
THREE.PropertyBinding.create( root, trackName, path ),
track.ValueTypeName, track.getValueSize() );
++ binding.referenceCount;
this._addInactiveBinding( binding, rootUuid, trackName );
bindings[ i ] = binding;
}
interpolants[ i ].resultBuffer = binding.buffer;
}
},
_activateAction: function( action ) {
if ( ! this._isActiveAction( action ) ) {
if ( action._cacheIndex === null ) {
// this action has been forgotten by the cache, but the user
// appears to be still using it -> rebind
var rootUuid = ( action._localRoot || this._root ).uuid,
clipName = action._clip.name,
actionsForClip = this._actionsByClip[ clipName ];
this._bindAction( action,
actionsForClip && actionsForClip.knownActions[ 0 ] );
this._addInactiveAction( action, clipName, rootUuid );
}
var bindings = action._propertyBindings;
// increment reference counts / sort out state
for ( var i = 0, n = bindings.length; i !== n; ++ i ) {
var binding = bindings[ i ];
if ( binding.useCount ++ === 0 ) {
this._lendBinding( binding );
binding.saveOriginalState();
}
}
this._lendAction( action );
}
},
_deactivateAction: function( action ) {
if ( this._isActiveAction( action ) ) {
var bindings = action._propertyBindings;
// decrement reference counts / sort out state
for ( var i = 0, n = bindings.length; i !== n; ++ i ) {
var binding = bindings[ i ];
if ( -- binding.useCount === 0 ) {
binding.restoreOriginalState();
this._takeBackBinding( binding );
}
}
this._takeBackAction( action );
}
},
// Memory manager
_initMemoryManager: function() {
this._actions = []; // 'nActiveActions' followed by inactive ones
this._nActiveActions = 0;
this._actionsByClip = {};
// inside:
// {
// knownActions: Array< _Action > - used as prototypes
// actionByRoot: _Action - lookup
// }
this._bindings = []; // 'nActiveBindings' followed by inactive ones
this._nActiveBindings = 0;
this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >
this._controlInterpolants = []; // same game as above
this._nActiveControlInterpolants = 0;
var scope = this;
this.stats = {
actions: {
get total() { return scope._actions.length; },
get inUse() { return scope._nActiveActions; }
},
bindings: {
get total() { return scope._bindings.length; },
get inUse() { return scope._nActiveBindings; }
},
controlInterpolants: {
get total() { return scope._controlInterpolants.length; },
get inUse() { return scope._nActiveControlInterpolants; }
}
};
},
// Memory management for _Action objects
_isActiveAction: function( action ) {
var index = action._cacheIndex;
return index !== null && index < this._nActiveActions;
},
_addInactiveAction: function( action, clipName, rootUuid ) {
var actions = this._actions,
actionsByClip = this._actionsByClip,
actionsForClip = actionsByClip[ clipName ];
if ( actionsForClip === undefined ) {
actionsForClip = {
knownActions: [ action ],
actionByRoot: {}
};
action._byClipCacheIndex = 0;
actionsByClip[ clipName ] = actionsForClip;
} else {
var knownActions = actionsForClip.knownActions;
action._byClipCacheIndex = knownActions.length;
knownActions.push( action );
}
action._cacheIndex = actions.length;
actions.push( action );
actionsForClip.actionByRoot[ rootUuid ] = action;
},
_removeInactiveAction: function( action ) {
var actions = this._actions,
lastInactiveAction = actions[ actions.length - 1 ],
cacheIndex = action._cacheIndex;
lastInactiveAction._cacheIndex = cacheIndex;
actions[ cacheIndex ] = lastInactiveAction;
actions.pop();
action._cacheIndex = null;
var clipName = action._clip.name,
actionsByClip = this._actionsByClip,
actionsForClip = actionsByClip[ clipName ],
knownActionsForClip = actionsForClip.knownActions,
lastKnownAction =
knownActionsForClip[ knownActionsForClip.length - 1 ],
byClipCacheIndex = action._byClipCacheIndex;
lastKnownAction._byClipCacheIndex = byClipCacheIndex;
knownActionsForClip[ byClipCacheIndex ] = lastKnownAction;
knownActionsForClip.pop();
action._byClipCacheIndex = null;
var actionByRoot = actionsForClip.actionByRoot,
rootUuid = ( actions._localRoot || this._root ).uuid;
delete actionByRoot[ rootUuid ];
if ( knownActionsForClip.length === 0 ) {
delete actionsByClip[ clipName ];
}
this._removeInactiveBindingsForAction( action );
},
_removeInactiveBindingsForAction: function( action ) {
var bindings = action._propertyBindings;
for ( var i = 0, n = bindings.length; i !== n; ++ i ) {
var binding = bindings[ i ];
if ( -- binding.referenceCount === 0 ) {
this._removeInactiveBinding( binding );
}
}
},
_lendAction: function( action ) {
// [ active actions | inactive actions ]
// [ active actions >| inactive actions ]
// s a
// <-swap->
// a s
var actions = this._actions,
prevIndex = action._cacheIndex,
lastActiveIndex = this._nActiveActions ++,
firstInactiveAction = actions[ lastActiveIndex ];
action._cacheIndex = lastActiveIndex;
actions[ lastActiveIndex ] = action;
firstInactiveAction._cacheIndex = prevIndex;
actions[ prevIndex ] = firstInactiveAction;
},
_takeBackAction: function( action ) {
// [ active actions | inactive actions ]
// [ active actions |< inactive actions ]
// a s
// <-swap->
// s a
var actions = this._actions,
prevIndex = action._cacheIndex,
firstInactiveIndex = -- this._nActiveActions,
lastActiveAction = actions[ firstInactiveIndex ];
action._cacheIndex = firstInactiveIndex;
actions[ firstInactiveIndex ] = action;
lastActiveAction._cacheIndex = prevIndex;
actions[ prevIndex ] = lastActiveAction;
},
// Memory management for PropertyMixer objects
_addInactiveBinding: function( binding, rootUuid, trackName ) {
var bindingsByRoot = this._bindingsByRootAndName,
bindingByName = bindingsByRoot[ rootUuid ],
bindings = this._bindings;
if ( bindingByName === undefined ) {
bindingByName = {};
bindingsByRoot[ rootUuid ] = bindingByName;
}
bindingByName[ trackName ] = binding;
binding._cacheIndex = bindings.length;
bindings.push( binding );
},
_removeInactiveBinding: function( binding ) {
var bindings = this._bindings,
propBinding = binding.binding,
rootUuid = propBinding.rootNode.uuid,
trackName = propBinding.path,
bindingsByRoot = this._bindingsByRootAndName,
bindingByName = bindingsByRoot[ rootUuid ],
lastInactiveBinding = bindings[ bindings.length - 1 ],
cacheIndex = binding._cacheIndex;
lastInactiveBinding._cacheIndex = cacheIndex;
bindings[ cacheIndex ] = lastInactiveBinding;
bindings.pop();
delete bindingByName[ trackName ];
remove_empty_map: {
for ( var _ in bindingByName ) break remove_empty_map;
delete bindingsByRoot[ rootUuid ];
}
},
_lendBinding: function( binding ) {
var bindings = this._bindings,
prevIndex = binding._cacheIndex,
lastActiveIndex = this._nActiveBindings ++,
firstInactiveBinding = bindings[ lastActiveIndex ];
binding._cacheIndex = lastActiveIndex;
bindings[ lastActiveIndex ] = binding;
firstInactiveBinding._cacheIndex = prevIndex;
bindings[ prevIndex ] = firstInactiveBinding;
},
_takeBackBinding: function( binding ) {
var bindings = this._bindings,
prevIndex = binding._cacheIndex,
firstInactiveIndex = -- this._nActiveBindings,
lastActiveBinding = bindings[ firstInactiveIndex ];
binding._cacheIndex = firstInactiveIndex;
bindings[ firstInactiveIndex ] = binding;
lastActiveBinding._cacheIndex = prevIndex;
bindings[ prevIndex ] = lastActiveBinding;
},
// Memory management of Interpolants for weight and time scale
_lendControlInterpolant: function() {
var interpolants = this._controlInterpolants,
lastActiveIndex = this._nActiveControlInterpolants ++,
interpolant = interpolants[ lastActiveIndex ];
if ( interpolant === undefined ) {
interpolant = new THREE.LinearInterpolant(
new Float32Array( 2 ), new Float32Array( 2 ),
1, this._controlInterpolantsResultBuffer );
interpolant.__cacheIndex = lastActiveIndex;
interpolants[ lastActiveIndex ] = interpolant;
}
return interpolant;
},
_takeBackControlInterpolant: function( interpolant ) {
var interpolants = this._controlInterpolants,
prevIndex = interpolant.__cacheIndex,
firstInactiveIndex = -- this._nActiveControlInterpolants,
lastActiveInterpolant = interpolants[ firstInactiveIndex ];
interpolant.__cacheIndex = firstInactiveIndex;
interpolants[ firstInactiveIndex ] = interpolant;
lastActiveInterpolant.__cacheIndex = prevIndex;
interpolants[ prevIndex ] = lastActiveInterpolant;
},
_controlInterpolantsResultBuffer: new Float32Array( 1 )
} );
// File:src/animation/AnimationObjectGroup.js
/**
*
* A group of objects that receives a shared animation state.
*
* Usage:
*
* - Add objects you would otherwise pass as 'root' to the
* constructor or the .clipAction method of AnimationMixer.
*
* - Instead pass this object as 'root'.
*
* - You can also add and remove objects later when the mixer
* is running.
*
* Note:
*
* Objects of this class appear as one object to the mixer,
* so cache control of the individual objects must be done
* on the group.
*
* Limitation:
*
* - The animated properties must be compatible among the
* all objects in the group.
*
* - A single property can either be controlled through a
* target group or directly, but not both.
*
* @author tschw
*/
THREE.AnimationObjectGroup = function( var_args ) {
this.uuid = THREE.Math.generateUUID();
// cached objects followed by the active ones
this._objects = Array.prototype.slice.call( arguments );
this.nCachedObjects_ = 0; // threshold
// note: read by PropertyBinding.Composite
var indices = {};
this._indicesByUUID = indices; // for bookkeeping
for ( var i = 0, n = arguments.length; i !== n; ++ i ) {
indices[ arguments[ i ].uuid ] = i;
}
this._paths = []; // inside: string
this._parsedPaths = []; // inside: { we don't care, here }
this._bindings = []; // inside: Array< PropertyBinding >
this._bindingsIndicesByPath = {}; // inside: indices in these arrays
var scope = this;
this.stats = {
objects: {
get total() { return scope._objects.length; },
get inUse() { return this.total - scope.nCachedObjects_; }
},
get bindingsPerObject() { return scope._bindings.length; }
};
};
THREE.AnimationObjectGroup.prototype = {
constructor: THREE.AnimationObjectGroup,
add: function( var_args ) {
var objects = this._objects,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_,
indicesByUUID = this._indicesByUUID,
paths = this._paths,
parsedPaths = this._parsedPaths,
bindings = this._bindings,
nBindings = bindings.length;
for ( var i = 0, n = arguments.length; i !== n; ++ i ) {
var object = arguments[ i ],
uuid = object.uuid,
index = indicesByUUID[ uuid ];
if ( index === undefined ) {
// unknown object -> add it to the ACTIVE region
index = nObjects ++;
indicesByUUID[ uuid ] = index;
objects.push( object );
// accounting is done, now do the same for all bindings
for ( var j = 0, m = nBindings; j !== m; ++ j ) {
bindings[ j ].push(
new THREE.PropertyBinding(
object, paths[ j ], parsedPaths[ j ] ) );
}
} else if ( index < nCachedObjects ) {
var knownObject = objects[ index ];
// move existing object to the ACTIVE region
var firstActiveIndex = -- nCachedObjects,
lastCachedObject = objects[ firstActiveIndex ];
indicesByUUID[ lastCachedObject.uuid ] = index;
objects[ index ] = lastCachedObject;
indicesByUUID[ uuid ] = firstActiveIndex;
objects[ firstActiveIndex ] = object;
// accounting is done, now do the same for all bindings
for ( var j = 0, m = nBindings; j !== m; ++ j ) {
var bindingsForPath = bindings[ j ],
lastCached = bindingsForPath[ firstActiveIndex ],
binding = bindingsForPath[ index ];
bindingsForPath[ index ] = lastCached;
if ( binding === undefined ) {
// since we do not bother to create new bindings
// for objects that are cached, the binding may
// or may not exist
binding = new THREE.PropertyBinding(
object, paths[ j ], parsedPaths[ j ] );
}
bindingsForPath[ firstActiveIndex ] = binding;
}
} else if ( objects[ index ] !== knownObject) {
console.error( "Different objects with the same UUID " +
"detected. Clean the caches or recreate your " +
"infrastructure when reloading scenes..." );
} // else the object is already where we want it to be
} // for arguments
this.nCachedObjects_ = nCachedObjects;
},
remove: function( var_args ) {
var objects = this._objects,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_,
indicesByUUID = this._indicesByUUID,
bindings = this._bindings,
nBindings = bindings.length;
for ( var i = 0, n = arguments.length; i !== n; ++ i ) {
var object = arguments[ i ],
uuid = object.uuid,
index = indicesByUUID[ uuid ];
if ( index !== undefined && index >= nCachedObjects ) {
// move existing object into the CACHED region
var lastCachedIndex = nCachedObjects ++,
firstActiveObject = objects[ lastCachedIndex ];
indicesByUUID[ firstActiveObject.uuid ] = index;
objects[ index ] = firstActiveObject;
indicesByUUID[ uuid ] = lastCachedIndex;
objects[ lastCachedIndex ] = object;
// accounting is done, now do the same for all bindings
for ( var j = 0, m = nBindings; j !== m; ++ j ) {
var bindingsForPath = bindings[ j ],
firstActive = bindingsForPath[ lastCachedIndex ],
binding = bindingsForPath[ index ];
bindingsForPath[ index ] = firstActive;
bindingsForPath[ lastCachedIndex ] = binding;
}
}
} // for arguments
this.nCachedObjects_ = nCachedObjects;
},
// remove & forget
uncache: function( var_args ) {
var objects = this._objects,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_,
indicesByUUID = this._indicesByUUID,
bindings = this._bindings,
nBindings = bindings.length;
for ( var i = 0, n = arguments.length; i !== n; ++ i ) {
var object = arguments[ i ],
uuid = object.uuid,
index = indicesByUUID[ uuid ];
if ( index !== undefined ) {
delete indicesByUUID[ uuid ];
if ( index < nCachedObjects ) {
// object is cached, shrink the CACHED region
var firstActiveIndex = -- nCachedObjects,
lastCachedObject = objects[ firstActiveIndex ],
lastIndex = -- nObjects,
lastObject = objects[ lastIndex ];
// last cached object takes this object's place
indicesByUUID[ lastCachedObject.uuid ] = index;
objects[ index ] = lastCachedObject;
// last object goes to the activated slot and pop
indicesByUUID[ lastObject.uuid ] = firstActiveIndex;
objects[ firstActiveIndex ] = lastObject;
objects.pop();
// accounting is done, now do the same for all bindings
for ( var j = 0, m = nBindings; j !== m; ++ j ) {
var bindingsForPath = bindings[ j ],
lastCached = bindingsForPath[ firstActiveIndex ],
last = bindingsForPath[ lastIndex ];
bindingsForPath[ index ] = lastCached;
bindingsForPath[ firstActiveIndex ] = last;
bindingsForPath.pop();
}
} else {
// object is active, just swap with the last and pop
var lastIndex = -- nObjects,
lastObject = objects[ lastIndex ];
indicesByUUID[ lastObject.uuid ] = index;
objects[ index ] = lastObject;
objects.pop();
// accounting is done, now do the same for all bindings
for ( var j = 0, m = nBindings; j !== m; ++ j ) {
var bindingsForPath = bindings[ j ];
bindingsForPath[ index ] = bindingsForPath[ lastIndex ];
bindingsForPath.pop();
}
} // cached or active
} // if object is known
} // for arguments
this.nCachedObjects_ = nCachedObjects;
},
// Internal interface used by befriended PropertyBinding.Composite:
subscribe_: function( path, parsedPath ) {
// returns an array of bindings for the given path that is changed
// according to the contained objects in the group
var indicesByPath = this._bindingsIndicesByPath,
index = indicesByPath[ path ],
bindings = this._bindings;
if ( index !== undefined ) return bindings[ index ];
var paths = this._paths,
parsedPaths = this._parsedPaths,
objects = this._objects,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_,
bindingsForPath = new Array( nObjects );
index = bindings.length;
indicesByPath[ path ] = index;
paths.push( path );
parsedPaths.push( parsedPath );
bindings.push( bindingsForPath );
for ( var i = nCachedObjects,
n = objects.length; i !== n; ++ i ) {
var object = objects[ i ];
bindingsForPath[ i ] =
new THREE.PropertyBinding( object, path, parsedPath );
}
return bindingsForPath;
},
unsubscribe_: function( path ) {
// tells the group to forget about a property path and no longer
// update the array previously obtained with 'subscribe_'
var indicesByPath = this._bindingsIndicesByPath,
index = indicesByPath[ path ];
if ( index !== undefined ) {
var paths = this._paths,
parsedPaths = this._parsedPaths,
bindings = this._bindings,
lastBindingsIndex = bindings.length - 1,
lastBindings = bindings[ lastBindingsIndex ],
lastBindingsPath = path[ lastBindingsIndex ];
indicesByPath[ lastBindingsPath ] = index;
bindings[ index ] = lastBindings;
bindings.pop();
parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ];
parsedPaths.pop();
paths[ index ] = paths[ lastBindingsIndex ];
paths.pop();
}
}
};
// File:src/animation/AnimationUtils.js
/**
* @author tschw
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
*/
THREE.AnimationUtils = {
// same as Array.prototype.slice, but also works on typed arrays
arraySlice: function( array, from, to ) {
if ( THREE.AnimationUtils.isTypedArray( array ) ) {
return new array.constructor( array.subarray( from, to ) );
}
return array.slice( from, to );
},
// converts an array to a specific type
convertArray: function( array, type, forceClone ) {
if ( ! array || // let 'undefined' and 'null' pass
! forceClone && array.constructor === type ) return array;
if ( typeof type.BYTES_PER_ELEMENT === 'number' ) {
return new type( array ); // create typed array
}
return Array.prototype.slice.call( array ); // create Array
},
isTypedArray: function( object ) {
return ArrayBuffer.isView( object ) &&
! ( object instanceof DataView );
},
// returns an array by which times and values can be sorted
getKeyframeOrder: function( times ) {
function compareTime( i, j ) {
return times[ i ] - times[ j ];
}
var n = times.length;
var result = new Array( n );
for ( var i = 0; i !== n; ++ i ) result[ i ] = i;
result.sort( compareTime );
return result;
},
// uses the array previously returned by 'getKeyframeOrder' to sort data
sortedArray: function( values, stride, order ) {
var nValues = values.length;
var result = new values.constructor( nValues );
for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) {
var srcOffset = order[ i ] * stride;
for ( var j = 0; j !== stride; ++ j ) {
result[ dstOffset ++ ] = values[ srcOffset + j ];
}
}
return result;
},
// function for parsing AOS keyframe formats
flattenJSON: function( jsonKeys, times, values, valuePropertyName ) {
var i = 1, key = jsonKeys[ 0 ];
while ( key !== undefined && key[ valuePropertyName ] === undefined ) {
key = jsonKeys[ i ++ ];
}
if ( key === undefined ) return; // no data
var value = key[ valuePropertyName ];
if ( value === undefined ) return; // no data
if ( Array.isArray( value ) ) {
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
values.push.apply( values, value ); // push all elements
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
} else if ( value.toArray !== undefined ) {
// ...assume THREE.Math-ish
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
value.toArray( values, values.length );
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
} else {
// otherwise push as-is
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
values.push( value );
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
}
}
};
// File:src/animation/KeyframeTrack.js
/**
*
* A timed sequence of keyframes for a specific property.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.KeyframeTrack = function ( name, times, values, interpolation ) {
if( name === undefined ) throw new Error( "track name is undefined" );
if( times === undefined || times.length === 0 ) {
throw new Error( "no keyframes in track named " + name );
}
this.name = name;
this.times = THREE.AnimationUtils.convertArray( times, this.TimeBufferType );
this.values = THREE.AnimationUtils.convertArray( values, this.ValueBufferType );
this.setInterpolation( interpolation || this.DefaultInterpolation );
this.validate();
this.optimize();
};
THREE.KeyframeTrack.prototype = {
constructor: THREE.KeyframeTrack,
TimeBufferType: Float32Array,
ValueBufferType: Float32Array,
DefaultInterpolation: THREE.InterpolateLinear,
InterpolantFactoryMethodDiscrete: function( result ) {
return new THREE.DiscreteInterpolant(
this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodLinear: function( result ) {
return new THREE.LinearInterpolant(
this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodSmooth: function( result ) {
return new THREE.CubicInterpolant(
this.times, this.values, this.getValueSize(), result );
},
setInterpolation: function( interpolation ) {
var factoryMethod = undefined;
switch ( interpolation ) {
case THREE.InterpolateDiscrete:
factoryMethod = this.InterpolantFactoryMethodDiscrete;
break;
case THREE.InterpolateLinear:
factoryMethod = this.InterpolantFactoryMethodLinear;
break;
case THREE.InterpolateSmooth:
factoryMethod = this.InterpolantFactoryMethodSmooth;
break;
}
if ( factoryMethod === undefined ) {
var message = "unsupported interpolation for " +
this.ValueTypeName + " keyframe track named " + this.name;
if ( this.createInterpolant === undefined ) {
// fall back to default, unless the default itself is messed up
if ( interpolation !== this.DefaultInterpolation ) {
this.setInterpolation( this.DefaultInterpolation );
} else {
throw new Error( message ); // fatal, in this case
}
}
console.warn( message );
return;
}
this.createInterpolant = factoryMethod;
},
getInterpolation: function() {
switch ( this.createInterpolant ) {
case this.InterpolantFactoryMethodDiscrete:
return THREE.InterpolateDiscrete;
case this.InterpolantFactoryMethodLinear:
return THREE.InterpolateLinear;
case this.InterpolantFactoryMethodSmooth:
return THREE.InterpolateSmooth;
}
},
getValueSize: function() {
return this.values.length / this.times.length;
},
// move all keyframes either forwards or backwards in time
shift: function( timeOffset ) {
if( timeOffset !== 0.0 ) {
var times = this.times;
for( var i = 0, n = times.length; i !== n; ++ i ) {
times[ i ] += timeOffset;
}
}
return this;
},
// scale all keyframe times by a factor (useful for frame <-> seconds conversions)
scale: function( timeScale ) {
if( timeScale !== 1.0 ) {
var times = this.times;
for( var i = 0, n = times.length; i !== n; ++ i ) {
times[ i ] *= timeScale;
}
}
return this;
},
// removes keyframes before and after animation without changing any values within the range [startTime, endTime].
// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
trim: function( startTime, endTime ) {
var times = this.times,
nKeys = times.length,
from = 0,
to = nKeys - 1;
while ( from !== nKeys && times[ from ] < startTime ) ++ from;
while ( to !== -1 && times[ to ] > endTime ) -- to;
++ to; // inclusive -> exclusive bound
if( from !== 0 || to !== nKeys ) {
// empty tracks are forbidden, so keep at least one keyframe
if ( from >= to ) to = Math.max( to , 1 ), from = to - 1;
var stride = this.getValueSize();
this.times = THREE.AnimationUtils.arraySlice( times, from, to );
this.values = THREE.AnimationUtils.
arraySlice( this.values, from * stride, to * stride );
}
return this;
},
// ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
validate: function() {
var valid = true;
var valueSize = this.getValueSize();
if ( valueSize - Math.floor( valueSize ) !== 0 ) {
console.error( "invalid value size in track", this );
valid = false;
}
var times = this.times,
values = this.values,
nKeys = times.length;
if( nKeys === 0 ) {
console.error( "track is empty", this );
valid = false;
}
var prevTime = null;
for( var i = 0; i !== nKeys; i ++ ) {
var currTime = times[ i ];
if ( typeof currTime === 'number' && isNaN( currTime ) ) {
console.error( "time is not a valid number", this, i, currTime );
valid = false;
break;
}
if( prevTime !== null && prevTime > currTime ) {
console.error( "out of order keys", this, i, currTime, prevTime );
valid = false;
break;
}
prevTime = currTime;
}
if ( values !== undefined ) {
if ( THREE.AnimationUtils.isTypedArray( values ) ) {
for ( var i = 0, n = values.length; i !== n; ++ i ) {
var value = values[ i ];
if ( isNaN( value ) ) {
console.error( "value is not a valid number", this, i, value );
valid = false;
break;
}
}
}
}
return valid;
},
// removes equivalent sequential keys as common in morph target sequences
// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
optimize: function() {
var times = this.times,
values = this.values,
stride = this.getValueSize(),
writeIndex = 1;
for( var i = 1, n = times.length - 1; i <= n; ++ i ) {
var keep = false;
var time = times[ i ];
var timeNext = times[ i + 1 ];
// remove adjacent keyframes scheduled at the same time
if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) {
// remove unnecessary keyframes same as their neighbors
var offset = i * stride,
offsetP = offset - stride,
offsetN = offset + stride;
for ( var j = 0; j !== stride; ++ j ) {
var value = values[ offset + j ];
if ( value !== values[ offsetP + j ] ||
value !== values[ offsetN + j ] ) {
keep = true;
break;
}
}
}
// in-place compaction
if ( keep ) {
if ( i !== writeIndex ) {
times[ writeIndex ] = times[ i ];
var readOffset = i * stride,
writeOffset = writeIndex * stride;
for ( var j = 0; j !== stride; ++ j ) {
values[ writeOffset + j ] = values[ readOffset + j ];
}
}
++ writeIndex;
}
}
if ( writeIndex !== times.length ) {
this.times = THREE.AnimationUtils.arraySlice( times, 0, writeIndex );
this.values = THREE.AnimationUtils.arraySlice( values, 0, writeIndex * stride );
}
return this;
}
};
// Static methods:
Object.assign( THREE.KeyframeTrack, {
// Serialization (in static context, because of constructor invocation
// and automatic invocation of .toJSON):
parse: function( json ) {
if( json.type === undefined ) {
throw new Error( "track type undefined, can not parse" );
}
var trackType = THREE.KeyframeTrack._getTrackTypeForValueTypeName( json.type );
if ( json.times === undefined ) {
console.warn( "legacy JSON format detected, converting" );
var times = [], values = [];
THREE.AnimationUtils.flattenJSON( json.keys, times, values, 'value' );
json.times = times;
json.values = values;
}
// derived classes can define a static parse method
if ( trackType.parse !== undefined ) {
return trackType.parse( json );
} else {
// by default, we asssume a constructor compatible with the base
return new trackType(
json.name, json.times, json.values, json.interpolation );
}
},
toJSON: function( track ) {
var trackType = track.constructor;
var json;
// derived classes can define a static toJSON method
if ( trackType.toJSON !== undefined ) {
json = trackType.toJSON( track );
} else {
// by default, we assume the data can be serialized as-is
json = {
'name': track.name,
'times': THREE.AnimationUtils.convertArray( track.times, Array ),
'values': THREE.AnimationUtils.convertArray( track.values, Array )
};
var interpolation = track.getInterpolation();
if ( interpolation !== track.DefaultInterpolation ) {
json.interpolation = interpolation;
}
}
json.type = track.ValueTypeName; // mandatory
return json;
},
_getTrackTypeForValueTypeName: function( typeName ) {
switch( typeName.toLowerCase() ) {
case "scalar":
case "double":
case "float":
case "number":
case "integer":
return THREE.NumberKeyframeTrack;
case "vector":
case "vector2":
case "vector3":
case "vector4":
return THREE.VectorKeyframeTrack;
case "color":
return THREE.ColorKeyframeTrack;
case "quaternion":
return THREE.QuaternionKeyframeTrack;
case "bool":
case "boolean":
return THREE.BooleanKeyframeTrack;
case "string":
return THREE.StringKeyframeTrack;
};
throw new Error( "Unsupported typeName: " + typeName );
}
} );
// File:src/animation/PropertyBinding.js
/**
*
* A reference to a real property in the scene graph.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.PropertyBinding = function ( rootNode, path, parsedPath ) {
this.path = path;
this.parsedPath = parsedPath ||
THREE.PropertyBinding.parseTrackName( path );
this.node = THREE.PropertyBinding.findNode(
rootNode, this.parsedPath.nodeName ) || rootNode;
this.rootNode = rootNode;
};
THREE.PropertyBinding.prototype = {
constructor: THREE.PropertyBinding,
getValue: function getValue_unbound( targetArray, offset ) {
this.bind();
this.getValue( targetArray, offset );
// Note: This class uses a State pattern on a per-method basis:
// 'bind' sets 'this.getValue' / 'setValue' and shadows the
// prototype version of these methods with one that represents
// the bound state. When the property is not found, the methods
// become no-ops.
},
setValue: function getValue_unbound( sourceArray, offset ) {
this.bind();
this.setValue( sourceArray, offset );
},
// create getter / setter pair for a property in the scene graph
bind: function() {
var targetObject = this.node,
parsedPath = this.parsedPath,
objectName = parsedPath.objectName,
propertyName = parsedPath.propertyName,
propertyIndex = parsedPath.propertyIndex;
if ( ! targetObject ) {
targetObject = THREE.PropertyBinding.findNode(
this.rootNode, parsedPath.nodeName ) || this.rootNode;
this.node = targetObject;
}
// set fail state so we can just 'return' on error
this.getValue = this._getValue_unavailable;
this.setValue = this._setValue_unavailable;
// ensure there is a value node
if ( ! targetObject ) {
console.error( " trying to update node for track: " + this.path + " but it wasn't found." );
return;
}
if( objectName ) {
var objectIndex = parsedPath.objectIndex;
// special cases were we need to reach deeper into the hierarchy to get the face materials....
switch ( objectName ) {
case 'materials':
if( ! targetObject.material ) {
console.error( ' can not bind to material as node does not have a material', this );
return;
}
if( ! targetObject.material.materials ) {
console.error( ' can not bind to material.materials as node.material does not have a materials array', this );
return;
}
targetObject = targetObject.material.materials;
break;
case 'bones':
if( ! targetObject.skeleton ) {
console.error( ' can not bind to bones as node does not have a skeleton', this );
return;
}
// potential future optimization: skip this if propertyIndex is already an integer
// and convert the integer string to a true integer.
targetObject = targetObject.skeleton.bones;
// support resolving morphTarget names into indices.
for ( var i = 0; i < targetObject.length; i ++ ) {
if ( targetObject[i].name === objectIndex ) {
objectIndex = i;
break;
}
}
break;
default:
if ( targetObject[ objectName ] === undefined ) {
console.error( ' can not bind to objectName of node, undefined', this );
return;
}
targetObject = targetObject[ objectName ];
}
if ( objectIndex !== undefined ) {
if( targetObject[ objectIndex ] === undefined ) {
console.error( " trying to bind to objectIndex of objectName, but is undefined:", this, targetObject );
return;
}
targetObject = targetObject[ objectIndex ];
}
}
// resolve property
var nodeProperty = targetObject[ propertyName ];
if ( ! nodeProperty ) {
var nodeName = parsedPath.nodeName;
console.error( " trying to update property for track: " + nodeName +
'.' + propertyName + " but it wasn't found.", targetObject );
return;
}
// determine versioning scheme
var versioning = this.Versioning.None;
if ( targetObject.needsUpdate !== undefined ) { // material
versioning = this.Versioning.NeedsUpdate;
this.targetObject = targetObject;
} else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform
versioning = this.Versioning.MatrixWorldNeedsUpdate;
this.targetObject = targetObject;
}
// determine how the property gets bound
var bindingType = this.BindingType.Direct;
if ( propertyIndex !== undefined ) {
// access a sub element of the property array (only primitives are supported right now)
if ( propertyName === "morphTargetInfluences" ) {
// potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.
// support resolving morphTarget names into indices.
if ( ! targetObject.geometry ) {
console.error( ' can not bind to morphTargetInfluences becasuse node does not have a geometry', this );
return;
}
if ( ! targetObject.geometry.morphTargets ) {
console.error( ' can not bind to morphTargetInfluences becasuse node does not have a geometry.morphTargets', this );
return;
}
for ( var i = 0; i < this.node.geometry.morphTargets.length; i ++ ) {
if ( targetObject.geometry.morphTargets[i].name === propertyIndex ) {
propertyIndex = i;
break;
}
}
}
bindingType = this.BindingType.ArrayElement;
this.resolvedProperty = nodeProperty;
this.propertyIndex = propertyIndex;
} else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) {
// must use copy for Object3D.Euler/Quaternion
bindingType = this.BindingType.HasFromToArray;
this.resolvedProperty = nodeProperty;
} else if ( nodeProperty.length !== undefined ) {
bindingType = this.BindingType.EntireArray;
this.resolvedProperty = nodeProperty;
} else {
this.propertyName = propertyName;
}
// select getter / setter
this.getValue = this.GetterByBindingType[ bindingType ];
this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ];
},
unbind: function() {
this.node = null;
// back to the prototype version of getValue / setValue
// note: avoiding to mutate the shape of 'this' via 'delete'
this.getValue = this._getValue_unbound;
this.setValue = this._setValue_unbound;
}
};
Object.assign( THREE.PropertyBinding.prototype, { // prototype, continued
// these are used to "bind" a nonexistent property
_getValue_unavailable: function() {},
_setValue_unavailable: function() {},
// initial state of these methods that calls 'bind'
_getValue_unbound: THREE.PropertyBinding.prototype.getValue,
_setValue_unbound: THREE.PropertyBinding.prototype.setValue,
BindingType: {
Direct: 0,
EntireArray: 1,
ArrayElement: 2,
HasFromToArray: 3
},
Versioning: {
None: 0,
NeedsUpdate: 1,
MatrixWorldNeedsUpdate: 2
},
GetterByBindingType: [
function getValue_direct( buffer, offset ) {
buffer[ offset ] = this.node[ this.propertyName ];
},
function getValue_array( buffer, offset ) {
var source = this.resolvedProperty;
for ( var i = 0, n = source.length; i !== n; ++ i ) {
buffer[ offset ++ ] = source[ i ];
}
},
function getValue_arrayElement( buffer, offset ) {
buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ];
},
function getValue_toArray( buffer, offset ) {
this.resolvedProperty.toArray( buffer, offset );
}
],
SetterByBindingTypeAndVersioning: [
[
// Direct
function setValue_direct( buffer, offset ) {
this.node[ this.propertyName ] = buffer[ offset ];
},
function setValue_direct_setNeedsUpdate( buffer, offset ) {
this.node[ this.propertyName ] = buffer[ offset ];
this.targetObject.needsUpdate = true;
},
function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) {
this.node[ this.propertyName ] = buffer[ offset ];
this.targetObject.matrixWorldNeedsUpdate = true;
}
], [
// EntireArray
function setValue_array( buffer, offset ) {
var dest = this.resolvedProperty;
for ( var i = 0, n = dest.length; i !== n; ++ i ) {
dest[ i ] = buffer[ offset ++ ];
}
},
function setValue_array_setNeedsUpdate( buffer, offset ) {
var dest = this.resolvedProperty;
for ( var i = 0, n = dest.length; i !== n; ++ i ) {
dest[ i ] = buffer[ offset ++ ];
}
this.targetObject.needsUpdate = true;
},
function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) {
var dest = this.resolvedProperty;
for ( var i = 0, n = dest.length; i !== n; ++ i ) {
dest[ i ] = buffer[ offset ++ ];
}
this.targetObject.matrixWorldNeedsUpdate = true;
}
], [
// ArrayElement
function setValue_arrayElement( buffer, offset ) {
this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
},
function setValue_arrayElement_setNeedsUpdate( buffer, offset ) {
this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
this.targetObject.needsUpdate = true;
},
function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) {
this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
this.targetObject.matrixWorldNeedsUpdate = true;
}
], [
// HasToFromArray
function setValue_fromArray( buffer, offset ) {
this.resolvedProperty.fromArray( buffer, offset );
},
function setValue_fromArray_setNeedsUpdate( buffer, offset ) {
this.resolvedProperty.fromArray( buffer, offset );
this.targetObject.needsUpdate = true;
},
function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) {
this.resolvedProperty.fromArray( buffer, offset );
this.targetObject.matrixWorldNeedsUpdate = true;
}
]
]
} );
THREE.PropertyBinding.Composite =
function( targetGroup, path, optionalParsedPath ) {
var parsedPath = optionalParsedPath ||
THREE.PropertyBinding.parseTrackName( path );
this._targetGroup = targetGroup;
this._bindings = targetGroup.subscribe_( path, parsedPath );
};
THREE.PropertyBinding.Composite.prototype = {
constructor: THREE.PropertyBinding.Composite,
getValue: function( array, offset ) {
this.bind(); // bind all binding
var firstValidIndex = this._targetGroup.nCachedObjects_,
binding = this._bindings[ firstValidIndex ];
// and only call .getValue on the first
if ( binding !== undefined ) binding.getValue( array, offset );
},
setValue: function( array, offset ) {
var bindings = this._bindings;
for ( var i = this._targetGroup.nCachedObjects_,
n = bindings.length; i !== n; ++ i ) {
bindings[ i ].setValue( array, offset );
}
},
bind: function() {
var bindings = this._bindings;
for ( var i = this._targetGroup.nCachedObjects_,
n = bindings.length; i !== n; ++ i ) {
bindings[ i ].bind();
}
},
unbind: function() {
var bindings = this._bindings;
for ( var i = this._targetGroup.nCachedObjects_,
n = bindings.length; i !== n; ++ i ) {
bindings[ i ].unbind();
}
}
};
THREE.PropertyBinding.create = function( root, path, parsedPath ) {
if ( ! ( root instanceof THREE.AnimationObjectGroup ) ) {
return new THREE.PropertyBinding( root, path, parsedPath );
} else {
return new THREE.PropertyBinding.Composite( root, path, parsedPath );
}
};
THREE.PropertyBinding.parseTrackName = function( trackName ) {
// matches strings in the form of:
// nodeName.property
// nodeName.property[accessor]
// nodeName.material.property[accessor]
// uuid.property[accessor]
// uuid.objectName[objectIndex].propertyName[propertyIndex]
// parentName/nodeName.property
// parentName/parentName/nodeName.property[index]
// .bone[Armature.DEF_cog].position
// created and tested via https://regex101.com/#javascript
var re = /^(([\w]+\/)*)([\w-\d]+)?(\.([\w]+)(\[([\w\d\[\]\_.:\- ]+)\])?)?(\.([\w.]+)(\[([\w\d\[\]\_. ]+)\])?)$/;
var matches = re.exec(trackName);
if( ! matches ) {
throw new Error( "cannot parse trackName at all: " + trackName );
}
if (matches.index === re.lastIndex) {
re.lastIndex++;
}
var results = {
// directoryName: matches[1], // (tschw) currently unused
nodeName: matches[3], // allowed to be null, specified root node.
objectName: matches[5],
objectIndex: matches[7],
propertyName: matches[9],
propertyIndex: matches[11] // allowed to be null, specifies that the whole property is set.
};
if( results.propertyName === null || results.propertyName.length === 0 ) {
throw new Error( "can not parse propertyName from trackName: " + trackName );
}
return results;
};
THREE.PropertyBinding.findNode = function( root, nodeName ) {
if( ! nodeName || nodeName === "" || nodeName === "root" || nodeName === "." || nodeName === -1 || nodeName === root.name || nodeName === root.uuid ) {
return root;
}
// search into skeleton bones.
if( root.skeleton ) {
var searchSkeleton = function( skeleton ) {
for( var i = 0; i < skeleton.bones.length; i ++ ) {
var bone = skeleton.bones[i];
if( bone.name === nodeName ) {
return bone;
}
}
return null;
};
var bone = searchSkeleton( root.skeleton );
if( bone ) {
return bone;
}
}
// search into node subtree.
if( root.children ) {
var searchNodeSubtree = function( children ) {
for( var i = 0; i < children.length; i ++ ) {
var childNode = children[i];
if( childNode.name === nodeName || childNode.uuid === nodeName ) {
return childNode;
}
var result = searchNodeSubtree( childNode.children );
if( result ) return result;
}
return null;
};
var subTreeNode = searchNodeSubtree( root.children );
if( subTreeNode ) {
return subTreeNode;
}
}
return null;
}
// File:src/animation/PropertyMixer.js
/**
*
* Buffered scene graph property that allows weighted accumulation.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.PropertyMixer = function ( binding, typeName, valueSize ) {
this.binding = binding;
this.valueSize = valueSize;
var bufferType = Float64Array,
mixFunction;
switch ( typeName ) {
case 'quaternion': mixFunction = this._slerp; break;
case 'string':
case 'bool':
bufferType = Array, mixFunction = this._select; break;
default: mixFunction = this._lerp;
}
this.buffer = new bufferType( valueSize * 4 );
// layout: [ incoming | accu0 | accu1 | orig ]
//
// interpolators can use .buffer as their .result
// the data then goes to 'incoming'
//
// 'accu0' and 'accu1' are used frame-interleaved for
// the cumulative result and are compared to detect
// changes
//
// 'orig' stores the original state of the property
this._mixBufferRegion = mixFunction;
this.cumulativeWeight = 0;
this.useCount = 0;
this.referenceCount = 0;
};
THREE.PropertyMixer.prototype = {
constructor: THREE.PropertyMixer,
// accumulate data in the 'incoming' region into 'accu<i>'
accumulate: function( accuIndex, weight ) {
// note: happily accumulating nothing when weight = 0, the caller knows
// the weight and shouldn't have made the call in the first place
var buffer = this.buffer,
stride = this.valueSize,
offset = accuIndex * stride + stride,
currentWeight = this.cumulativeWeight;
if ( currentWeight === 0 ) {
// accuN := incoming * weight
for ( var i = 0; i !== stride; ++ i ) {
buffer[ offset + i ] = buffer[ i ];
}
currentWeight = weight;
} else {
// accuN := accuN + incoming * weight
currentWeight += weight;
var mix = weight / currentWeight;
this._mixBufferRegion( buffer, offset, 0, mix, stride );
}
this.cumulativeWeight = currentWeight;
},
// apply the state of 'accu<i>' to the binding when accus differ
apply: function( accuIndex ) {
var stride = this.valueSize,
buffer = this.buffer,
offset = accuIndex * stride + stride,
weight = this.cumulativeWeight,
binding = this.binding;
this.cumulativeWeight = 0;
if ( weight < 1 ) {
// accuN := accuN + original * ( 1 - cumulativeWeight )
var originalValueOffset = stride * 3;
this._mixBufferRegion(
buffer, offset, originalValueOffset, 1 - weight, stride );
}
for ( var i = stride, e = stride + stride; i !== e; ++ i ) {
if ( buffer[ i ] !== buffer[ i + stride ] ) {
// value has changed -> update scene graph
binding.setValue( buffer, offset );
break;
}
}
},
// remember the state of the bound property and copy it to both accus
saveOriginalState: function() {
var binding = this.binding;
var buffer = this.buffer,
stride = this.valueSize,
originalValueOffset = stride * 3;
binding.getValue( buffer, originalValueOffset );
// accu[0..1] := orig -- initially detect changes against the original
for ( var i = stride, e = originalValueOffset; i !== e; ++ i ) {
buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ];
}
this.cumulativeWeight = 0;
},
// apply the state previously taken via 'saveOriginalState' to the binding
restoreOriginalState: function() {
var originalValueOffset = this.valueSize * 3;
this.binding.setValue( this.buffer, originalValueOffset );
},
// mix functions
_select: function( buffer, dstOffset, srcOffset, t, stride ) {
if ( t >= 0.5 ) {
for ( var i = 0; i !== stride; ++ i ) {
buffer[ dstOffset + i ] = buffer[ srcOffset + i ];
}
}
},
_slerp: function( buffer, dstOffset, srcOffset, t, stride ) {
THREE.Quaternion.slerpFlat( buffer, dstOffset,
buffer, dstOffset, buffer, srcOffset, t );
},
_lerp: function( buffer, dstOffset, srcOffset, t, stride ) {
var s = 1 - t;
for ( var i = 0; i !== stride; ++ i ) {
var j = dstOffset + i;
buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t;
}
}
};
// File:src/animation/tracks/BooleanKeyframeTrack.js
/**
*
* A Track of Boolean keyframe values.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.BooleanKeyframeTrack = function ( name, times, values ) {
THREE.KeyframeTrack.call( this, name, times, values );
};
THREE.BooleanKeyframeTrack.prototype =
Object.assign( Object.create( THREE.KeyframeTrack.prototype ), {
constructor: THREE.BooleanKeyframeTrack,
ValueTypeName: 'bool',
ValueBufferType: Array,
DefaultInterpolation: THREE.InterpolateDiscrete,
InterpolantFactoryMethodLinear: undefined,
InterpolantFactoryMethodSmooth: undefined
// Note: Actually this track could have a optimized / compressed
// representation of a single value and a custom interpolant that
// computes "firstValue ^ isOdd( index )".
} );
// File:src/animation/tracks/ColorKeyframeTrack.js
/**
*
* A Track of keyframe values that represent color.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.ColorKeyframeTrack = function ( name, times, values, interpolation ) {
THREE.KeyframeTrack.call( this, name, times, values, interpolation );
};
THREE.ColorKeyframeTrack.prototype =
Object.assign( Object.create( THREE.KeyframeTrack.prototype ), {
constructor: THREE.ColorKeyframeTrack,
ValueTypeName: 'color'
// ValueBufferType is inherited
// DefaultInterpolation is inherited
// Note: Very basic implementation and nothing special yet.
// However, this is the place for color space parameterization.
} );
// File:src/animation/tracks/NumberKeyframeTrack.js
/**
*
* A Track of numeric keyframe values.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.NumberKeyframeTrack = function ( name, times, values, interpolation ) {
THREE.KeyframeTrack.call( this, name, times, values, interpolation );
};
THREE.NumberKeyframeTrack.prototype =
Object.assign( Object.create( THREE.KeyframeTrack.prototype ), {
constructor: THREE.NumberKeyframeTrack,
ValueTypeName: 'number',
// ValueBufferType is inherited
// DefaultInterpolation is inherited
} );
// File:src/animation/tracks/QuaternionKeyframeTrack.js
/**
*
* A Track of quaternion keyframe values.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.QuaternionKeyframeTrack = function ( name, times, values, interpolation ) {
THREE.KeyframeTrack.call( this, name, times, values, interpolation );
};
THREE.QuaternionKeyframeTrack.prototype =
Object.assign( Object.create( THREE.KeyframeTrack.prototype ), {
constructor: THREE.QuaternionKeyframeTrack,
ValueTypeName: 'quaternion',
// ValueBufferType is inherited
DefaultInterpolation: THREE.InterpolateLinear,
InterpolantFactoryMethodLinear: function( result ) {
return new THREE.QuaternionLinearInterpolant(
this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodSmooth: undefined // not yet implemented
} );
// File:src/animation/tracks/StringKeyframeTrack.js
/**
*
* A Track that interpolates Strings
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.StringKeyframeTrack = function ( name, times, values, interpolation ) {
THREE.KeyframeTrack.call( this, name, times, values, interpolation );
};
THREE.StringKeyframeTrack.prototype =
Object.assign( Object.create( THREE.KeyframeTrack.prototype ), {
constructor: THREE.StringKeyframeTrack,
ValueTypeName: 'string',
ValueBufferType: Array,
DefaultInterpolation: THREE.InterpolateDiscrete,
InterpolantFactoryMethodLinear: undefined,
InterpolantFactoryMethodSmooth: undefined
} );
// File:src/animation/tracks/VectorKeyframeTrack.js
/**
*
* A Track of vectored keyframe values.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
THREE.VectorKeyframeTrack = function ( name, times, values, interpolation ) {
THREE.KeyframeTrack.call( this, name, times, values, interpolation );
};
THREE.VectorKeyframeTrack.prototype =
Object.assign( Object.create( THREE.KeyframeTrack.prototype ), {
constructor: THREE.VectorKeyframeTrack,
ValueTypeName: 'vector'
// ValueBufferType is inherited
// DefaultInterpolation is inherited
} );
// File:src/audio/Audio.js
/**
* @author mrdoob / http://mrdoob.com/
* @author Reece Aaron Lecrivain / http://reecenotes.com/
*/
THREE.Audio = function ( listener ) {
THREE.Object3D.call( this );
this.type = 'Audio';
this.context = listener.context;
this.source = this.context.createBufferSource();
this.source.onended = this.onEnded.bind( this );
this.gain = this.context.createGain();
this.gain.connect( listener.getInput() );
this.autoplay = false;
this.startTime = 0;
this.playbackRate = 1;
this.isPlaying = false;
this.hasPlaybackControl = true;
this.sourceType = 'empty';
this.filter = null;
};
THREE.Audio.prototype = Object.create( THREE.Object3D.prototype );
THREE.Audio.prototype.constructor = THREE.Audio;
THREE.Audio.prototype.getOutput = function () {
return this.gain;
};
THREE.Audio.prototype.setNodeSource = function ( audioNode ) {
this.hasPlaybackControl = false;
this.sourceType = 'audioNode';
this.source = audioNode;
this.connect();
return this;
};
THREE.Audio.prototype.setBuffer = function ( audioBuffer ) {
var scope = this;
scope.source.buffer = audioBuffer;
scope.sourceType = 'buffer';
if ( scope.autoplay ) scope.play();
return this;
};
THREE.Audio.prototype.play = function () {
if ( this.isPlaying === true ) {
console.warn( 'THREE.Audio: Audio is already playing.' );
return;
}
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
var source = this.context.createBufferSource();
source.buffer = this.source.buffer;
source.loop = this.source.loop;
source.onended = this.source.onended;
source.start( 0, this.startTime );
source.playbackRate.value = this.playbackRate;
this.isPlaying = true;
this.source = source;
this.connect();
};
THREE.Audio.prototype.pause = function () {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this.source.stop();
this.startTime = this.context.currentTime;
};
THREE.Audio.prototype.stop = function () {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this.source.stop();
this.startTime = 0;
};
THREE.Audio.prototype.connect = function () {
if ( this.filter !== null ) {
this.source.connect( this.filter );
this.filter.connect( this.getOutput() );
} else {
this.source.connect( this.getOutput() );
}
};
THREE.Audio.prototype.disconnect = function () {
if ( this.filter !== null ) {
this.source.disconnect( this.filter );
this.filter.disconnect( this.getOutput() );
} else {
this.source.disconnect( this.getOutput() );
}
};
THREE.Audio.prototype.getFilter = function () {
return this.filter;
};
THREE.Audio.prototype.setFilter = function ( value ) {
if ( value === undefined ) value = null;
if ( this.isPlaying === true ) {
this.disconnect();
this.filter = value;
this.connect();
} else {
this.filter = value;
}
};
THREE.Audio.prototype.setPlaybackRate = function ( value ) {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this.playbackRate = value;
if ( this.isPlaying === true ) {
this.source.playbackRate.value = this.playbackRate;
}
};
THREE.Audio.prototype.getPlaybackRate = function () {
return this.playbackRate;
};
THREE.Audio.prototype.onEnded = function () {
this.isPlaying = false;
};
THREE.Audio.prototype.setLoop = function ( value ) {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this.source.loop = value;
};
THREE.Audio.prototype.getLoop = function () {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return false;
}
return this.source.loop;
};
THREE.Audio.prototype.setVolume = function ( value ) {
this.gain.gain.value = value;
};
THREE.Audio.prototype.getVolume = function () {
return this.gain.gain.value;
};
// File:src/audio/AudioAnalyser.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.AudioAnalyser = function ( audio, fftSize ) {
this.analyser = audio.context.createAnalyser();
this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048;
this.data = new Uint8Array( this.analyser.frequencyBinCount );
audio.getOutput().connect( this.analyser );
};
THREE.AudioAnalyser.prototype = {
constructor: THREE.AudioAnalyser,
getData: function () {
this.analyser.getByteFrequencyData( this.data );
return this.data;
}
};
// File:src/audio/AudioContext.js
/**
* @author mrdoob / http://mrdoob.com/
*/
Object.defineProperty( THREE, 'AudioContext', {
get: ( function () {
var context;
return function () {
if ( context === undefined ) {
context = new ( window.AudioContext || window.webkitAudioContext )();
}
return context;
};
} )()
} );
// File:src/audio/PositionalAudio.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.PositionalAudio = function ( listener ) {
THREE.Audio.call( this, listener );
this.panner = this.context.createPanner();
this.panner.connect( this.gain );
};
THREE.PositionalAudio.prototype = Object.create( THREE.Audio.prototype );
THREE.PositionalAudio.prototype.constructor = THREE.PositionalAudio;
THREE.PositionalAudio.prototype.getOutput = function () {
return this.panner;
};
THREE.PositionalAudio.prototype.setRefDistance = function ( value ) {
this.panner.refDistance = value;
};
THREE.PositionalAudio.prototype.getRefDistance = function () {
return this.panner.refDistance;
};
THREE.PositionalAudio.prototype.setRolloffFactor = function ( value ) {
this.panner.rolloffFactor = value;
};
THREE.PositionalAudio.prototype.getRolloffFactor = function () {
return this.panner.rolloffFactor;
};
THREE.PositionalAudio.prototype.setDistanceModel = function ( value ) {
this.panner.distanceModel = value;
};
THREE.PositionalAudio.prototype.getDistanceModel = function () {
return this.panner.distanceModel;
};
THREE.PositionalAudio.prototype.setMaxDistance = function ( value ) {
this.panner.maxDistance = value;
};
THREE.PositionalAudio.prototype.getMaxDistance = function () {
return this.panner.maxDistance;
};
THREE.PositionalAudio.prototype.updateMatrixWorld = ( function () {
var position = new THREE.Vector3();
return function updateMatrixWorld( force ) {
THREE.Object3D.prototype.updateMatrixWorld.call( this, force );
position.setFromMatrixPosition( this.matrixWorld );
this.panner.setPosition( position.x, position.y, position.z );
};
} )();
// File:src/audio/AudioListener.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.AudioListener = function () {
THREE.Object3D.call( this );
this.type = 'AudioListener';
this.context = THREE.AudioContext;
this.gain = this.context.createGain();
this.gain.connect( this.context.destination );
this.filter = null;
};
THREE.AudioListener.prototype = Object.create( THREE.Object3D.prototype );
THREE.AudioListener.prototype.constructor = THREE.AudioListener;
THREE.AudioListener.prototype.getInput = function () {
return this.gain;
};
THREE.AudioListener.prototype.removeFilter = function ( ) {
if ( this.filter !== null ) {
this.gain.disconnect( this.filter );
this.filter.disconnect( this.context.destination );
this.gain.connect( this.context.destination );
this.filter = null;
}
};
THREE.AudioListener.prototype.setFilter = function ( value ) {
if ( this.filter !== null ) {
this.gain.disconnect( this.filter );
this.filter.disconnect( this.context.destination );
} else {
this.gain.disconnect( this.context.destination );
}
this.filter = value;
this.gain.connect( this.filter );
this.filter.connect( this.context.destination );
};
THREE.AudioListener.prototype.getFilter = function () {
return this.filter;
};
THREE.AudioListener.prototype.setMasterVolume = function ( value ) {
this.gain.gain.value = value;
};
THREE.AudioListener.prototype.getMasterVolume = function () {
return this.gain.gain.value;
};
THREE.AudioListener.prototype.updateMatrixWorld = ( function () {
var position = new THREE.Vector3();
var quaternion = new THREE.Quaternion();
var scale = new THREE.Vector3();
var orientation = new THREE.Vector3();
return function updateMatrixWorld( force ) {
THREE.Object3D.prototype.updateMatrixWorld.call( this, force );
var listener = this.context.listener;
var up = this.up;
this.matrixWorld.decompose( position, quaternion, scale );
orientation.set( 0, 0, - 1 ).applyQuaternion( quaternion );
listener.setPosition( position.x, position.y, position.z );
listener.setOrientation( orientation.x, orientation.y, orientation.z, up.x, up.y, up.z );
};
} )();
// File:src/cameras/Camera.js
/**
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
* @author WestLangley / http://github.com/WestLangley
*/
THREE.Camera = function () {
THREE.Object3D.call( this );
this.type = 'Camera';
this.matrixWorldInverse = new THREE.Matrix4();
this.projectionMatrix = new THREE.Matrix4();
};
THREE.Camera.prototype = Object.create( THREE.Object3D.prototype );
THREE.Camera.prototype.constructor = THREE.Camera;
THREE.Camera.prototype.getWorldDirection = function () {
var quaternion = new THREE.Quaternion();
return function ( optionalTarget ) {
var result = optionalTarget || new THREE.Vector3();
this.getWorldQuaternion( quaternion );
return result.set( 0, 0, - 1 ).applyQuaternion( quaternion );
};
}();
THREE.Camera.prototype.lookAt = function () {
// This routine does not support cameras with rotated and/or translated parent(s)
var m1 = new THREE.Matrix4();
return function ( vector ) {
m1.lookAt( this.position, vector, this.up );
this.quaternion.setFromRotationMatrix( m1 );
};
}();
THREE.Camera.prototype.clone = function () {
return new this.constructor().copy( this );
};
THREE.Camera.prototype.copy = function ( source ) {
THREE.Object3D.prototype.copy.call( this, source );
this.matrixWorldInverse.copy( source.matrixWorldInverse );
this.projectionMatrix.copy( source.projectionMatrix );
return this;
};
// File:src/cameras/CubeCamera.js
/**
* Camera for rendering cube maps
* - renders scene into axis-aligned cube
*
* @author alteredq / http://alteredqualia.com/
*/
THREE.CubeCamera = function ( near, far, cubeResolution ) {
THREE.Object3D.call( this );
this.type = 'CubeCamera';
var fov = 90, aspect = 1;
var cameraPX = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraPX.up.set( 0, - 1, 0 );
cameraPX.lookAt( new THREE.Vector3( 1, 0, 0 ) );
this.add( cameraPX );
var cameraNX = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraNX.up.set( 0, - 1, 0 );
cameraNX.lookAt( new THREE.Vector3( - 1, 0, 0 ) );
this.add( cameraNX );
var cameraPY = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraPY.up.set( 0, 0, 1 );
cameraPY.lookAt( new THREE.Vector3( 0, 1, 0 ) );
this.add( cameraPY );
var cameraNY = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraNY.up.set( 0, 0, - 1 );
cameraNY.lookAt( new THREE.Vector3( 0, - 1, 0 ) );
this.add( cameraNY );
var cameraPZ = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraPZ.up.set( 0, - 1, 0 );
cameraPZ.lookAt( new THREE.Vector3( 0, 0, 1 ) );
this.add( cameraPZ );
var cameraNZ = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraNZ.up.set( 0, - 1, 0 );
cameraNZ.lookAt( new THREE.Vector3( 0, 0, - 1 ) );
this.add( cameraNZ );
var options = { format: THREE.RGBFormat, magFilter: THREE.LinearFilter, minFilter: THREE.LinearFilter };
this.renderTarget = new THREE.WebGLRenderTargetCube( cubeResolution, cubeResolution, options );
this.updateCubeMap = function ( renderer, scene ) {
if ( this.parent === null ) this.updateMatrixWorld();
var renderTarget = this.renderTarget;
var generateMipmaps = renderTarget.texture.generateMipmaps;
renderTarget.texture.generateMipmaps = false;
renderTarget.activeCubeFace = 0;
renderer.render( scene, cameraPX, renderTarget );
renderTarget.activeCubeFace = 1;
renderer.render( scene, cameraNX, renderTarget );
renderTarget.activeCubeFace = 2;
renderer.render( scene, cameraPY, renderTarget );
renderTarget.activeCubeFace = 3;
renderer.render( scene, cameraNY, renderTarget );
renderTarget.activeCubeFace = 4;
renderer.render( scene, cameraPZ, renderTarget );
renderTarget.texture.generateMipmaps = generateMipmaps;
renderTarget.activeCubeFace = 5;
renderer.render( scene, cameraNZ, renderTarget );
renderer.setRenderTarget( null );
};
};
THREE.CubeCamera.prototype = Object.create( THREE.Object3D.prototype );
THREE.CubeCamera.prototype.constructor = THREE.CubeCamera;
// File:src/cameras/OrthographicCamera.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.OrthographicCamera = function ( left, right, top, bottom, near, far ) {
THREE.Camera.call( this );
this.type = 'OrthographicCamera';
this.zoom = 1;
this.left = left;
this.right = right;
this.top = top;
this.bottom = bottom;
this.near = ( near !== undefined ) ? near : 0.1;
this.far = ( far !== undefined ) ? far : 2000;
this.updateProjectionMatrix();
};
THREE.OrthographicCamera.prototype = Object.create( THREE.Camera.prototype );
THREE.OrthographicCamera.prototype.constructor = THREE.OrthographicCamera;
THREE.OrthographicCamera.prototype.updateProjectionMatrix = function () {
var dx = ( this.right - this.left ) / ( 2 * this.zoom );
var dy = ( this.top - this.bottom ) / ( 2 * this.zoom );
var cx = ( this.right + this.left ) / 2;
var cy = ( this.top + this.bottom ) / 2;
this.projectionMatrix.makeOrthographic( cx - dx, cx + dx, cy + dy, cy - dy, this.near, this.far );
};
THREE.OrthographicCamera.prototype.copy = function ( source ) {
THREE.Camera.prototype.copy.call( this, source );
this.left = source.left;
this.right = source.right;
this.top = source.top;
this.bottom = source.bottom;
this.near = source.near;
this.far = source.far;
this.zoom = source.zoom;
return this;
};
THREE.OrthographicCamera.prototype.toJSON = function ( meta ) {
var data = THREE.Object3D.prototype.toJSON.call( this, meta );
data.object.zoom = this.zoom;
data.object.left = this.left;
data.object.right = this.right;
data.object.top = this.top;
data.object.bottom = this.bottom;
data.object.near = this.near;
data.object.far = this.far;
return data;
};
// File:src/cameras/PerspectiveCamera.js
/**
* @author mrdoob / http://mrdoob.com/
* @author greggman / http://games.greggman.com/
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author tschw
*/
THREE.PerspectiveCamera = function( fov, aspect, near, far ) {
THREE.Camera.call( this );
this.type = 'PerspectiveCamera';
this.fov = fov !== undefined ? fov : 50;
this.zoom = 1;
this.near = near !== undefined ? near : 0.1;
this.far = far !== undefined ? far : 2000;
this.focus = 10;
this.aspect = aspect !== undefined ? aspect : 1;
this.view = null;
this.filmGauge = 35; // width of the film (default in millimeters)
this.filmOffset = 0; // horizontal film offset (same unit as gauge)
this.updateProjectionMatrix();
};
THREE.PerspectiveCamera.prototype = Object.create( THREE.Camera.prototype );
THREE.PerspectiveCamera.prototype.constructor = THREE.PerspectiveCamera;
/**
* Sets the FOV by focal length (DEPRECATED).
*
* Optionally also sets .filmGauge, otherwise uses it. See .setFocalLength.
*/
THREE.PerspectiveCamera.prototype.setLens = function( focalLength, filmGauge ) {
console.warn( "THREE.PerspectiveCamera.setLens is deprecated. " +
"Use .setFocalLength and .filmGauge for a photographic setup." );
if ( filmGauge !== undefined ) this.filmGauge = filmGauge;
this.setFocalLength( focalLength );
};
/**
* Sets the FOV by focal length in respect to the current .filmGauge.
*
* The default film gauge is 35, so that the focal length can be specified for
* a 35mm (full frame) camera.
*
* Values for focal length and film gauge must have the same unit.
*/
THREE.PerspectiveCamera.prototype.setFocalLength = function( focalLength ) {
// see http://www.bobatkins.com/photography/technical/field_of_view.html
var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
this.fov = THREE.Math.RAD2DEG * 2 * Math.atan( vExtentSlope );
this.updateProjectionMatrix();
};
/**
* Calculates the focal length from the current .fov and .filmGauge.
*/
THREE.PerspectiveCamera.prototype.getFocalLength = function() {
var vExtentSlope = Math.tan( THREE.Math.DEG2RAD * 0.5 * this.fov );
return 0.5 * this.getFilmHeight() / vExtentSlope;
};
THREE.PerspectiveCamera.prototype.getEffectiveFOV = function() {
return THREE.Math.RAD2DEG * 2 * Math.atan(
Math.tan( THREE.Math.DEG2RAD * 0.5 * this.fov ) / this.zoom );
};
THREE.PerspectiveCamera.prototype.getFilmWidth = function() {
// film not completely covered in portrait format (aspect < 1)
return this.filmGauge * Math.min( this.aspect, 1 );
};
THREE.PerspectiveCamera.prototype.getFilmHeight = function() {
// film not completely covered in landscape format (aspect > 1)
return this.filmGauge / Math.max( this.aspect, 1 );
};
/**
* Sets an offset in a larger frustum. This is useful for multi-window or
* multi-monitor/multi-machine setups.
*
* For example, if you have 3x2 monitors and each monitor is 1920x1080 and
* the monitors are in grid like this
*
* +---+---+---+
* | A | B | C |
* +---+---+---+
* | D | E | F |
* +---+---+---+
*
* then for each monitor you would call it like this
*
* var w = 1920;
* var h = 1080;
* var fullWidth = w * 3;
* var fullHeight = h * 2;
*
* --A--
* camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
* --B--
* camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
* --C--
* camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
* --D--
* camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
* --E--
* camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
* --F--
* camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
*
* Note there is no reason monitors have to be the same size or in a grid.
*/
THREE.PerspectiveCamera.prototype.setViewOffset = function( fullWidth, fullHeight, x, y, width, height ) {
this.aspect = fullWidth / fullHeight;
this.view = {
fullWidth: fullWidth,
fullHeight: fullHeight,
offsetX: x,
offsetY: y,
width: width,
height: height
};
this.updateProjectionMatrix();
};
THREE.PerspectiveCamera.prototype.updateProjectionMatrix = function() {
var near = this.near,
top = near * Math.tan(
THREE.Math.DEG2RAD * 0.5 * this.fov ) / this.zoom,
height = 2 * top,
width = this.aspect * height,
left = - 0.5 * width,
view = this.view;
if ( view !== null ) {
var fullWidth = view.fullWidth,
fullHeight = view.fullHeight;
left += view.offsetX * width / fullWidth;
top -= view.offsetY * height / fullHeight;
width *= view.width / fullWidth;
height *= view.height / fullHeight;
}
var skew = this.filmOffset;
if ( skew !== 0 ) left += near * skew / this.getFilmWidth();
this.projectionMatrix.makeFrustum(
left, left + width, top - height, top, near, this.far );
};
THREE.PerspectiveCamera.prototype.copy = function( source ) {
THREE.Camera.prototype.copy.call( this, source );
this.fov = source.fov;
this.zoom = source.zoom;
this.near = source.near;
this.far = source.far;
this.focus = source.focus;
this.aspect = source.aspect;
this.view = source.view === null ? null : Object.assign( {}, source.view );
this.filmGauge = source.filmGauge;
this.filmOffset = source.filmOffset;
return this;
};
THREE.PerspectiveCamera.prototype.toJSON = function( meta ) {
var data = THREE.Object3D.prototype.toJSON.call( this, meta );
data.object.fov = this.fov;
data.object.zoom = this.zoom;
data.object.near = this.near;
data.object.far = this.far;
data.object.focus = this.focus;
data.object.aspect = this.aspect;
if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );
data.object.filmGauge = this.filmGauge;
data.object.filmOffset = this.filmOffset;
return data;
};
// File:src/cameras/StereoCamera.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.StereoCamera = function () {
this.type = 'StereoCamera';
this.aspect = 1;
this.cameraL = new THREE.PerspectiveCamera();
this.cameraL.layers.enable( 1 );
this.cameraL.matrixAutoUpdate = false;
this.cameraR = new THREE.PerspectiveCamera();
this.cameraR.layers.enable( 2 );
this.cameraR.matrixAutoUpdate = false;
};
THREE.StereoCamera.prototype = {
constructor: THREE.StereoCamera,
update: ( function () {
var focus, fov, aspect, near, far;
var eyeRight = new THREE.Matrix4();
var eyeLeft = new THREE.Matrix4();
return function update ( camera ) {
var needsUpdate = focus !== camera.focus || fov !== camera.fov ||
aspect !== camera.aspect * this.aspect || near !== camera.near ||
far !== camera.far;
if ( needsUpdate ) {
focus = camera.focus;
fov = camera.fov;
aspect = camera.aspect * this.aspect;
near = camera.near;
far = camera.far;
// Off-axis stereoscopic effect based on
// http://paulbourke.net/stereographics/stereorender/
var projectionMatrix = camera.projectionMatrix.clone();
var eyeSep = 0.064 / 2;
var eyeSepOnProjection = eyeSep * near / focus;
var ymax = near * Math.tan( THREE.Math.DEG2RAD * fov * 0.5 );
var xmin, xmax;
// translate xOffset
eyeLeft.elements[ 12 ] = - eyeSep;
eyeRight.elements[ 12 ] = eyeSep;
// for left eye
xmin = - ymax * aspect + eyeSepOnProjection;
xmax = ymax * aspect + eyeSepOnProjection;
projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin );
projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );
this.cameraL.projectionMatrix.copy( projectionMatrix );
// for right eye
xmin = - ymax * aspect - eyeSepOnProjection;
xmax = ymax * aspect - eyeSepOnProjection;
projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin );
projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );
this.cameraR.projectionMatrix.copy( projectionMatrix );
}
this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( eyeLeft );
this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( eyeRight );
};
} )()
};
// File:src/lights/Light.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Light = function ( color, intensity ) {
THREE.Object3D.call( this );
this.type = 'Light';
this.color = new THREE.Color( color );
this.intensity = intensity !== undefined ? intensity : 1;
this.receiveShadow = undefined;
};
THREE.Light.prototype = Object.create( THREE.Object3D.prototype );
THREE.Light.prototype.constructor = THREE.Light;
THREE.Light.prototype.copy = function ( source ) {
THREE.Object3D.prototype.copy.call( this, source );
this.color.copy( source.color );
this.intensity = source.intensity;
return this;
};
THREE.Light.prototype.toJSON = function ( meta ) {
var data = THREE.Object3D.prototype.toJSON.call( this, meta );
data.object.color = this.color.getHex();
data.object.intensity = this.intensity;
if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex();
if ( this.distance !== undefined ) data.object.distance = this.distance;
if ( this.angle !== undefined ) data.object.angle = this.angle;
if ( this.decay !== undefined ) data.object.decay = this.decay;
if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra;
return data;
};
// File:src/lights/LightShadow.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.LightShadow = function ( camera ) {
this.camera = camera;
this.bias = 0;
this.radius = 1;
this.mapSize = new THREE.Vector2( 512, 512 );
this.map = null;
this.matrix = new THREE.Matrix4();
};
THREE.LightShadow.prototype = {
constructor: THREE.LightShadow,
copy: function ( source ) {
this.camera = source.camera.clone();
this.bias = source.bias;
this.radius = source.radius;
this.mapSize.copy( source.mapSize );
return this;
},
clone: function () {
return new this.constructor().copy( this );
}
};
// File:src/lights/AmbientLight.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.AmbientLight = function ( color, intensity ) {
THREE.Light.call( this, color, intensity );
this.type = 'AmbientLight';
this.castShadow = undefined;
};
THREE.AmbientLight.prototype = Object.create( THREE.Light.prototype );
THREE.AmbientLight.prototype.constructor = THREE.AmbientLight;
// File:src/lights/DirectionalLight.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.DirectionalLight = function ( color, intensity ) {
THREE.Light.call( this, color, intensity );
this.type = 'DirectionalLight';
this.position.set( 0, 1, 0 );
this.updateMatrix();
this.target = new THREE.Object3D();
this.shadow = new THREE.DirectionalLightShadow();
};
THREE.DirectionalLight.prototype = Object.create( THREE.Light.prototype );
THREE.DirectionalLight.prototype.constructor = THREE.DirectionalLight;
THREE.DirectionalLight.prototype.copy = function ( source ) {
THREE.Light.prototype.copy.call( this, source );
this.target = source.target.clone();
this.shadow = source.shadow.clone();
return this;
};
// File:src/lights/DirectionalLightShadow.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.DirectionalLightShadow = function ( light ) {
THREE.LightShadow.call( this, new THREE.OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) );
};
THREE.DirectionalLightShadow.prototype = Object.create( THREE.LightShadow.prototype );
THREE.DirectionalLightShadow.prototype.constructor = THREE.DirectionalLightShadow;
// File:src/lights/HemisphereLight.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.HemisphereLight = function ( skyColor, groundColor, intensity ) {
THREE.Light.call( this, skyColor, intensity );
this.type = 'HemisphereLight';
this.castShadow = undefined;
this.position.set( 0, 1, 0 );
this.updateMatrix();
this.groundColor = new THREE.Color( groundColor );
};
THREE.HemisphereLight.prototype = Object.create( THREE.Light.prototype );
THREE.HemisphereLight.prototype.constructor = THREE.HemisphereLight;
THREE.HemisphereLight.prototype.copy = function ( source ) {
THREE.Light.prototype.copy.call( this, source );
this.groundColor.copy( source.groundColor );
return this;
};
// File:src/lights/PointLight.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.PointLight = function ( color, intensity, distance, decay ) {
THREE.Light.call( this, color, intensity );
this.type = 'PointLight';
this.distance = ( distance !== undefined ) ? distance : 0;
this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2.
this.shadow = new THREE.LightShadow( new THREE.PerspectiveCamera( 90, 1, 0.5, 500 ) );
};
THREE.PointLight.prototype = Object.create( THREE.Light.prototype );
THREE.PointLight.prototype.constructor = THREE.PointLight;
Object.defineProperty( THREE.PointLight.prototype, "power", {
get: function () {
// intensity = power per solid angle.
// ref: equation (15) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
return this.intensity * 4 * Math.PI;
},
set: function ( power ) {
// intensity = power per solid angle.
// ref: equation (15) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
this.intensity = power / ( 4 * Math.PI );
}
} );
THREE.PointLight.prototype.copy = function ( source ) {
THREE.Light.prototype.copy.call( this, source );
this.distance = source.distance;
this.decay = source.decay;
this.shadow = source.shadow.clone();
return this;
};
// File:src/lights/SpotLight.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.SpotLight = function ( color, intensity, distance, angle, penumbra, decay ) {
THREE.Light.call( this, color, intensity );
this.type = 'SpotLight';
this.position.set( 0, 1, 0 );
this.updateMatrix();
this.target = new THREE.Object3D();
this.distance = ( distance !== undefined ) ? distance : 0;
this.angle = ( angle !== undefined ) ? angle : Math.PI / 3;
this.penumbra = ( penumbra !== undefined ) ? penumbra : 0;
this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2.
this.shadow = new THREE.SpotLightShadow();
};
THREE.SpotLight.prototype = Object.create( THREE.Light.prototype );
THREE.SpotLight.prototype.constructor = THREE.SpotLight;
Object.defineProperty( THREE.SpotLight.prototype, "power", {
get: function () {
// intensity = power per solid angle.
// ref: equation (17) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
return this.intensity * Math.PI;
},
set: function ( power ) {
// intensity = power per solid angle.
// ref: equation (17) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
this.intensity = power / Math.PI;
}
} );
THREE.SpotLight.prototype.copy = function ( source ) {
THREE.Light.prototype.copy.call( this, source );
this.distance = source.distance;
this.angle = source.angle;
this.penumbra = source.penumbra;
this.decay = source.decay;
this.target = source.target.clone();
this.shadow = source.shadow.clone();
return this;
};
// File:src/lights/SpotLightShadow.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.SpotLightShadow = function () {
THREE.LightShadow.call( this, new THREE.PerspectiveCamera( 50, 1, 0.5, 500 ) );
};
THREE.SpotLightShadow.prototype = Object.create( THREE.LightShadow.prototype );
THREE.SpotLightShadow.prototype.constructor = THREE.SpotLightShadow;
THREE.SpotLightShadow.prototype.update = function ( light ) {
var fov = THREE.Math.RAD2DEG * 2 * light.angle;
var aspect = this.mapSize.width / this.mapSize.height;
var far = light.distance || 500;
var camera = this.camera;
if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) {
camera.fov = fov;
camera.aspect = aspect;
camera.far = far;
camera.updateProjectionMatrix();
}
};
// File:src/loaders/AudioLoader.js
/**
* @author Reece Aaron Lecrivain / http://reecenotes.com/
*/
THREE.AudioLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.AudioLoader.prototype = {
constructor: THREE.AudioLoader,
load: function ( url, onLoad, onProgress, onError ) {
var loader = new THREE.XHRLoader( this.manager );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( buffer ) {
var context = THREE.AudioContext;
context.decodeAudioData( buffer, function ( audioBuffer ) {
onLoad( audioBuffer );
} );
}, onProgress, onError );
}
};
// File:src/loaders/Cache.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.Cache = {
enabled: false,
files: {},
add: function ( key, file ) {
if ( this.enabled === false ) return;
// console.log( 'THREE.Cache', 'Adding key:', key );
this.files[ key ] = file;
},
get: function ( key ) {
if ( this.enabled === false ) return;
// console.log( 'THREE.Cache', 'Checking key:', key );
return this.files[ key ];
},
remove: function ( key ) {
delete this.files[ key ];
},
clear: function () {
this.files = {};
}
};
// File:src/loaders/Loader.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.Loader = function () {
this.onLoadStart = function () {};
this.onLoadProgress = function () {};
this.onLoadComplete = function () {};
};
THREE.Loader.prototype = {
constructor: THREE.Loader,
crossOrigin: undefined,
extractUrlBase: function ( url ) {
var parts = url.split( '/' );
if ( parts.length === 1 ) return './';
parts.pop();
return parts.join( '/' ) + '/';
},
initMaterials: function ( materials, texturePath, crossOrigin ) {
var array = [];
for ( var i = 0; i < materials.length; ++ i ) {
array[ i ] = this.createMaterial( materials[ i ], texturePath, crossOrigin );
}
return array;
},
createMaterial: ( function () {
var color, textureLoader, materialLoader;
return function ( m, texturePath, crossOrigin ) {
if ( color === undefined ) color = new THREE.Color();
if ( textureLoader === undefined ) textureLoader = new THREE.TextureLoader();
if ( materialLoader === undefined ) materialLoader = new THREE.MaterialLoader();
// convert from old material format
var textures = {};
function loadTexture( path, repeat, offset, wrap, anisotropy ) {
var fullPath = texturePath + path;
var loader = THREE.Loader.Handlers.get( fullPath );
var texture;
if ( loader !== null ) {
texture = loader.load( fullPath );
} else {
textureLoader.setCrossOrigin( crossOrigin );
texture = textureLoader.load( fullPath );
}
if ( repeat !== undefined ) {
texture.repeat.fromArray( repeat );
if ( repeat[ 0 ] !== 1 ) texture.wrapS = THREE.RepeatWrapping;
if ( repeat[ 1 ] !== 1 ) texture.wrapT = THREE.RepeatWrapping;
}
if ( offset !== undefined ) {
texture.offset.fromArray( offset );
}
if ( wrap !== undefined ) {
if ( wrap[ 0 ] === 'repeat' ) texture.wrapS = THREE.RepeatWrapping;
if ( wrap[ 0 ] === 'mirror' ) texture.wrapS = THREE.MirroredRepeatWrapping;
if ( wrap[ 1 ] === 'repeat' ) texture.wrapT = THREE.RepeatWrapping;
if ( wrap[ 1 ] === 'mirror' ) texture.wrapT = THREE.MirroredRepeatWrapping;
}
if ( anisotropy !== undefined ) {
texture.anisotropy = anisotropy;
}
var uuid = THREE.Math.generateUUID();
textures[ uuid ] = texture;
return uuid;
}
//
var json = {
uuid: THREE.Math.generateUUID(),
type: 'MeshLambertMaterial'
};
for ( var name in m ) {
var value = m[ name ];
switch ( name ) {
case 'DbgColor':
case 'DbgIndex':
case 'opticalDensity':
case 'illumination':
break;
case 'DbgName':
json.name = value;
break;
case 'blending':
json.blending = THREE[ value ];
break;
case 'colorAmbient':
case 'mapAmbient':
console.warn( 'THREE.Loader.createMaterial:', name, 'is no longer supported.' );
break;
case 'colorDiffuse':
json.color = color.fromArray( value ).getHex();
break;
case 'colorSpecular':
json.specular = color.fromArray( value ).getHex();
break;
case 'colorEmissive':
json.emissive = color.fromArray( value ).getHex();
break;
case 'specularCoef':
json.shininess = value;
break;
case 'shading':
if ( value.toLowerCase() === 'basic' ) json.type = 'MeshBasicMaterial';
if ( value.toLowerCase() === 'phong' ) json.type = 'MeshPhongMaterial';
break;
case 'mapDiffuse':
json.map = loadTexture( value, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap, m.mapDiffuseAnisotropy );
break;
case 'mapDiffuseRepeat':
case 'mapDiffuseOffset':
case 'mapDiffuseWrap':
case 'mapDiffuseAnisotropy':
break;
case 'mapLight':
json.lightMap = loadTexture( value, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap, m.mapLightAnisotropy );
break;
case 'mapLightRepeat':
case 'mapLightOffset':
case 'mapLightWrap':
case 'mapLightAnisotropy':
break;
case 'mapAO':
json.aoMap = loadTexture( value, m.mapAORepeat, m.mapAOOffset, m.mapAOWrap, m.mapAOAnisotropy );
break;
case 'mapAORepeat':
case 'mapAOOffset':
case 'mapAOWrap':
case 'mapAOAnisotropy':
break;
case 'mapBump':
json.bumpMap = loadTexture( value, m.mapBumpRepeat, m.mapBumpOffset, m.mapBumpWrap, m.mapBumpAnisotropy );
break;
case 'mapBumpScale':
json.bumpScale = value;
break;
case 'mapBumpRepeat':
case 'mapBumpOffset':
case 'mapBumpWrap':
case 'mapBumpAnisotropy':
break;
case 'mapNormal':
json.normalMap = loadTexture( value, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap, m.mapNormalAnisotropy );
break;
case 'mapNormalFactor':
json.normalScale = [ value, value ];
break;
case 'mapNormalRepeat':
case 'mapNormalOffset':
case 'mapNormalWrap':
case 'mapNormalAnisotropy':
break;
case 'mapSpecular':
json.specularMap = loadTexture( value, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap, m.mapSpecularAnisotropy );
break;
case 'mapSpecularRepeat':
case 'mapSpecularOffset':
case 'mapSpecularWrap':
case 'mapSpecularAnisotropy':
break;
case 'mapAlpha':
json.alphaMap = loadTexture( value, m.mapAlphaRepeat, m.mapAlphaOffset, m.mapAlphaWrap, m.mapAlphaAnisotropy );
break;
case 'mapAlphaRepeat':
case 'mapAlphaOffset':
case 'mapAlphaWrap':
case 'mapAlphaAnisotropy':
break;
case 'flipSided':
json.side = THREE.BackSide;
break;
case 'doubleSided':
json.side = THREE.DoubleSide;
break;
case 'transparency':
console.warn( 'THREE.Loader.createMaterial: transparency has been renamed to opacity' );
json.opacity = value;
break;
case 'depthTest':
case 'depthWrite':
case 'colorWrite':
case 'opacity':
case 'reflectivity':
case 'transparent':
case 'visible':
case 'wireframe':
json[ name ] = value;
break;
case 'vertexColors':
if ( value === true ) json.vertexColors = THREE.VertexColors;
if ( value === 'face' ) json.vertexColors = THREE.FaceColors;
break;
default:
console.error( 'THREE.Loader.createMaterial: Unsupported', name, value );
break;
}
}
if ( json.type === 'MeshBasicMaterial' ) delete json.emissive;
if ( json.type !== 'MeshPhongMaterial' ) delete json.specular;
if ( json.opacity < 1 ) json.transparent = true;
materialLoader.setTextures( textures );
return materialLoader.parse( json );
};
} )()
};
THREE.Loader.Handlers = {
handlers: [],
add: function ( regex, loader ) {
this.handlers.push( regex, loader );
},
get: function ( file ) {
var handlers = this.handlers;
for ( var i = 0, l = handlers.length; i < l; i += 2 ) {
var regex = handlers[ i ];
var loader = handlers[ i + 1 ];
if ( regex.test( file ) ) {
return loader;
}
}
return null;
}
};
// File:src/loaders/XHRLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.XHRLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.XHRLoader.prototype = {
constructor: THREE.XHRLoader,
load: function ( url, onLoad, onProgress, onError ) {
if ( this.path !== undefined ) url = this.path + url;
var scope = this;
var cached = THREE.Cache.get( url );
if ( cached !== undefined ) {
if ( onLoad ) {
setTimeout( function () {
onLoad( cached );
}, 0 );
}
return cached;
}
var request = new XMLHttpRequest();
request.overrideMimeType( 'text/plain' );
request.open( 'GET', url, true );
request.addEventListener( 'load', function ( event ) {
var response = event.target.response;
THREE.Cache.add( url, response );
if ( this.status === 200 ) {
if ( onLoad ) onLoad( response );
scope.manager.itemEnd( url );
} else if ( this.status === 0 ) {
// Some browsers return HTTP Status 0 when using non-http protocol
// e.g. 'file://' or 'data://'. Handle as success.
console.warn( 'THREE.XHRLoader: HTTP Status 0 received.' );
if ( onLoad ) onLoad( response );
scope.manager.itemEnd( url );
} else {
if ( onError ) onError( event );
scope.manager.itemError( url );
}
}, false );
if ( onProgress !== undefined ) {
request.addEventListener( 'progress', function ( event ) {
onProgress( event );
}, false );
}
request.addEventListener( 'error', function ( event ) {
if ( onError ) onError( event );
scope.manager.itemError( url );
}, false );
if ( this.responseType !== undefined ) request.responseType = this.responseType;
if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials;
request.send( null );
scope.manager.itemStart( url );
return request;
},
setPath: function ( value ) {
this.path = value;
},
setResponseType: function ( value ) {
this.responseType = value;
},
setWithCredentials: function ( value ) {
this.withCredentials = value;
}
};
// File:src/loaders/FontLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.FontLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.FontLoader.prototype = {
constructor: THREE.FontLoader,
load: function ( url, onLoad, onProgress, onError ) {
var loader = new THREE.XHRLoader( this.manager );
loader.load( url, function ( text ) {
onLoad( new THREE.Font( JSON.parse( text.substring( 65, text.length - 2 ) ) ) );
}, onProgress, onError );
}
};
// File:src/loaders/ImageLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.ImageLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.ImageLoader.prototype = {
constructor: THREE.ImageLoader,
load: function ( url, onLoad, onProgress, onError ) {
if ( this.path !== undefined ) url = this.path + url;
var scope = this;
var cached = THREE.Cache.get( url );
if ( cached !== undefined ) {
scope.manager.itemStart( url );
if ( onLoad ) {
setTimeout( function () {
onLoad( cached );
scope.manager.itemEnd( url );
}, 0 );
} else {
scope.manager.itemEnd( url );
}
return cached;
}
var image = document.createElement( 'img' );
image.addEventListener( 'load', function ( event ) {
THREE.Cache.add( url, this );
if ( onLoad ) onLoad( this );
scope.manager.itemEnd( url );
}, false );
if ( onProgress !== undefined ) {
image.addEventListener( 'progress', function ( event ) {
onProgress( event );
}, false );
}
image.addEventListener( 'error', function ( event ) {
if ( onError ) onError( event );
scope.manager.itemError( url );
}, false );
if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin;
scope.manager.itemStart( url );
image.src = url;
return image;
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
},
setPath: function ( value ) {
this.path = value;
}
};
// File:src/loaders/JSONLoader.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.JSONLoader = function ( manager ) {
if ( typeof manager === 'boolean' ) {
console.warn( 'THREE.JSONLoader: showStatus parameter has been removed from constructor.' );
manager = undefined;
}
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
this.withCredentials = false;
};
THREE.JSONLoader.prototype = {
constructor: THREE.JSONLoader,
// Deprecated
get statusDomElement () {
if ( this._statusDomElement === undefined ) {
this._statusDomElement = document.createElement( 'div' );
}
console.warn( 'THREE.JSONLoader: .statusDomElement has been removed.' );
return this._statusDomElement;
},
load: function( url, onLoad, onProgress, onError ) {
var scope = this;
var texturePath = this.texturePath && ( typeof this.texturePath === "string" ) ? this.texturePath : THREE.Loader.prototype.extractUrlBase( url );
var loader = new THREE.XHRLoader( this.manager );
loader.setWithCredentials( this.withCredentials );
loader.load( url, function ( text ) {
var json = JSON.parse( text );
var metadata = json.metadata;
if ( metadata !== undefined ) {
var type = metadata.type;
if ( type !== undefined ) {
if ( type.toLowerCase() === 'object' ) {
console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.ObjectLoader instead.' );
return;
}
if ( type.toLowerCase() === 'scene' ) {
console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.SceneLoader instead.' );
return;
}
}
}
var object = scope.parse( json, texturePath );
onLoad( object.geometry, object.materials );
}, onProgress, onError );
},
setTexturePath: function ( value ) {
this.texturePath = value;
},
parse: function ( json, texturePath ) {
var geometry = new THREE.Geometry(),
scale = ( json.scale !== undefined ) ? 1.0 / json.scale : 1.0;
parseModel( scale );
parseSkin();
parseMorphing( scale );
parseAnimations();
geometry.computeFaceNormals();
geometry.computeBoundingSphere();
function parseModel( scale ) {
function isBitSet( value, position ) {
return value & ( 1 << position );
}
var i, j, fi,
offset, zLength,
colorIndex, normalIndex, uvIndex, materialIndex,
type,
isQuad,
hasMaterial,
hasFaceVertexUv,
hasFaceNormal, hasFaceVertexNormal,
hasFaceColor, hasFaceVertexColor,
vertex, face, faceA, faceB, hex, normal,
uvLayer, uv, u, v,
faces = json.faces,
vertices = json.vertices,
normals = json.normals,
colors = json.colors,
nUvLayers = 0;
if ( json.uvs !== undefined ) {
// disregard empty arrays
for ( i = 0; i < json.uvs.length; i ++ ) {
if ( json.uvs[ i ].length ) nUvLayers ++;
}
for ( i = 0; i < nUvLayers; i ++ ) {
geometry.faceVertexUvs[ i ] = [];
}
}
offset = 0;
zLength = vertices.length;
while ( offset < zLength ) {
vertex = new THREE.Vector3();
vertex.x = vertices[ offset ++ ] * scale;
vertex.y = vertices[ offset ++ ] * scale;
vertex.z = vertices[ offset ++ ] * scale;
geometry.vertices.push( vertex );
}
offset = 0;
zLength = faces.length;
while ( offset < zLength ) {
type = faces[ offset ++ ];
isQuad = isBitSet( type, 0 );
hasMaterial = isBitSet( type, 1 );
hasFaceVertexUv = isBitSet( type, 3 );
hasFaceNormal = isBitSet( type, 4 );
hasFaceVertexNormal = isBitSet( type, 5 );
hasFaceColor = isBitSet( type, 6 );
hasFaceVertexColor = isBitSet( type, 7 );
// console.log("type", type, "bits", isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor);
if ( isQuad ) {
faceA = new THREE.Face3();
faceA.a = faces[ offset ];
faceA.b = faces[ offset + 1 ];
faceA.c = faces[ offset + 3 ];
faceB = new THREE.Face3();
faceB.a = faces[ offset + 1 ];
faceB.b = faces[ offset + 2 ];
faceB.c = faces[ offset + 3 ];
offset += 4;
if ( hasMaterial ) {
materialIndex = faces[ offset ++ ];
faceA.materialIndex = materialIndex;
faceB.materialIndex = materialIndex;
}
// to get face <=> uv index correspondence
fi = geometry.faces.length;
if ( hasFaceVertexUv ) {
for ( i = 0; i < nUvLayers; i ++ ) {
uvLayer = json.uvs[ i ];
geometry.faceVertexUvs[ i ][ fi ] = [];
geometry.faceVertexUvs[ i ][ fi + 1 ] = [];
for ( j = 0; j < 4; j ++ ) {
uvIndex = faces[ offset ++ ];
u = uvLayer[ uvIndex * 2 ];
v = uvLayer[ uvIndex * 2 + 1 ];
uv = new THREE.Vector2( u, v );
if ( j !== 2 ) geometry.faceVertexUvs[ i ][ fi ].push( uv );
if ( j !== 0 ) geometry.faceVertexUvs[ i ][ fi + 1 ].push( uv );
}
}
}
if ( hasFaceNormal ) {
normalIndex = faces[ offset ++ ] * 3;
faceA.normal.set(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
faceB.normal.copy( faceA.normal );
}
if ( hasFaceVertexNormal ) {
for ( i = 0; i < 4; i ++ ) {
normalIndex = faces[ offset ++ ] * 3;
normal = new THREE.Vector3(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
if ( i !== 2 ) faceA.vertexNormals.push( normal );
if ( i !== 0 ) faceB.vertexNormals.push( normal );
}
}
if ( hasFaceColor ) {
colorIndex = faces[ offset ++ ];
hex = colors[ colorIndex ];
faceA.color.setHex( hex );
faceB.color.setHex( hex );
}
if ( hasFaceVertexColor ) {
for ( i = 0; i < 4; i ++ ) {
colorIndex = faces[ offset ++ ];
hex = colors[ colorIndex ];
if ( i !== 2 ) faceA.vertexColors.push( new THREE.Color( hex ) );
if ( i !== 0 ) faceB.vertexColors.push( new THREE.Color( hex ) );
}
}
geometry.faces.push( faceA );
geometry.faces.push( faceB );
} else {
face = new THREE.Face3();
face.a = faces[ offset ++ ];
face.b = faces[ offset ++ ];
face.c = faces[ offset ++ ];
if ( hasMaterial ) {
materialIndex = faces[ offset ++ ];
face.materialIndex = materialIndex;
}
// to get face <=> uv index correspondence
fi = geometry.faces.length;
if ( hasFaceVertexUv ) {
for ( i = 0; i < nUvLayers; i ++ ) {
uvLayer = json.uvs[ i ];
geometry.faceVertexUvs[ i ][ fi ] = [];
for ( j = 0; j < 3; j ++ ) {
uvIndex = faces[ offset ++ ];
u = uvLayer[ uvIndex * 2 ];
v = uvLayer[ uvIndex * 2 + 1 ];
uv = new THREE.Vector2( u, v );
geometry.faceVertexUvs[ i ][ fi ].push( uv );
}
}
}
if ( hasFaceNormal ) {
normalIndex = faces[ offset ++ ] * 3;
face.normal.set(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
}
if ( hasFaceVertexNormal ) {
for ( i = 0; i < 3; i ++ ) {
normalIndex = faces[ offset ++ ] * 3;
normal = new THREE.Vector3(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
face.vertexNormals.push( normal );
}
}
if ( hasFaceColor ) {
colorIndex = faces[ offset ++ ];
face.color.setHex( colors[ colorIndex ] );
}
if ( hasFaceVertexColor ) {
for ( i = 0; i < 3; i ++ ) {
colorIndex = faces[ offset ++ ];
face.vertexColors.push( new THREE.Color( colors[ colorIndex ] ) );
}
}
geometry.faces.push( face );
}
}
};
function parseSkin() {
var influencesPerVertex = ( json.influencesPerVertex !== undefined ) ? json.influencesPerVertex : 2;
if ( json.skinWeights ) {
for ( var i = 0, l = json.skinWeights.length; i < l; i += influencesPerVertex ) {
var x = json.skinWeights[ i ];
var y = ( influencesPerVertex > 1 ) ? json.skinWeights[ i + 1 ] : 0;
var z = ( influencesPerVertex > 2 ) ? json.skinWeights[ i + 2 ] : 0;
var w = ( influencesPerVertex > 3 ) ? json.skinWeights[ i + 3 ] : 0;
geometry.skinWeights.push( new THREE.Vector4( x, y, z, w ) );
}
}
if ( json.skinIndices ) {
for ( var i = 0, l = json.skinIndices.length; i < l; i += influencesPerVertex ) {
var a = json.skinIndices[ i ];
var b = ( influencesPerVertex > 1 ) ? json.skinIndices[ i + 1 ] : 0;
var c = ( influencesPerVertex > 2 ) ? json.skinIndices[ i + 2 ] : 0;
var d = ( influencesPerVertex > 3 ) ? json.skinIndices[ i + 3 ] : 0;
geometry.skinIndices.push( new THREE.Vector4( a, b, c, d ) );
}
}
geometry.bones = json.bones;
if ( geometry.bones && geometry.bones.length > 0 && ( geometry.skinWeights.length !== geometry.skinIndices.length || geometry.skinIndices.length !== geometry.vertices.length ) ) {
console.warn( 'When skinning, number of vertices (' + geometry.vertices.length + '), skinIndices (' +
geometry.skinIndices.length + '), and skinWeights (' + geometry.skinWeights.length + ') should match.' );
}
};
function parseMorphing( scale ) {
if ( json.morphTargets !== undefined ) {
for ( var i = 0, l = json.morphTargets.length; i < l; i ++ ) {
geometry.morphTargets[ i ] = {};
geometry.morphTargets[ i ].name = json.morphTargets[ i ].name;
geometry.morphTargets[ i ].vertices = [];
var dstVertices = geometry.morphTargets[ i ].vertices;
var srcVertices = json.morphTargets[ i ].vertices;
for ( var v = 0, vl = srcVertices.length; v < vl; v += 3 ) {
var vertex = new THREE.Vector3();
vertex.x = srcVertices[ v ] * scale;
vertex.y = srcVertices[ v + 1 ] * scale;
vertex.z = srcVertices[ v + 2 ] * scale;
dstVertices.push( vertex );
}
}
}
if ( json.morphColors !== undefined && json.morphColors.length > 0 ) {
console.warn( 'THREE.JSONLoader: "morphColors" no longer supported. Using them as face colors.' );
var faces = geometry.faces;
var morphColors = json.morphColors[ 0 ].colors;
for ( var i = 0, l = faces.length; i < l; i ++ ) {
faces[ i ].color.fromArray( morphColors, i * 3 );
}
}
}
function parseAnimations() {
var outputAnimations = [];
// parse old style Bone/Hierarchy animations
var animations = [];
if ( json.animation !== undefined ) {
animations.push( json.animation );
}
if ( json.animations !== undefined ) {
if ( json.animations.length ) {
animations = animations.concat( json.animations );
} else {
animations.push( json.animations );
}
}
for ( var i = 0; i < animations.length; i ++ ) {
var clip = THREE.AnimationClip.parseAnimation( animations[ i ], geometry.bones );
if ( clip ) outputAnimations.push( clip );
}
// parse implicit morph animations
if ( geometry.morphTargets ) {
// TODO: Figure out what an appropraite FPS is for morph target animations -- defaulting to 10, but really it is completely arbitrary.
var morphAnimationClips = THREE.AnimationClip.CreateClipsFromMorphTargetSequences( geometry.morphTargets, 10 );
outputAnimations = outputAnimations.concat( morphAnimationClips );
}
if ( outputAnimations.length > 0 ) geometry.animations = outputAnimations;
};
if ( json.materials === undefined || json.materials.length === 0 ) {
return { geometry: geometry };
} else {
var materials = THREE.Loader.prototype.initMaterials( json.materials, texturePath, this.crossOrigin );
return { geometry: geometry, materials: materials };
}
}
};
// File:src/loaders/LoadingManager.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.LoadingManager = function ( onLoad, onProgress, onError ) {
var scope = this;
var isLoading = false, itemsLoaded = 0, itemsTotal = 0;
this.onStart = undefined;
this.onLoad = onLoad;
this.onProgress = onProgress;
this.onError = onError;
this.itemStart = function ( url ) {
itemsTotal ++;
if ( isLoading === false ) {
if ( scope.onStart !== undefined ) {
scope.onStart( url, itemsLoaded, itemsTotal );
}
}
isLoading = true;
};
this.itemEnd = function ( url ) {
itemsLoaded ++;
if ( scope.onProgress !== undefined ) {
scope.onProgress( url, itemsLoaded, itemsTotal );
}
if ( itemsLoaded === itemsTotal ) {
isLoading = false;
if ( scope.onLoad !== undefined ) {
scope.onLoad();
}
}
};
this.itemError = function ( url ) {
if ( scope.onError !== undefined ) {
scope.onError( url );
}
};
};
THREE.DefaultLoadingManager = new THREE.LoadingManager();
// File:src/loaders/BufferGeometryLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.BufferGeometryLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.BufferGeometryLoader.prototype = {
constructor: THREE.BufferGeometryLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var loader = new THREE.XHRLoader( scope.manager );
loader.load( url, function ( text ) {
onLoad( scope.parse( JSON.parse( text ) ) );
}, onProgress, onError );
},
parse: function ( json ) {
var geometry = new THREE.BufferGeometry();
var index = json.data.index;
var TYPED_ARRAYS = {
'Int8Array': Int8Array,
'Uint8Array': Uint8Array,
'Uint8ClampedArray': Uint8ClampedArray,
'Int16Array': Int16Array,
'Uint16Array': Uint16Array,
'Int32Array': Int32Array,
'Uint32Array': Uint32Array,
'Float32Array': Float32Array,
'Float64Array': Float64Array
};
if ( index !== undefined ) {
var typedArray = new TYPED_ARRAYS[ index.type ]( index.array );
geometry.setIndex( new THREE.BufferAttribute( typedArray, 1 ) );
}
var attributes = json.data.attributes;
for ( var key in attributes ) {
var attribute = attributes[ key ];
var typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array );
geometry.addAttribute( key, new THREE.BufferAttribute( typedArray, attribute.itemSize, attribute.normalized ) );
}
var groups = json.data.groups || json.data.drawcalls || json.data.offsets;
if ( groups !== undefined ) {
for ( var i = 0, n = groups.length; i !== n; ++ i ) {
var group = groups[ i ];
geometry.addGroup( group.start, group.count, group.materialIndex );
}
}
var boundingSphere = json.data.boundingSphere;
if ( boundingSphere !== undefined ) {
var center = new THREE.Vector3();
if ( boundingSphere.center !== undefined ) {
center.fromArray( boundingSphere.center );
}
geometry.boundingSphere = new THREE.Sphere( center, boundingSphere.radius );
}
return geometry;
}
};
// File:src/loaders/MaterialLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.MaterialLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
this.textures = {};
};
THREE.MaterialLoader.prototype = {
constructor: THREE.MaterialLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var loader = new THREE.XHRLoader( scope.manager );
loader.load( url, function ( text ) {
onLoad( scope.parse( JSON.parse( text ) ) );
}, onProgress, onError );
},
setTextures: function ( value ) {
this.textures = value;
},
getTexture: function ( name ) {
var textures = this.textures;
if ( textures[ name ] === undefined ) {
console.warn( 'THREE.MaterialLoader: Undefined texture', name );
}
return textures[ name ];
},
parse: function ( json ) {
var material = new THREE[ json.type ];
if ( json.uuid !== undefined ) material.uuid = json.uuid;
if ( json.name !== undefined ) material.name = json.name;
if ( json.color !== undefined ) material.color.setHex( json.color );
if ( json.roughness !== undefined ) material.roughness = json.roughness;
if ( json.metalness !== undefined ) material.metalness = json.metalness;
if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive );
if ( json.specular !== undefined ) material.specular.setHex( json.specular );
if ( json.shininess !== undefined ) material.shininess = json.shininess;
if ( json.uniforms !== undefined ) material.uniforms = json.uniforms;
if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader;
if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader;
if ( json.vertexColors !== undefined ) material.vertexColors = json.vertexColors;
if ( json.shading !== undefined ) material.shading = json.shading;
if ( json.blending !== undefined ) material.blending = json.blending;
if ( json.side !== undefined ) material.side = json.side;
if ( json.opacity !== undefined ) material.opacity = json.opacity;
if ( json.transparent !== undefined ) material.transparent = json.transparent;
if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest;
if ( json.depthTest !== undefined ) material.depthTest = json.depthTest;
if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite;
if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite;
if ( json.wireframe !== undefined ) material.wireframe = json.wireframe;
if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth;
// for PointsMaterial
if ( json.size !== undefined ) material.size = json.size;
if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation;
// maps
if ( json.map !== undefined ) material.map = this.getTexture( json.map );
if ( json.alphaMap !== undefined ) {
material.alphaMap = this.getTexture( json.alphaMap );
material.transparent = true;
}
if ( json.bumpMap !== undefined ) material.bumpMap = this.getTexture( json.bumpMap );
if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale;
if ( json.normalMap !== undefined ) material.normalMap = this.getTexture( json.normalMap );
if ( json.normalScale !== undefined ) {
var normalScale = json.normalScale;
if ( Array.isArray( normalScale ) === false ) {
// Blender exporter used to export a scalar. See #7459
normalScale = [ normalScale, normalScale ];
}
material.normalScale = new THREE.Vector2().fromArray( normalScale );
}
if ( json.displacementMap !== undefined ) material.displacementMap = this.getTexture( json.displacementMap );
if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale;
if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias;
if ( json.roughnessMap !== undefined ) material.roughnessMap = this.getTexture( json.roughnessMap );
if ( json.metalnessMap !== undefined ) material.metalnessMap = this.getTexture( json.metalnessMap );
if ( json.emissiveMap !== undefined ) material.emissiveMap = this.getTexture( json.emissiveMap );
if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity;
if ( json.specularMap !== undefined ) material.specularMap = this.getTexture( json.specularMap );
if ( json.envMap !== undefined ) {
material.envMap = this.getTexture( json.envMap );
material.combine = THREE.MultiplyOperation;
}
if ( json.reflectivity ) material.reflectivity = json.reflectivity;
if ( json.lightMap !== undefined ) material.lightMap = this.getTexture( json.lightMap );
if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity;
if ( json.aoMap !== undefined ) material.aoMap = this.getTexture( json.aoMap );
if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity;
// MultiMaterial
if ( json.materials !== undefined ) {
for ( var i = 0, l = json.materials.length; i < l; i ++ ) {
material.materials.push( this.parse( json.materials[ i ] ) );
}
}
return material;
}
};
// File:src/loaders/ObjectLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.ObjectLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
this.texturePath = '';
};
THREE.ObjectLoader.prototype = {
constructor: THREE.ObjectLoader,
load: function ( url, onLoad, onProgress, onError ) {
if ( this.texturePath === '' ) {
this.texturePath = url.substring( 0, url.lastIndexOf( '/' ) + 1 );
}
var scope = this;
var loader = new THREE.XHRLoader( scope.manager );
loader.load( url, function ( text ) {
scope.parse( JSON.parse( text ), onLoad );
}, onProgress, onError );
},
setTexturePath: function ( value ) {
this.texturePath = value;
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
},
parse: function ( json, onLoad ) {
var geometries = this.parseGeometries( json.geometries );
var images = this.parseImages( json.images, function () {
if ( onLoad !== undefined ) onLoad( object );
} );
var textures = this.parseTextures( json.textures, images );
var materials = this.parseMaterials( json.materials, textures );
var object = this.parseObject( json.object, geometries, materials );
if ( json.animations ) {
object.animations = this.parseAnimations( json.animations );
}
if ( json.images === undefined || json.images.length === 0 ) {
if ( onLoad !== undefined ) onLoad( object );
}
return object;
},
parseGeometries: function ( json ) {
var geometries = {};
if ( json !== undefined ) {
var geometryLoader = new THREE.JSONLoader();
var bufferGeometryLoader = new THREE.BufferGeometryLoader();
for ( var i = 0, l = json.length; i < l; i ++ ) {
var geometry;
var data = json[ i ];
switch ( data.type ) {
case 'PlaneGeometry':
case 'PlaneBufferGeometry':
geometry = new THREE[ data.type ](
data.width,
data.height,
data.widthSegments,
data.heightSegments
);
break;
case 'BoxGeometry':
case 'BoxBufferGeometry':
case 'CubeGeometry': // backwards compatible
geometry = new THREE[ data.type ](
data.width,
data.height,
data.depth,
data.widthSegments,
data.heightSegments,
data.depthSegments
);
break;
case 'CircleGeometry':
case 'CircleBufferGeometry':
geometry = new THREE[ data.type ](
data.radius,
data.segments,
data.thetaStart,
data.thetaLength
);
break;
case 'CylinderGeometry':
case 'CylinderBufferGeometry':
geometry = new THREE[ data.type ](
data.radiusTop,
data.radiusBottom,
data.height,
data.radialSegments,
data.heightSegments,
data.openEnded,
data.thetaStart,
data.thetaLength
);
break;
case 'SphereGeometry':
case 'SphereBufferGeometry':
geometry = new THREE[ data.type ](
data.radius,
data.widthSegments,
data.heightSegments,
data.phiStart,
data.phiLength,
data.thetaStart,
data.thetaLength
);
break;
case 'DodecahedronGeometry':
geometry = new THREE.DodecahedronGeometry(
data.radius,
data.detail
);
break;
case 'IcosahedronGeometry':
geometry = new THREE.IcosahedronGeometry(
data.radius,
data.detail
);
break;
case 'OctahedronGeometry':
geometry = new THREE.OctahedronGeometry(
data.radius,
data.detail
);
break;
case 'TetrahedronGeometry':
geometry = new THREE.TetrahedronGeometry(
data.radius,
data.detail
);
break;
case 'RingGeometry':
case 'RingBufferGeometry':
geometry = new THREE[ data.type ](
data.innerRadius,
data.outerRadius,
data.thetaSegments,
data.phiSegments,
data.thetaStart,
data.thetaLength
);
break;
case 'TorusGeometry':
case 'TorusBufferGeometry':
geometry = new THREE[ data.type ](
data.radius,
data.tube,
data.radialSegments,
data.tubularSegments,
data.arc
);
break;
case 'TorusKnotGeometry':
case 'TorusKnotBufferGeometry':
geometry = new THREE[ data.type ](
data.radius,
data.tube,
data.tubularSegments,
data.radialSegments,
data.p,
data.q
);
break;
case 'LatheGeometry':
case 'LatheBufferGeometry':
geometry = new THREE[ data.type ](
data.points,
data.segments,
data.phiStart,
data.phiLength
);
break;
case 'BufferGeometry':
geometry = bufferGeometryLoader.parse( data );
break;
case 'Geometry':
geometry = geometryLoader.parse( data.data, this.texturePath ).geometry;
break;
default:
console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' );
continue;
}
geometry.uuid = data.uuid;
if ( data.name !== undefined ) geometry.name = data.name;
geometries[ data.uuid ] = geometry;
}
}
return geometries;
},
parseMaterials: function ( json, textures ) {
var materials = {};
if ( json !== undefined ) {
var loader = new THREE.MaterialLoader();
loader.setTextures( textures );
for ( var i = 0, l = json.length; i < l; i ++ ) {
var material = loader.parse( json[ i ] );
materials[ material.uuid ] = material;
}
}
return materials;
},
parseAnimations: function ( json ) {
var animations = [];
for ( var i = 0; i < json.length; i ++ ) {
var clip = THREE.AnimationClip.parse( json[ i ] );
animations.push( clip );
}
return animations;
},
parseImages: function ( json, onLoad ) {
var scope = this;
var images = {};
function loadImage( url ) {
scope.manager.itemStart( url );
return loader.load( url, function () {
scope.manager.itemEnd( url );
} );
}
if ( json !== undefined && json.length > 0 ) {
var manager = new THREE.LoadingManager( onLoad );
var loader = new THREE.ImageLoader( manager );
loader.setCrossOrigin( this.crossOrigin );
for ( var i = 0, l = json.length; i < l; i ++ ) {
var image = json[ i ];
var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.texturePath + image.url;
images[ image.uuid ] = loadImage( path );
}
}
return images;
},
parseTextures: function ( json, images ) {
function parseConstant( value ) {
if ( typeof( value ) === 'number' ) return value;
console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value );
return THREE[ value ];
}
var textures = {};
if ( json !== undefined ) {
for ( var i = 0, l = json.length; i < l; i ++ ) {
var data = json[ i ];
if ( data.image === undefined ) {
console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid );
}
if ( images[ data.image ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined image', data.image );
}
var texture = new THREE.Texture( images[ data.image ] );
texture.needsUpdate = true;
texture.uuid = data.uuid;
if ( data.name !== undefined ) texture.name = data.name;
if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping );
if ( data.offset !== undefined ) texture.offset = new THREE.Vector2( data.offset[ 0 ], data.offset[ 1 ] );
if ( data.repeat !== undefined ) texture.repeat = new THREE.Vector2( data.repeat[ 0 ], data.repeat[ 1 ] );
if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter );
if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter );
if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy;
if ( Array.isArray( data.wrap ) ) {
texture.wrapS = parseConstant( data.wrap[ 0 ] );
texture.wrapT = parseConstant( data.wrap[ 1 ] );
}
textures[ data.uuid ] = texture;
}
}
return textures;
},
parseObject: function () {
var matrix = new THREE.Matrix4();
return function ( data, geometries, materials ) {
var object;
function getGeometry( name ) {
if ( geometries[ name ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined geometry', name );
}
return geometries[ name ];
}
function getMaterial( name ) {
if ( name === undefined ) return undefined;
if ( materials[ name ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined material', name );
}
return materials[ name ];
}
switch ( data.type ) {
case 'Scene':
object = new THREE.Scene();
break;
case 'PerspectiveCamera':
object = new THREE.PerspectiveCamera(
data.fov, data.aspect, data.near, data.far );
if ( data.focus !== undefined ) object.focus = data.focus;
if ( data.zoom !== undefined ) object.zoom = data.zoom;
if ( data.filmGauge !== undefined ) object.filmGauge = data.filmGauge;
if ( data.filmOffset !== undefined ) object.filmOffset = data.filmOffset;
if ( data.view !== undefined ) object.view = Object.assign( {}, data.view );
break;
case 'OrthographicCamera':
object = new THREE.OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far );
break;
case 'AmbientLight':
object = new THREE.AmbientLight( data.color, data.intensity );
break;
case 'DirectionalLight':
object = new THREE.DirectionalLight( data.color, data.intensity );
break;
case 'PointLight':
object = new THREE.PointLight( data.color, data.intensity, data.distance, data.decay );
break;
case 'SpotLight':
object = new THREE.SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay );
break;
case 'HemisphereLight':
object = new THREE.HemisphereLight( data.color, data.groundColor, data.intensity );
break;
case 'Mesh':
var geometry = getGeometry( data.geometry );
var material = getMaterial( data.material );
if ( geometry.bones && geometry.bones.length > 0 ) {
object = new THREE.SkinnedMesh( geometry, material );
} else {
object = new THREE.Mesh( geometry, material );
}
break;
case 'LOD':
object = new THREE.LOD();
break;
case 'Line':
object = new THREE.Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode );
break;
case 'PointCloud':
case 'Points':
object = new THREE.Points( getGeometry( data.geometry ), getMaterial( data.material ) );
break;
case 'Sprite':
object = new THREE.Sprite( getMaterial( data.material ) );
break;
case 'Group':
object = new THREE.Group();
break;
default:
object = new THREE.Object3D();
}
object.uuid = data.uuid;
if ( data.name !== undefined ) object.name = data.name;
if ( data.matrix !== undefined ) {
matrix.fromArray( data.matrix );
matrix.decompose( object.position, object.quaternion, object.scale );
} else {
if ( data.position !== undefined ) object.position.fromArray( data.position );
if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation );
if ( data.scale !== undefined ) object.scale.fromArray( data.scale );
}
if ( data.castShadow !== undefined ) object.castShadow = data.castShadow;
if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow;
if ( data.visible !== undefined ) object.visible = data.visible;
if ( data.userData !== undefined ) object.userData = data.userData;
if ( data.children !== undefined ) {
for ( var child in data.children ) {
object.add( this.parseObject( data.children[ child ], geometries, materials ) );
}
}
if ( data.type === 'LOD' ) {
var levels = data.levels;
for ( var l = 0; l < levels.length; l ++ ) {
var level = levels[ l ];
var child = object.getObjectByProperty( 'uuid', level.object );
if ( child !== undefined ) {
object.addLevel( child, level.distance );
}
}
}
return object;
};
}()
};
// File:src/loaders/TextureLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.TextureLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.TextureLoader.prototype = {
constructor: THREE.TextureLoader,
load: function ( url, onLoad, onProgress, onError ) {
var texture = new THREE.Texture();
var loader = new THREE.ImageLoader( this.manager );
loader.setCrossOrigin( this.crossOrigin );
loader.setPath( this.path );
loader.load( url, function ( image ) {
texture.image = image;
texture.needsUpdate = true;
if ( onLoad !== undefined ) {
onLoad( texture );
}
}, onProgress, onError );
return texture;
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
},
setPath: function ( value ) {
this.path = value;
}
};
// File:src/loaders/CubeTextureLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.CubeTextureLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.CubeTextureLoader.prototype = {
constructor: THREE.CubeTextureLoader,
load: function ( urls, onLoad, onProgress, onError ) {
var texture = new THREE.CubeTexture();
var loader = new THREE.ImageLoader( this.manager );
loader.setCrossOrigin( this.crossOrigin );
loader.setPath( this.path );
var loaded = 0;
function loadTexture( i ) {
loader.load( urls[ i ], function ( image ) {
texture.images[ i ] = image;
loaded ++;
if ( loaded === 6 ) {
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture );
}
}, undefined, onError );
}
for ( var i = 0; i < urls.length; ++ i ) {
loadTexture( i );
}
return texture;
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
},
setPath: function ( value ) {
this.path = value;
}
};
// File:src/loaders/BinaryTextureLoader.js
/**
* @author Nikos M. / https://github.com/foo123/
*
* Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
*/
THREE.DataTextureLoader = THREE.BinaryTextureLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
// override in sub classes
this._parser = null;
};
THREE.BinaryTextureLoader.prototype = {
constructor: THREE.BinaryTextureLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var texture = new THREE.DataTexture();
var loader = new THREE.XHRLoader( this.manager );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( buffer ) {
var texData = scope._parser( buffer );
if ( ! texData ) return;
if ( undefined !== texData.image ) {
texture.image = texData.image;
} else if ( undefined !== texData.data ) {
texture.image.width = texData.width;
texture.image.height = texData.height;
texture.image.data = texData.data;
}
texture.wrapS = undefined !== texData.wrapS ? texData.wrapS : THREE.ClampToEdgeWrapping;
texture.wrapT = undefined !== texData.wrapT ? texData.wrapT : THREE.ClampToEdgeWrapping;
texture.magFilter = undefined !== texData.magFilter ? texData.magFilter : THREE.LinearFilter;
texture.minFilter = undefined !== texData.minFilter ? texData.minFilter : THREE.LinearMipMapLinearFilter;
texture.anisotropy = undefined !== texData.anisotropy ? texData.anisotropy : 1;
if ( undefined !== texData.format ) {
texture.format = texData.format;
}
if ( undefined !== texData.type ) {
texture.type = texData.type;
}
if ( undefined !== texData.mipmaps ) {
texture.mipmaps = texData.mipmaps;
}
if ( 1 === texData.mipmapCount ) {
texture.minFilter = THREE.LinearFilter;
}
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture, texData );
}, onProgress, onError );
return texture;
}
};
// File:src/loaders/CompressedTextureLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*
* Abstract Base class to block based textures loader (dds, pvr, ...)
*/
THREE.CompressedTextureLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
// override in sub classes
this._parser = null;
};
THREE.CompressedTextureLoader.prototype = {
constructor: THREE.CompressedTextureLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var images = [];
var texture = new THREE.CompressedTexture();
texture.image = images;
var loader = new THREE.XHRLoader( this.manager );
loader.setPath( this.path );
loader.setResponseType( 'arraybuffer' );
function loadTexture( i ) {
loader.load( url[ i ], function ( buffer ) {
var texDatas = scope._parser( buffer, true );
images[ i ] = {
width: texDatas.width,
height: texDatas.height,
format: texDatas.format,
mipmaps: texDatas.mipmaps
};
loaded += 1;
if ( loaded === 6 ) {
if ( texDatas.mipmapCount === 1 )
texture.minFilter = THREE.LinearFilter;
texture.format = texDatas.format;
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture );
}
}, onProgress, onError );
}
if ( Array.isArray( url ) ) {
var loaded = 0;
for ( var i = 0, il = url.length; i < il; ++ i ) {
loadTexture( i );
}
} else {
// compressed cubemap texture stored in a single DDS file
loader.load( url, function ( buffer ) {
var texDatas = scope._parser( buffer, true );
if ( texDatas.isCubemap ) {
var faces = texDatas.mipmaps.length / texDatas.mipmapCount;
for ( var f = 0; f < faces; f ++ ) {
images[ f ] = { mipmaps : [] };
for ( var i = 0; i < texDatas.mipmapCount; i ++ ) {
images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] );
images[ f ].format = texDatas.format;
images[ f ].width = texDatas.width;
images[ f ].height = texDatas.height;
}
}
} else {
texture.image.width = texDatas.width;
texture.image.height = texDatas.height;
texture.mipmaps = texDatas.mipmaps;
}
if ( texDatas.mipmapCount === 1 ) {
texture.minFilter = THREE.LinearFilter;
}
texture.format = texDatas.format;
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture );
}, onProgress, onError );
}
return texture;
},
setPath: function ( value ) {
this.path = value;
}
};
// File:src/materials/Material.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Material = function () {
Object.defineProperty( this, 'id', { value: THREE.MaterialIdCount ++ } );
this.uuid = THREE.Math.generateUUID();
this.name = '';
this.type = 'Material';
this.side = THREE.FrontSide;
this.opacity = 1;
this.transparent = false;
this.blending = THREE.NormalBlending;
this.blendSrc = THREE.SrcAlphaFactor;
this.blendDst = THREE.OneMinusSrcAlphaFactor;
this.blendEquation = THREE.AddEquation;
this.blendSrcAlpha = null;
this.blendDstAlpha = null;
this.blendEquationAlpha = null;
this.depthFunc = THREE.LessEqualDepth;
this.depthTest = true;
this.depthWrite = true;
this.clippingPlanes = null;
this.clipShadows = false;
this.colorWrite = true;
this.precision = null; // override the renderer's default precision for this material
this.polygonOffset = false;
this.polygonOffsetFactor = 0;
this.polygonOffsetUnits = 0;
this.alphaTest = 0;
this.premultipliedAlpha = false;
this.overdraw = 0; // Overdrawn pixels (typically between 0 and 1) for fixing antialiasing gaps in CanvasRenderer
this.visible = true;
this._needsUpdate = true;
};
THREE.Material.prototype = {
constructor: THREE.Material,
get needsUpdate () {
return this._needsUpdate;
},
set needsUpdate ( value ) {
if ( value === true ) this.update();
this._needsUpdate = value;
},
setValues: function ( values ) {
if ( values === undefined ) return;
for ( var key in values ) {
var newValue = values[ key ];
if ( newValue === undefined ) {
console.warn( "THREE.Material: '" + key + "' parameter is undefined." );
continue;
}
var currentValue = this[ key ];
if ( currentValue === undefined ) {
console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." );
continue;
}
if ( currentValue instanceof THREE.Color ) {
currentValue.set( newValue );
} else if ( currentValue instanceof THREE.Vector3 && newValue instanceof THREE.Vector3 ) {
currentValue.copy( newValue );
} else if ( key === 'overdraw' ) {
// ensure overdraw is backwards-compatible with legacy boolean type
this[ key ] = Number( newValue );
} else {
this[ key ] = newValue;
}
}
},
toJSON: function ( meta ) {
var isRoot = meta === undefined;
if ( isRoot ) {
meta = {
textures: {},
images: {}
};
}
var data = {
metadata: {
version: 4.4,
type: 'Material',
generator: 'Material.toJSON'
}
};
// standard Material serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.color instanceof THREE.Color ) data.color = this.color.getHex();
if ( this.roughness !== 0.5 ) data.roughness = this.roughness;
if ( this.metalness !== 0.5 ) data.metalness = this.metalness;
if ( this.emissive instanceof THREE.Color ) data.emissive = this.emissive.getHex();
if ( this.specular instanceof THREE.Color ) data.specular = this.specular.getHex();
if ( this.shininess !== undefined ) data.shininess = this.shininess;
if ( this.map instanceof THREE.Texture ) data.map = this.map.toJSON( meta ).uuid;
if ( this.alphaMap instanceof THREE.Texture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid;
if ( this.lightMap instanceof THREE.Texture ) data.lightMap = this.lightMap.toJSON( meta ).uuid;
if ( this.bumpMap instanceof THREE.Texture ) {
data.bumpMap = this.bumpMap.toJSON( meta ).uuid;
data.bumpScale = this.bumpScale;
}
if ( this.normalMap instanceof THREE.Texture ) {
data.normalMap = this.normalMap.toJSON( meta ).uuid;
data.normalScale = this.normalScale.toArray();
}
if ( this.displacementMap instanceof THREE.Texture ) {
data.displacementMap = this.displacementMap.toJSON( meta ).uuid;
data.displacementScale = this.displacementScale;
data.displacementBias = this.displacementBias;
}
if ( this.roughnessMap instanceof THREE.Texture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid;
if ( this.metalnessMap instanceof THREE.Texture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid;
if ( this.emissiveMap instanceof THREE.Texture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid;
if ( this.specularMap instanceof THREE.Texture ) data.specularMap = this.specularMap.toJSON( meta ).uuid;
if ( this.envMap instanceof THREE.Texture ) {
data.envMap = this.envMap.toJSON( meta ).uuid;
data.reflectivity = this.reflectivity; // Scale behind envMap
}
if ( this.size !== undefined ) data.size = this.size;
if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation;
if ( this.vertexColors !== undefined && this.vertexColors !== THREE.NoColors ) data.vertexColors = this.vertexColors;
if ( this.shading !== undefined && this.shading !== THREE.SmoothShading ) data.shading = this.shading;
if ( this.blending !== undefined && this.blending !== THREE.NormalBlending ) data.blending = this.blending;
if ( this.side !== undefined && this.side !== THREE.FrontSide ) data.side = this.side;
if ( this.opacity < 1 ) data.opacity = this.opacity;
if ( this.transparent === true ) data.transparent = this.transparent;
if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest;
if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha;
if ( this.wireframe === true ) data.wireframe = this.wireframe;
if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth;
// TODO: Copied from Object3D.toJSON
function extractFromCache ( cache ) {
var values = [];
for ( var key in cache ) {
var data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
if ( isRoot ) {
var textures = extractFromCache( meta.textures );
var images = extractFromCache( meta.images );
if ( textures.length > 0 ) data.textures = textures;
if ( images.length > 0 ) data.images = images;
}
return data;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.name = source.name;
this.side = source.side;
this.opacity = source.opacity;
this.transparent = source.transparent;
this.blending = source.blending;
this.blendSrc = source.blendSrc;
this.blendDst = source.blendDst;
this.blendEquation = source.blendEquation;
this.blendSrcAlpha = source.blendSrcAlpha;
this.blendDstAlpha = source.blendDstAlpha;
this.blendEquationAlpha = source.blendEquationAlpha;
this.depthFunc = source.depthFunc;
this.depthTest = source.depthTest;
this.depthWrite = source.depthWrite;
this.colorWrite = source.colorWrite;
this.precision = source.precision;
this.polygonOffset = source.polygonOffset;
this.polygonOffsetFactor = source.polygonOffsetFactor;
this.polygonOffsetUnits = source.polygonOffsetUnits;
this.alphaTest = source.alphaTest;
this.premultipliedAlpha = source.premultipliedAlpha;
this.overdraw = source.overdraw;
this.visible = source.visible;
this.clipShadows = source.clipShadows;
var srcPlanes = source.clippingPlanes,
dstPlanes = null;
if ( srcPlanes !== null ) {
var n = srcPlanes.length;
dstPlanes = new Array( n );
for ( var i = 0; i !== n; ++ i )
dstPlanes[ i ] = srcPlanes[ i ].clone();
}
this.clippingPlanes = dstPlanes;
return this;
},
update: function () {
this.dispatchEvent( { type: 'update' } );
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
};
THREE.EventDispatcher.prototype.apply( THREE.Material.prototype );
THREE.MaterialIdCount = 0;
// File:src/materials/LineBasicMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* linewidth: <float>,
* linecap: "round",
* linejoin: "round",
*
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* vertexColors: <bool>
*
* fog: <bool>
* }
*/
THREE.LineBasicMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'LineBasicMaterial';
this.color = new THREE.Color( 0xffffff );
this.linewidth = 1;
this.linecap = 'round';
this.linejoin = 'round';
this.blending = THREE.NormalBlending;
this.vertexColors = THREE.NoColors;
this.fog = true;
this.setValues( parameters );
};
THREE.LineBasicMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.LineBasicMaterial.prototype.constructor = THREE.LineBasicMaterial;
THREE.LineBasicMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.linewidth = source.linewidth;
this.linecap = source.linecap;
this.linejoin = source.linejoin;
this.vertexColors = source.vertexColors;
this.fog = source.fog;
return this;
};
// File:src/materials/LineDashedMaterial.js
/**
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* linewidth: <float>,
*
* scale: <float>,
* dashSize: <float>,
* gapSize: <float>,
*
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* vertexColors: THREE.NoColors / THREE.FaceColors / THREE.VertexColors
*
* fog: <bool>
* }
*/
THREE.LineDashedMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'LineDashedMaterial';
this.color = new THREE.Color( 0xffffff );
this.linewidth = 1;
this.scale = 1;
this.dashSize = 3;
this.gapSize = 1;
this.blending = THREE.NormalBlending;
this.vertexColors = THREE.NoColors;
this.fog = true;
this.setValues( parameters );
};
THREE.LineDashedMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.LineDashedMaterial.prototype.constructor = THREE.LineDashedMaterial;
THREE.LineDashedMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.linewidth = source.linewidth;
this.scale = source.scale;
this.dashSize = source.dashSize;
this.gapSize = source.gapSize;
this.vertexColors = source.vertexColors;
this.fog = source.fog;
return this;
};
// File:src/materials/MeshBasicMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* shading: THREE.SmoothShading,
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors,
*
* skinning: <bool>,
* morphTargets: <bool>,
*
* fog: <bool>
* }
*/
THREE.MeshBasicMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'MeshBasicMaterial';
this.color = new THREE.Color( 0xffffff ); // emissive
this.map = null;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = THREE.MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.fog = true;
this.shading = THREE.SmoothShading;
this.blending = THREE.NormalBlending;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.vertexColors = THREE.NoColors;
this.skinning = false;
this.morphTargets = false;
this.setValues( parameters );
};
THREE.MeshBasicMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.MeshBasicMaterial.prototype.constructor = THREE.MeshBasicMaterial;
THREE.MeshBasicMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.fog = source.fog;
this.shading = source.shading;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.vertexColors = source.vertexColors;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
return this;
};
// File:src/materials/MeshDepthMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author bhouston / https://clara.io
* @author WestLangley / http://github.com/WestLangley
*
* parameters = {
*
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>
* }
*/
THREE.MeshDepthMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'MeshDepthMaterial';
this.depthPacking = THREE.BasicDepthPacking;
this.skinning = false;
this.morphTargets = false;
this.map = null;
this.alphaMap = null;
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.setValues( parameters );
};
THREE.MeshDepthMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.MeshDepthMaterial.prototype.constructor = THREE.MeshDepthMaterial;
THREE.MeshDepthMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.depthPacking = source.depthPacking;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.map = source.map;
this.alphaMap = source.alphaMap;
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
return this;
};
// File:src/materials/MeshLambertMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>,
*
* fog: <bool>
* }
*/
THREE.MeshLambertMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'MeshLambertMaterial';
this.color = new THREE.Color( 0xffffff ); // diffuse
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new THREE.Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = THREE.MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.fog = true;
this.blending = THREE.NormalBlending;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.vertexColors = THREE.NoColors;
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
};
THREE.MeshLambertMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.MeshLambertMaterial.prototype.constructor = THREE.MeshLambertMaterial;
THREE.MeshLambertMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.fog = source.fog;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.vertexColors = source.vertexColors;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
// File:src/materials/MeshNormalMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
*
* parameters = {
* opacity: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>
* }
*/
THREE.MeshNormalMaterial = function ( parameters ) {
THREE.Material.call( this, parameters );
this.type = 'MeshNormalMaterial';
this.wireframe = false;
this.wireframeLinewidth = 1;
this.morphTargets = false;
this.setValues( parameters );
};
THREE.MeshNormalMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.MeshNormalMaterial.prototype.constructor = THREE.MeshNormalMaterial;
THREE.MeshNormalMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
return this;
};
// File:src/materials/MeshPhongMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* specular: <hex>,
* shininess: <float>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* shading: THREE.SmoothShading,
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>,
*
* fog: <bool>
* }
*/
THREE.MeshPhongMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'MeshPhongMaterial';
this.color = new THREE.Color( 0xffffff ); // diffuse
this.specular = new THREE.Color( 0x111111 );
this.shininess = 30;
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new THREE.Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalScale = new THREE.Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = THREE.MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.fog = true;
this.shading = THREE.SmoothShading;
this.blending = THREE.NormalBlending;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.vertexColors = THREE.NoColors;
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
};
THREE.MeshPhongMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.MeshPhongMaterial.prototype.constructor = THREE.MeshPhongMaterial;
THREE.MeshPhongMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.specular.copy( source.specular );
this.shininess = source.shininess;
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.fog = source.fog;
this.shading = source.shading;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.vertexColors = source.vertexColors;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
// File:src/materials/MeshStandardMaterial.js
/**
* @author WestLangley / http://github.com/WestLangley
*
* parameters = {
* color: <hex>,
* roughness: <float>,
* metalness: <float>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* roughnessMap: new THREE.Texture( <Image> ),
*
* metalnessMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
* envMapIntensity: <float>
*
* refractionRatio: <float>,
*
* shading: THREE.SmoothShading,
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>,
*
* fog: <bool>
* }
*/
THREE.MeshStandardMaterial = function ( parameters ) {
THREE.Material.call( this );
this.defines = { 'STANDARD': '' };
this.type = 'MeshStandardMaterial';
this.color = new THREE.Color( 0xffffff ); // diffuse
this.roughness = 0.5;
this.metalness = 0.5;
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new THREE.Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalScale = new THREE.Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.roughnessMap = null;
this.metalnessMap = null;
this.alphaMap = null;
this.envMap = null;
this.envMapIntensity = 1.0;
this.refractionRatio = 0.98;
this.fog = true;
this.shading = THREE.SmoothShading;
this.blending = THREE.NormalBlending;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.vertexColors = THREE.NoColors;
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
};
THREE.MeshStandardMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.MeshStandardMaterial.prototype.constructor = THREE.MeshStandardMaterial;
THREE.MeshStandardMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.defines = { 'STANDARD': '' };
this.color.copy( source.color );
this.roughness = source.roughness;
this.metalness = source.metalness;
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.roughnessMap = source.roughnessMap;
this.metalnessMap = source.metalnessMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.envMapIntensity = source.envMapIntensity;
this.refractionRatio = source.refractionRatio;
this.fog = source.fog;
this.shading = source.shading;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.vertexColors = source.vertexColors;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
// File:src/materials/MeshPhysicalMaterial.js
/**
* @author WestLangley / http://github.com/WestLangley
*
* parameters = {
* reflectivity: <float>
* }
*/
THREE.MeshPhysicalMaterial = function ( parameters ) {
THREE.MeshStandardMaterial.call( this );
this.defines = { 'PHYSICAL': '' };
this.type = 'MeshPhysicalMaterial';
this.reflectivity = 0.5; // maps to F0 = 0.04
this.setValues( parameters );
};
THREE.MeshPhysicalMaterial.prototype = Object.create( THREE.MeshStandardMaterial.prototype );
THREE.MeshPhysicalMaterial.prototype.constructor = THREE.MeshPhysicalMaterial;
THREE.MeshPhysicalMaterial.prototype.copy = function ( source ) {
THREE.MeshStandardMaterial.prototype.copy.call( this, source );
this.defines = { 'PHYSICAL': '' };
this.reflectivity = source.reflectivity;
return this;
};
// File:src/materials/MultiMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.MultiMaterial = function ( materials ) {
this.uuid = THREE.Math.generateUUID();
this.type = 'MultiMaterial';
this.materials = materials instanceof Array ? materials : [];
this.visible = true;
};
THREE.MultiMaterial.prototype = {
constructor: THREE.MultiMaterial,
toJSON: function ( meta ) {
var output = {
metadata: {
version: 4.2,
type: 'material',
generator: 'MaterialExporter'
},
uuid: this.uuid,
type: this.type,
materials: []
};
var materials = this.materials;
for ( var i = 0, l = materials.length; i < l; i ++ ) {
var material = materials[ i ].toJSON( meta );
delete material.metadata;
output.materials.push( material );
}
output.visible = this.visible;
return output;
},
clone: function () {
var material = new this.constructor();
for ( var i = 0; i < this.materials.length; i ++ ) {
material.materials.push( this.materials[ i ].clone() );
}
material.visible = this.visible;
return material;
}
};
// File:src/materials/PointsMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* size: <float>,
* sizeAttenuation: <bool>,
*
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* vertexColors: <bool>,
*
* fog: <bool>
* }
*/
THREE.PointsMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'PointsMaterial';
this.color = new THREE.Color( 0xffffff );
this.map = null;
this.size = 1;
this.sizeAttenuation = true;
this.blending = THREE.NormalBlending;
this.vertexColors = THREE.NoColors;
this.fog = true;
this.setValues( parameters );
};
THREE.PointsMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.PointsMaterial.prototype.constructor = THREE.PointsMaterial;
THREE.PointsMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.size = source.size;
this.sizeAttenuation = source.sizeAttenuation;
this.vertexColors = source.vertexColors;
this.fog = source.fog;
return this;
};
// File:src/materials/ShaderMaterial.js
/**
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* defines: { "label" : "value" },
* uniforms: { "parameter1": { type: "1f", value: 1.0 }, "parameter2": { type: "1i" value2: 2 } },
*
* fragmentShader: <string>,
* vertexShader: <string>,
*
* shading: THREE.SmoothShading,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* lights: <bool>,
*
* vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>,
*
* fog: <bool>
* }
*/
THREE.ShaderMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'ShaderMaterial';
this.defines = {};
this.uniforms = {};
this.vertexShader = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}';
this.fragmentShader = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}';
this.shading = THREE.SmoothShading;
this.linewidth = 1;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.fog = false; // set to use scene fog
this.lights = false; // set to use scene lights
this.clipping = false; // set to use user-defined clipping planes
this.vertexColors = THREE.NoColors; // set to use "color" attribute stream
this.skinning = false; // set to use skinning attribute streams
this.morphTargets = false; // set to use morph targets
this.morphNormals = false; // set to use morph normals
this.extensions = {
derivatives: false, // set to use derivatives
fragDepth: false, // set to use fragment depth values
drawBuffers: false, // set to use draw buffers
shaderTextureLOD: false // set to use shader texture LOD
};
// When rendered geometry doesn't include these attributes but the material does,
// use these default values in WebGL. This avoids errors when buffer data is missing.
this.defaultAttributeValues = {
'color': [ 1, 1, 1 ],
'uv': [ 0, 0 ],
'uv2': [ 0, 0 ]
};
this.index0AttributeName = undefined;
if ( parameters !== undefined ) {
if ( parameters.attributes !== undefined ) {
console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' );
}
this.setValues( parameters );
}
};
THREE.ShaderMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.ShaderMaterial.prototype.constructor = THREE.ShaderMaterial;
THREE.ShaderMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.fragmentShader = source.fragmentShader;
this.vertexShader = source.vertexShader;
this.uniforms = THREE.UniformsUtils.clone( source.uniforms );
this.defines = source.defines;
this.shading = source.shading;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.fog = source.fog;
this.lights = source.lights;
this.clipping = source.clipping;
this.vertexColors = source.vertexColors;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
this.extensions = source.extensions;
return this;
};
THREE.ShaderMaterial.prototype.toJSON = function ( meta ) {
var data = THREE.Material.prototype.toJSON.call( this, meta );
data.uniforms = this.uniforms;
data.vertexShader = this.vertexShader;
data.fragmentShader = this.fragmentShader;
return data;
};
// File:src/materials/RawShaderMaterial.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.RawShaderMaterial = function ( parameters ) {
THREE.ShaderMaterial.call( this, parameters );
this.type = 'RawShaderMaterial';
};
THREE.RawShaderMaterial.prototype = Object.create( THREE.ShaderMaterial.prototype );
THREE.RawShaderMaterial.prototype.constructor = THREE.RawShaderMaterial;
// File:src/materials/SpriteMaterial.js
/**
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* uvOffset: new THREE.Vector2(),
* uvScale: new THREE.Vector2(),
*
* fog: <bool>
* }
*/
THREE.SpriteMaterial = function ( parameters ) {
THREE.Material.call( this );
this.type = 'SpriteMaterial';
this.color = new THREE.Color( 0xffffff );
this.map = null;
this.rotation = 0;
this.fog = false;
// set parameters
this.setValues( parameters );
};
THREE.SpriteMaterial.prototype = Object.create( THREE.Material.prototype );
THREE.SpriteMaterial.prototype.constructor = THREE.SpriteMaterial;
THREE.SpriteMaterial.prototype.copy = function ( source ) {
THREE.Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.rotation = source.rotation;
this.fog = source.fog;
return this;
};
// File:src/textures/Texture.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author szimek / https://github.com/szimek/
*/
THREE.Texture = function ( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
Object.defineProperty( this, 'id', { value: THREE.TextureIdCount ++ } );
this.uuid = THREE.Math.generateUUID();
this.name = '';
this.sourceFile = '';
this.image = image !== undefined ? image : THREE.Texture.DEFAULT_IMAGE;
this.mipmaps = [];
this.mapping = mapping !== undefined ? mapping : THREE.Texture.DEFAULT_MAPPING;
this.wrapS = wrapS !== undefined ? wrapS : THREE.ClampToEdgeWrapping;
this.wrapT = wrapT !== undefined ? wrapT : THREE.ClampToEdgeWrapping;
this.magFilter = magFilter !== undefined ? magFilter : THREE.LinearFilter;
this.minFilter = minFilter !== undefined ? minFilter : THREE.LinearMipMapLinearFilter;
this.anisotropy = anisotropy !== undefined ? anisotropy : 1;
this.format = format !== undefined ? format : THREE.RGBAFormat;
this.type = type !== undefined ? type : THREE.UnsignedByteType;
this.offset = new THREE.Vector2( 0, 0 );
this.repeat = new THREE.Vector2( 1, 1 );
this.generateMipmaps = true;
this.premultiplyAlpha = false;
this.flipY = true;
this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
//
// Also changing the encoding after already used by a Material will not automatically make the Material
// update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
this.encoding = encoding !== undefined ? encoding : THREE.LinearEncoding;
this.version = 0;
this.onUpdate = null;
};
THREE.Texture.DEFAULT_IMAGE = undefined;
THREE.Texture.DEFAULT_MAPPING = THREE.UVMapping;
THREE.Texture.prototype = {
constructor: THREE.Texture,
set needsUpdate ( value ) {
if ( value === true ) this.version ++;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.image = source.image;
this.mipmaps = source.mipmaps.slice( 0 );
this.mapping = source.mapping;
this.wrapS = source.wrapS;
this.wrapT = source.wrapT;
this.magFilter = source.magFilter;
this.minFilter = source.minFilter;
this.anisotropy = source.anisotropy;
this.format = source.format;
this.type = source.type;
this.offset.copy( source.offset );
this.repeat.copy( source.repeat );
this.generateMipmaps = source.generateMipmaps;
this.premultiplyAlpha = source.premultiplyAlpha;
this.flipY = source.flipY;
this.unpackAlignment = source.unpackAlignment;
this.encoding = source.encoding;
return this;
},
toJSON: function ( meta ) {
if ( meta.textures[ this.uuid ] !== undefined ) {
return meta.textures[ this.uuid ];
}
function getDataURL( image ) {
var canvas;
if ( image.toDataURL !== undefined ) {
canvas = image;
} else {
canvas = document.createElement( 'canvas' );
canvas.width = image.width;
canvas.height = image.height;
canvas.getContext( '2d' ).drawImage( image, 0, 0, image.width, image.height );
}
if ( canvas.width > 2048 || canvas.height > 2048 ) {
return canvas.toDataURL( 'image/jpeg', 0.6 );
} else {
return canvas.toDataURL( 'image/png' );
}
}
var output = {
metadata: {
version: 4.4,
type: 'Texture',
generator: 'Texture.toJSON'
},
uuid: this.uuid,
name: this.name,
mapping: this.mapping,
repeat: [ this.repeat.x, this.repeat.y ],
offset: [ this.offset.x, this.offset.y ],
wrap: [ this.wrapS, this.wrapT ],
minFilter: this.minFilter,
magFilter: this.magFilter,
anisotropy: this.anisotropy
};
if ( this.image !== undefined ) {
// TODO: Move to THREE.Image
var image = this.image;
if ( image.uuid === undefined ) {
image.uuid = THREE.Math.generateUUID(); // UGH
}
if ( meta.images[ image.uuid ] === undefined ) {
meta.images[ image.uuid ] = {
uuid: image.uuid,
url: getDataURL( image )
};
}
output.image = image.uuid;
}
meta.textures[ this.uuid ] = output;
return output;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
},
transformUv: function ( uv ) {
if ( this.mapping !== THREE.UVMapping ) return;
uv.multiply( this.repeat );
uv.add( this.offset );
if ( uv.x < 0 || uv.x > 1 ) {
switch ( this.wrapS ) {
case THREE.RepeatWrapping:
uv.x = uv.x - Math.floor( uv.x );
break;
case THREE.ClampToEdgeWrapping:
uv.x = uv.x < 0 ? 0 : 1;
break;
case THREE.MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {
uv.x = Math.ceil( uv.x ) - uv.x;
} else {
uv.x = uv.x - Math.floor( uv.x );
}
break;
}
}
if ( uv.y < 0 || uv.y > 1 ) {
switch ( this.wrapT ) {
case THREE.RepeatWrapping:
uv.y = uv.y - Math.floor( uv.y );
break;
case THREE.ClampToEdgeWrapping:
uv.y = uv.y < 0 ? 0 : 1;
break;
case THREE.MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {
uv.y = Math.ceil( uv.y ) - uv.y;
} else {
uv.y = uv.y - Math.floor( uv.y );
}
break;
}
}
if ( this.flipY ) {
uv.y = 1 - uv.y;
}
}
};
THREE.EventDispatcher.prototype.apply( THREE.Texture.prototype );
THREE.TextureIdCount = 0;
// File:src/textures/DepthTexture.js
/**
* @author Matt DesLauriers / @mattdesl
*/
THREE.DepthTexture = function ( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy ) {
THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, THREE.DepthFormat, type, anisotropy );
this.image = { width: width, height: height };
this.type = type !== undefined ? type : THREE.UnsignedShortType;
this.magFilter = magFilter !== undefined ? magFilter : THREE.NearestFilter;
this.minFilter = minFilter !== undefined ? minFilter : THREE.NearestFilter;
this.flipY = false;
this.generateMipmaps = false;
};
THREE.DepthTexture.prototype = Object.create( THREE.Texture.prototype );
THREE.DepthTexture.prototype.constructor = THREE.DepthTexture;
// File:src/textures/CanvasTexture.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.CanvasTexture = function ( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {
THREE.Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
this.needsUpdate = true;
};
THREE.CanvasTexture.prototype = Object.create( THREE.Texture.prototype );
THREE.CanvasTexture.prototype.constructor = THREE.CanvasTexture;
// File:src/textures/CubeTexture.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.CubeTexture = function ( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
images = images !== undefined ? images : [];
mapping = mapping !== undefined ? mapping : THREE.CubeReflectionMapping;
THREE.Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
this.flipY = false;
};
THREE.CubeTexture.prototype = Object.create( THREE.Texture.prototype );
THREE.CubeTexture.prototype.constructor = THREE.CubeTexture;
Object.defineProperty( THREE.CubeTexture.prototype, 'images', {
get: function () {
return this.image;
},
set: function ( value ) {
this.image = value;
}
} );
// File:src/textures/CompressedTexture.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.CompressedTexture = function ( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {
THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
this.image = { width: width, height: height };
this.mipmaps = mipmaps;
// no flipping for cube textures
// (also flipping doesn't work for compressed textures )
this.flipY = false;
// can't generate mipmaps for compressed textures
// mips must be embedded in DDS files
this.generateMipmaps = false;
};
THREE.CompressedTexture.prototype = Object.create( THREE.Texture.prototype );
THREE.CompressedTexture.prototype.constructor = THREE.CompressedTexture;
// File:src/textures/DataTexture.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.DataTexture = function ( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {
THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
this.image = { data: data, width: width, height: height };
this.magFilter = magFilter !== undefined ? magFilter : THREE.NearestFilter;
this.minFilter = minFilter !== undefined ? minFilter : THREE.NearestFilter;
this.flipY = false;
this.generateMipmaps = false;
};
THREE.DataTexture.prototype = Object.create( THREE.Texture.prototype );
THREE.DataTexture.prototype.constructor = THREE.DataTexture;
// File:src/textures/VideoTexture.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.VideoTexture = function ( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {
THREE.Texture.call( this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
this.generateMipmaps = false;
var scope = this;
function update() {
requestAnimationFrame( update );
if ( video.readyState >= video.HAVE_CURRENT_DATA ) {
scope.needsUpdate = true;
}
}
update();
};
THREE.VideoTexture.prototype = Object.create( THREE.Texture.prototype );
THREE.VideoTexture.prototype.constructor = THREE.VideoTexture;
// File:src/objects/Group.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.Group = function () {
THREE.Object3D.call( this );
this.type = 'Group';
};
THREE.Group.prototype = Object.create( THREE.Object3D.prototype );
THREE.Group.prototype.constructor = THREE.Group;
// File:src/objects/Points.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.Points = function ( geometry, material ) {
THREE.Object3D.call( this );
this.type = 'Points';
this.geometry = geometry !== undefined ? geometry : new THREE.Geometry();
this.material = material !== undefined ? material : new THREE.PointsMaterial( { color: Math.random() * 0xffffff } );
};
THREE.Points.prototype = Object.create( THREE.Object3D.prototype );
THREE.Points.prototype.constructor = THREE.Points;
THREE.Points.prototype.raycast = ( function () {
var inverseMatrix = new THREE.Matrix4();
var ray = new THREE.Ray();
var sphere = new THREE.Sphere();
return function raycast( raycaster, intersects ) {
var object = this;
var geometry = this.geometry;
var matrixWorld = this.matrixWorld;
var threshold = raycaster.params.Points.threshold;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere );
sphere.applyMatrix4( matrixWorld );
if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
//
inverseMatrix.getInverse( matrixWorld );
ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
var localThresholdSq = localThreshold * localThreshold;
var position = new THREE.Vector3();
function testPoint( point, index ) {
var rayPointDistanceSq = ray.distanceSqToPoint( point );
if ( rayPointDistanceSq < localThresholdSq ) {
var intersectPoint = ray.closestPointToPoint( point );
intersectPoint.applyMatrix4( matrixWorld );
var distance = raycaster.ray.origin.distanceTo( intersectPoint );
if ( distance < raycaster.near || distance > raycaster.far ) return;
intersects.push( {
distance: distance,
distanceToRay: Math.sqrt( rayPointDistanceSq ),
point: intersectPoint.clone(),
index: index,
face: null,
object: object
} );
}
}
if ( geometry instanceof THREE.BufferGeometry ) {
var index = geometry.index;
var attributes = geometry.attributes;
var positions = attributes.position.array;
if ( index !== null ) {
var indices = index.array;
for ( var i = 0, il = indices.length; i < il; i ++ ) {
var a = indices[ i ];
position.fromArray( positions, a * 3 );
testPoint( position, a );
}
} else {
for ( var i = 0, l = positions.length / 3; i < l; i ++ ) {
position.fromArray( positions, i * 3 );
testPoint( position, i );
}
}
} else {
var vertices = geometry.vertices;
for ( var i = 0, l = vertices.length; i < l; i ++ ) {
testPoint( vertices[ i ], i );
}
}
};
}() );
THREE.Points.prototype.clone = function () {
return new this.constructor( this.geometry, this.material ).copy( this );
};
// File:src/objects/Line.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.Line = function ( geometry, material, mode ) {
if ( mode === 1 ) {
console.warn( 'THREE.Line: parameter THREE.LinePieces no longer supported. Created THREE.LineSegments instead.' );
return new THREE.LineSegments( geometry, material );
}
THREE.Object3D.call( this );
this.type = 'Line';
this.geometry = geometry !== undefined ? geometry : new THREE.Geometry();
this.material = material !== undefined ? material : new THREE.LineBasicMaterial( { color: Math.random() * 0xffffff } );
};
THREE.Line.prototype = Object.create( THREE.Object3D.prototype );
THREE.Line.prototype.constructor = THREE.Line;
THREE.Line.prototype.raycast = ( function () {
var inverseMatrix = new THREE.Matrix4();
var ray = new THREE.Ray();
var sphere = new THREE.Sphere();
return function raycast( raycaster, intersects ) {
var precision = raycaster.linePrecision;
var precisionSq = precision * precision;
var geometry = this.geometry;
var matrixWorld = this.matrixWorld;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere );
sphere.applyMatrix4( matrixWorld );
if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
//
inverseMatrix.getInverse( matrixWorld );
ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
var vStart = new THREE.Vector3();
var vEnd = new THREE.Vector3();
var interSegment = new THREE.Vector3();
var interRay = new THREE.Vector3();
var step = this instanceof THREE.LineSegments ? 2 : 1;
if ( geometry instanceof THREE.BufferGeometry ) {
var index = geometry.index;
var attributes = geometry.attributes;
var positions = attributes.position.array;
if ( index !== null ) {
var indices = index.array;
for ( var i = 0, l = indices.length - 1; i < l; i += step ) {
var a = indices[ i ];
var b = indices[ i + 1 ];
vStart.fromArray( positions, a * 3 );
vEnd.fromArray( positions, b * 3 );
var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );
if ( distSq > precisionSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
var distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
} else {
for ( var i = 0, l = positions.length / 3 - 1; i < l; i += step ) {
vStart.fromArray( positions, 3 * i );
vEnd.fromArray( positions, 3 * i + 3 );
var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );
if ( distSq > precisionSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
var distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
}
} else if ( geometry instanceof THREE.Geometry ) {
var vertices = geometry.vertices;
var nbVertices = vertices.length;
for ( var i = 0; i < nbVertices - 1; i += step ) {
var distSq = ray.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment );
if ( distSq > precisionSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
var distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
}
};
}() );
THREE.Line.prototype.clone = function () {
return new this.constructor( this.geometry, this.material ).copy( this );
};
// DEPRECATED
THREE.LineStrip = 0;
THREE.LinePieces = 1;
// File:src/objects/LineSegments.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.LineSegments = function ( geometry, material ) {
THREE.Line.call( this, geometry, material );
this.type = 'LineSegments';
};
THREE.LineSegments.prototype = Object.create( THREE.Line.prototype );
THREE.LineSegments.prototype.constructor = THREE.LineSegments;
// File:src/objects/Mesh.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author jonobr1 / http://jonobr1.com/
*/
THREE.Mesh = function ( geometry, material ) {
THREE.Object3D.call( this );
this.type = 'Mesh';
this.geometry = geometry !== undefined ? geometry : new THREE.Geometry();
this.material = material !== undefined ? material : new THREE.MeshBasicMaterial( { color: Math.random() * 0xffffff } );
this.drawMode = THREE.TrianglesDrawMode;
this.updateMorphTargets();
};
THREE.Mesh.prototype = Object.create( THREE.Object3D.prototype );
THREE.Mesh.prototype.constructor = THREE.Mesh;
THREE.Mesh.prototype.setDrawMode = function ( value ) {
this.drawMode = value;
};
THREE.Mesh.prototype.updateMorphTargets = function () {
if ( this.geometry.morphTargets !== undefined && this.geometry.morphTargets.length > 0 ) {
this.morphTargetBase = - 1;
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for ( var m = 0, ml = this.geometry.morphTargets.length; m < ml; m ++ ) {
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ this.geometry.morphTargets[ m ].name ] = m;
}
}
};
THREE.Mesh.prototype.getMorphTargetIndexByName = function ( name ) {
if ( this.morphTargetDictionary[ name ] !== undefined ) {
return this.morphTargetDictionary[ name ];
}
console.warn( 'THREE.Mesh.getMorphTargetIndexByName: morph target ' + name + ' does not exist. Returning 0.' );
return 0;
};
THREE.Mesh.prototype.raycast = ( function () {
var inverseMatrix = new THREE.Matrix4();
var ray = new THREE.Ray();
var sphere = new THREE.Sphere();
var vA = new THREE.Vector3();
var vB = new THREE.Vector3();
var vC = new THREE.Vector3();
var tempA = new THREE.Vector3();
var tempB = new THREE.Vector3();
var tempC = new THREE.Vector3();
var uvA = new THREE.Vector2();
var uvB = new THREE.Vector2();
var uvC = new THREE.Vector2();
var barycoord = new THREE.Vector3();
var intersectionPoint = new THREE.Vector3();
var intersectionPointWorld = new THREE.Vector3();
function uvIntersection( point, p1, p2, p3, uv1, uv2, uv3 ) {
THREE.Triangle.barycoordFromPoint( point, p1, p2, p3, barycoord );
uv1.multiplyScalar( barycoord.x );
uv2.multiplyScalar( barycoord.y );
uv3.multiplyScalar( barycoord.z );
uv1.add( uv2 ).add( uv3 );
return uv1.clone();
}
function checkIntersection( object, raycaster, ray, pA, pB, pC, point ) {
var intersect;
var material = object.material;
if ( material.side === THREE.BackSide ) {
intersect = ray.intersectTriangle( pC, pB, pA, true, point );
} else {
intersect = ray.intersectTriangle( pA, pB, pC, material.side !== THREE.DoubleSide, point );
}
if ( intersect === null ) return null;
intersectionPointWorld.copy( point );
intersectionPointWorld.applyMatrix4( object.matrixWorld );
var distance = raycaster.ray.origin.distanceTo( intersectionPointWorld );
if ( distance < raycaster.near || distance > raycaster.far ) return null;
return {
distance: distance,
point: intersectionPointWorld.clone(),
object: object
};
}
function checkBufferGeometryIntersection( object, raycaster, ray, positions, uvs, a, b, c ) {
vA.fromArray( positions, a * 3 );
vB.fromArray( positions, b * 3 );
vC.fromArray( positions, c * 3 );
var intersection = checkIntersection( object, raycaster, ray, vA, vB, vC, intersectionPoint );
if ( intersection ) {
if ( uvs ) {
uvA.fromArray( uvs, a * 2 );
uvB.fromArray( uvs, b * 2 );
uvC.fromArray( uvs, c * 2 );
intersection.uv = uvIntersection( intersectionPoint, vA, vB, vC, uvA, uvB, uvC );
}
intersection.face = new THREE.Face3( a, b, c, THREE.Triangle.normal( vA, vB, vC ) );
intersection.faceIndex = a;
}
return intersection;
}
return function raycast( raycaster, intersects ) {
var geometry = this.geometry;
var material = this.material;
var matrixWorld = this.matrixWorld;
if ( material === undefined ) return;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere );
sphere.applyMatrix4( matrixWorld );
if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
//
inverseMatrix.getInverse( matrixWorld );
ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
// Check boundingBox before continuing
if ( geometry.boundingBox !== null ) {
if ( ray.intersectsBox( geometry.boundingBox ) === false ) return;
}
var uvs, intersection;
if ( geometry instanceof THREE.BufferGeometry ) {
var a, b, c;
var index = geometry.index;
var attributes = geometry.attributes;
var positions = attributes.position.array;
if ( attributes.uv !== undefined ) {
uvs = attributes.uv.array;
}
if ( index !== null ) {
var indices = index.array;
for ( var i = 0, l = indices.length; i < l; i += 3 ) {
a = indices[ i ];
b = indices[ i + 1 ];
c = indices[ i + 2 ];
intersection = checkBufferGeometryIntersection( this, raycaster, ray, positions, uvs, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indices buffer semantics
intersects.push( intersection );
}
}
} else {
for ( var i = 0, l = positions.length; i < l; i += 9 ) {
a = i / 3;
b = a + 1;
c = a + 2;
intersection = checkBufferGeometryIntersection( this, raycaster, ray, positions, uvs, a, b, c );
if ( intersection ) {
intersection.index = a; // triangle number in positions buffer semantics
intersects.push( intersection );
}
}
}
} else if ( geometry instanceof THREE.Geometry ) {
var fvA, fvB, fvC;
var isFaceMaterial = material instanceof THREE.MultiMaterial;
var materials = isFaceMaterial === true ? material.materials : null;
var vertices = geometry.vertices;
var faces = geometry.faces;
var faceVertexUvs = geometry.faceVertexUvs[ 0 ];
if ( faceVertexUvs.length > 0 ) uvs = faceVertexUvs;
for ( var f = 0, fl = faces.length; f < fl; f ++ ) {
var face = faces[ f ];
var faceMaterial = isFaceMaterial === true ? materials[ face.materialIndex ] : material;
if ( faceMaterial === undefined ) continue;
fvA = vertices[ face.a ];
fvB = vertices[ face.b ];
fvC = vertices[ face.c ];
if ( faceMaterial.morphTargets === true ) {
var morphTargets = geometry.morphTargets;
var morphInfluences = this.morphTargetInfluences;
vA.set( 0, 0, 0 );
vB.set( 0, 0, 0 );
vC.set( 0, 0, 0 );
for ( var t = 0, tl = morphTargets.length; t < tl; t ++ ) {
var influence = morphInfluences[ t ];
if ( influence === 0 ) continue;
var targets = morphTargets[ t ].vertices;
vA.addScaledVector( tempA.subVectors( targets[ face.a ], fvA ), influence );
vB.addScaledVector( tempB.subVectors( targets[ face.b ], fvB ), influence );
vC.addScaledVector( tempC.subVectors( targets[ face.c ], fvC ), influence );
}
vA.add( fvA );
vB.add( fvB );
vC.add( fvC );
fvA = vA;
fvB = vB;
fvC = vC;
}
intersection = checkIntersection( this, raycaster, ray, fvA, fvB, fvC, intersectionPoint );
if ( intersection ) {
if ( uvs ) {
var uvs_f = uvs[ f ];
uvA.copy( uvs_f[ 0 ] );
uvB.copy( uvs_f[ 1 ] );
uvC.copy( uvs_f[ 2 ] );
intersection.uv = uvIntersection( intersectionPoint, fvA, fvB, fvC, uvA, uvB, uvC );
}
intersection.face = face;
intersection.faceIndex = f;
intersects.push( intersection );
}
}
}
};
}() );
THREE.Mesh.prototype.clone = function () {
return new this.constructor( this.geometry, this.material ).copy( this );
};
// File:src/objects/Bone.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author ikerr / http://verold.com
*/
THREE.Bone = function ( skin ) {
THREE.Object3D.call( this );
this.type = 'Bone';
this.skin = skin;
};
THREE.Bone.prototype = Object.create( THREE.Object3D.prototype );
THREE.Bone.prototype.constructor = THREE.Bone;
THREE.Bone.prototype.copy = function ( source ) {
THREE.Object3D.prototype.copy.call( this, source );
this.skin = source.skin;
return this;
};
// File:src/objects/Skeleton.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author michael guerrero / http://realitymeltdown.com
* @author ikerr / http://verold.com
*/
THREE.Skeleton = function ( bones, boneInverses, useVertexTexture ) {
this.useVertexTexture = useVertexTexture !== undefined ? useVertexTexture : true;
this.identityMatrix = new THREE.Matrix4();
// copy the bone array
bones = bones || [];
this.bones = bones.slice( 0 );
// create a bone texture or an array of floats
if ( this.useVertexTexture ) {
// layout (1 matrix = 4 pixels)
// RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
// with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8)
// 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16)
// 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32)
// 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)
var size = Math.sqrt( this.bones.length * 4 ); // 4 pixels needed for 1 matrix
size = THREE.Math.nextPowerOfTwo( Math.ceil( size ) );
size = Math.max( size, 4 );
this.boneTextureWidth = size;
this.boneTextureHeight = size;
this.boneMatrices = new Float32Array( this.boneTextureWidth * this.boneTextureHeight * 4 ); // 4 floats per RGBA pixel
this.boneTexture = new THREE.DataTexture( this.boneMatrices, this.boneTextureWidth, this.boneTextureHeight, THREE.RGBAFormat, THREE.FloatType );
} else {
this.boneMatrices = new Float32Array( 16 * this.bones.length );
}
// use the supplied bone inverses or calculate the inverses
if ( boneInverses === undefined ) {
this.calculateInverses();
} else {
if ( this.bones.length === boneInverses.length ) {
this.boneInverses = boneInverses.slice( 0 );
} else {
console.warn( 'THREE.Skeleton bonInverses is the wrong length.' );
this.boneInverses = [];
for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) {
this.boneInverses.push( new THREE.Matrix4() );
}
}
}
};
THREE.Skeleton.prototype.calculateInverses = function () {
this.boneInverses = [];
for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) {
var inverse = new THREE.Matrix4();
if ( this.bones[ b ] ) {
inverse.getInverse( this.bones[ b ].matrixWorld );
}
this.boneInverses.push( inverse );
}
};
THREE.Skeleton.prototype.pose = function () {
var bone;
// recover the bind-time world matrices
for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) {
bone = this.bones[ b ];
if ( bone ) {
bone.matrixWorld.getInverse( this.boneInverses[ b ] );
}
}
// compute the local matrices, positions, rotations and scales
for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) {
bone = this.bones[ b ];
if ( bone ) {
if ( bone.parent ) {
bone.matrix.getInverse( bone.parent.matrixWorld );
bone.matrix.multiply( bone.matrixWorld );
} else {
bone.matrix.copy( bone.matrixWorld );
}
bone.matrix.decompose( bone.position, bone.quaternion, bone.scale );
}
}
};
THREE.Skeleton.prototype.update = ( function () {
var offsetMatrix = new THREE.Matrix4();
return function update() {
// flatten bone matrices to array
for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) {
// compute the offset between the current and the original transform
var matrix = this.bones[ b ] ? this.bones[ b ].matrixWorld : this.identityMatrix;
offsetMatrix.multiplyMatrices( matrix, this.boneInverses[ b ] );
offsetMatrix.toArray( this.boneMatrices, b * 16 );
}
if ( this.useVertexTexture ) {
this.boneTexture.needsUpdate = true;
}
};
} )();
THREE.Skeleton.prototype.clone = function () {
return new THREE.Skeleton( this.bones, this.boneInverses, this.useVertexTexture );
};
// File:src/objects/SkinnedMesh.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author ikerr / http://verold.com
*/
THREE.SkinnedMesh = function ( geometry, material, useVertexTexture ) {
THREE.Mesh.call( this, geometry, material );
this.type = 'SkinnedMesh';
this.bindMode = "attached";
this.bindMatrix = new THREE.Matrix4();
this.bindMatrixInverse = new THREE.Matrix4();
// init bones
// TODO: remove bone creation as there is no reason (other than
// convenience) for THREE.SkinnedMesh to do this.
var bones = [];
if ( this.geometry && this.geometry.bones !== undefined ) {
var bone, gbone;
for ( var b = 0, bl = this.geometry.bones.length; b < bl; ++ b ) {
gbone = this.geometry.bones[ b ];
bone = new THREE.Bone( this );
bones.push( bone );
bone.name = gbone.name;
bone.position.fromArray( gbone.pos );
bone.quaternion.fromArray( gbone.rotq );
if ( gbone.scl !== undefined ) bone.scale.fromArray( gbone.scl );
}
for ( var b = 0, bl = this.geometry.bones.length; b < bl; ++ b ) {
gbone = this.geometry.bones[ b ];
if ( gbone.parent !== - 1 && gbone.parent !== null &&
bones[ gbone.parent ] !== undefined ) {
bones[ gbone.parent ].add( bones[ b ] );
} else {
this.add( bones[ b ] );
}
}
}
this.normalizeSkinWeights();
this.updateMatrixWorld( true );
this.bind( new THREE.Skeleton( bones, undefined, useVertexTexture ), this.matrixWorld );
};
THREE.SkinnedMesh.prototype = Object.create( THREE.Mesh.prototype );
THREE.SkinnedMesh.prototype.constructor = THREE.SkinnedMesh;
THREE.SkinnedMesh.prototype.bind = function( skeleton, bindMatrix ) {
this.skeleton = skeleton;
if ( bindMatrix === undefined ) {
this.updateMatrixWorld( true );
this.skeleton.calculateInverses();
bindMatrix = this.matrixWorld;
}
this.bindMatrix.copy( bindMatrix );
this.bindMatrixInverse.getInverse( bindMatrix );
};
THREE.SkinnedMesh.prototype.pose = function () {
this.skeleton.pose();
};
THREE.SkinnedMesh.prototype.normalizeSkinWeights = function () {
if ( this.geometry instanceof THREE.Geometry ) {
for ( var i = 0; i < this.geometry.skinWeights.length; i ++ ) {
var sw = this.geometry.skinWeights[ i ];
var scale = 1.0 / sw.lengthManhattan();
if ( scale !== Infinity ) {
sw.multiplyScalar( scale );
} else {
sw.set( 1, 0, 0, 0 ); // do something reasonable
}
}
} else if ( this.geometry instanceof THREE.BufferGeometry ) {
var vec = new THREE.Vector4();
var skinWeight = this.geometry.attributes.skinWeight;
for ( var i = 0; i < skinWeight.count; i ++ ) {
vec.x = skinWeight.getX( i );
vec.y = skinWeight.getY( i );
vec.z = skinWeight.getZ( i );
vec.w = skinWeight.getW( i );
var scale = 1.0 / vec.lengthManhattan();
if ( scale !== Infinity ) {
vec.multiplyScalar( scale );
} else {
vec.set( 1, 0, 0, 0 ); // do something reasonable
}
skinWeight.setXYZW( i, vec.x, vec.y, vec.z, vec.w );
}
}
};
THREE.SkinnedMesh.prototype.updateMatrixWorld = function( force ) {
THREE.Mesh.prototype.updateMatrixWorld.call( this, true );
if ( this.bindMode === "attached" ) {
this.bindMatrixInverse.getInverse( this.matrixWorld );
} else if ( this.bindMode === "detached" ) {
this.bindMatrixInverse.getInverse( this.bindMatrix );
} else {
console.warn( 'THREE.SkinnedMesh unrecognized bindMode: ' + this.bindMode );
}
};
THREE.SkinnedMesh.prototype.clone = function() {
return new this.constructor( this.geometry, this.material, this.useVertexTexture ).copy( this );
};
// File:src/objects/LOD.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
THREE.LOD = function () {
THREE.Object3D.call( this );
this.type = 'LOD';
Object.defineProperties( this, {
levels: {
enumerable: true,
value: []
}
} );
};
THREE.LOD.prototype = Object.create( THREE.Object3D.prototype );
THREE.LOD.prototype.constructor = THREE.LOD;
THREE.LOD.prototype.addLevel = function ( object, distance ) {
if ( distance === undefined ) distance = 0;
distance = Math.abs( distance );
var levels = this.levels;
for ( var l = 0; l < levels.length; l ++ ) {
if ( distance < levels[ l ].distance ) {
break;
}
}
levels.splice( l, 0, { distance: distance, object: object } );
this.add( object );
};
THREE.LOD.prototype.getObjectForDistance = function ( distance ) {
var levels = this.levels;
for ( var i = 1, l = levels.length; i < l; i ++ ) {
if ( distance < levels[ i ].distance ) {
break;
}
}
return levels[ i - 1 ].object;
};
THREE.LOD.prototype.raycast = ( function () {
var matrixPosition = new THREE.Vector3();
return function raycast( raycaster, intersects ) {
matrixPosition.setFromMatrixPosition( this.matrixWorld );
var distance = raycaster.ray.origin.distanceTo( matrixPosition );
this.getObjectForDistance( distance ).raycast( raycaster, intersects );
};
}() );
THREE.LOD.prototype.update = function () {
var v1 = new THREE.Vector3();
var v2 = new THREE.Vector3();
return function update( camera ) {
var levels = this.levels;
if ( levels.length > 1 ) {
v1.setFromMatrixPosition( camera.matrixWorld );
v2.setFromMatrixPosition( this.matrixWorld );
var distance = v1.distanceTo( v2 );
levels[ 0 ].object.visible = true;
for ( var i = 1, l = levels.length; i < l; i ++ ) {
if ( distance >= levels[ i ].distance ) {
levels[ i - 1 ].object.visible = false;
levels[ i ].object.visible = true;
} else {
break;
}
}
for ( ; i < l; i ++ ) {
levels[ i ].object.visible = false;
}
}
};
}();
THREE.LOD.prototype.copy = function ( source ) {
THREE.Object3D.prototype.copy.call( this, source, false );
var levels = source.levels;
for ( var i = 0, l = levels.length; i < l; i ++ ) {
var level = levels[ i ];
this.addLevel( level.object.clone(), level.distance );
}
return this;
};
THREE.LOD.prototype.toJSON = function ( meta ) {
var data = THREE.Object3D.prototype.toJSON.call( this, meta );
data.object.levels = [];
var levels = this.levels;
for ( var i = 0, l = levels.length; i < l; i ++ ) {
var level = levels[ i ];
data.object.levels.push( {
object: level.object.uuid,
distance: level.distance
} );
}
return data;
};
// File:src/objects/Sprite.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Sprite = ( function () {
var indices = new Uint16Array( [ 0, 1, 2, 0, 2, 3 ] );
var vertices = new Float32Array( [ - 0.5, - 0.5, 0, 0.5, - 0.5, 0, 0.5, 0.5, 0, - 0.5, 0.5, 0 ] );
var uvs = new Float32Array( [ 0, 0, 1, 0, 1, 1, 0, 1 ] );
var geometry = new THREE.BufferGeometry();
geometry.setIndex( new THREE.BufferAttribute( indices, 1 ) );
geometry.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) );
geometry.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) );
return function Sprite( material ) {
THREE.Object3D.call( this );
this.type = 'Sprite';
this.geometry = geometry;
this.material = ( material !== undefined ) ? material : new THREE.SpriteMaterial();
};
} )();
THREE.Sprite.prototype = Object.create( THREE.Object3D.prototype );
THREE.Sprite.prototype.constructor = THREE.Sprite;
THREE.Sprite.prototype.raycast = ( function () {
var matrixPosition = new THREE.Vector3();
return function raycast( raycaster, intersects ) {
matrixPosition.setFromMatrixPosition( this.matrixWorld );
var distanceSq = raycaster.ray.distanceSqToPoint( matrixPosition );
var guessSizeSq = this.scale.x * this.scale.y / 4;
if ( distanceSq > guessSizeSq ) {
return;
}
intersects.push( {
distance: Math.sqrt( distanceSq ),
point: this.position,
face: null,
object: this
} );
};
}() );
THREE.Sprite.prototype.clone = function () {
return new this.constructor( this.material ).copy( this );
};
// Backwards compatibility
THREE.Particle = THREE.Sprite;
// File:src/objects/LensFlare.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.LensFlare = function ( texture, size, distance, blending, color ) {
THREE.Object3D.call( this );
this.lensFlares = [];
this.positionScreen = new THREE.Vector3();
this.customUpdateCallback = undefined;
if ( texture !== undefined ) {
this.add( texture, size, distance, blending, color );
}
};
THREE.LensFlare.prototype = Object.create( THREE.Object3D.prototype );
THREE.LensFlare.prototype.constructor = THREE.LensFlare;
/*
* Add: adds another flare
*/
THREE.LensFlare.prototype.add = function ( texture, size, distance, blending, color, opacity ) {
if ( size === undefined ) size = - 1;
if ( distance === undefined ) distance = 0;
if ( opacity === undefined ) opacity = 1;
if ( color === undefined ) color = new THREE.Color( 0xffffff );
if ( blending === undefined ) blending = THREE.NormalBlending;
distance = Math.min( distance, Math.max( 0, distance ) );
this.lensFlares.push( {
texture: texture, // THREE.Texture
size: size, // size in pixels (-1 = use texture.width)
distance: distance, // distance (0-1) from light source (0=at light source)
x: 0, y: 0, z: 0, // screen position (-1 => 1) z = 0 is in front z = 1 is back
scale: 1, // scale
rotation: 0, // rotation
opacity: opacity, // opacity
color: color, // color
blending: blending // blending
} );
};
/*
* Update lens flares update positions on all flares based on the screen position
* Set myLensFlare.customUpdateCallback to alter the flares in your project specific way.
*/
THREE.LensFlare.prototype.updateLensFlares = function () {
var f, fl = this.lensFlares.length;
var flare;
var vecX = - this.positionScreen.x * 2;
var vecY = - this.positionScreen.y * 2;
for ( f = 0; f < fl; f ++ ) {
flare = this.lensFlares[ f ];
flare.x = this.positionScreen.x + vecX * flare.distance;
flare.y = this.positionScreen.y + vecY * flare.distance;
flare.wantedRotation = flare.x * Math.PI * 0.25;
flare.rotation += ( flare.wantedRotation - flare.rotation ) * 0.25;
}
};
THREE.LensFlare.prototype.copy = function ( source ) {
THREE.Object3D.prototype.copy.call( this, source );
this.positionScreen.copy( source.positionScreen );
this.customUpdateCallback = source.customUpdateCallback;
for ( var i = 0, l = source.lensFlares.length; i < l; i ++ ) {
this.lensFlares.push( source.lensFlares[ i ] );
}
return this;
};
// File:src/scenes/Scene.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.Scene = function () {
THREE.Object3D.call( this );
this.type = 'Scene';
this.fog = null;
this.overrideMaterial = null;
this.autoUpdate = true; // checked by the renderer
};
THREE.Scene.prototype = Object.create( THREE.Object3D.prototype );
THREE.Scene.prototype.constructor = THREE.Scene;
THREE.Scene.prototype.copy = function ( source, recursive ) {
THREE.Object3D.prototype.copy.call( this, source, recursive );
if ( source.fog !== null ) this.fog = source.fog.clone();
if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone();
this.autoUpdate = source.autoUpdate;
this.matrixAutoUpdate = source.matrixAutoUpdate;
return this;
};
// File:src/scenes/Fog.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Fog = function ( color, near, far ) {
this.name = '';
this.color = new THREE.Color( color );
this.near = ( near !== undefined ) ? near : 1;
this.far = ( far !== undefined ) ? far : 1000;
};
THREE.Fog.prototype.clone = function () {
return new THREE.Fog( this.color.getHex(), this.near, this.far );
};
// File:src/scenes/FogExp2.js
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.FogExp2 = function ( color, density ) {
this.name = '';
this.color = new THREE.Color( color );
this.density = ( density !== undefined ) ? density : 0.00025;
};
THREE.FogExp2.prototype.clone = function () {
return new THREE.FogExp2( this.color.getHex(), this.density );
};
// File:src/renderers/shaders/ShaderChunk.js
THREE.ShaderChunk = {};
// File:src/renderers/shaders/ShaderChunk/alphamap_fragment.glsl
THREE.ShaderChunk[ 'alphamap_fragment' ] = "#ifdef USE_ALPHAMAP\n diffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/alphamap_pars_fragment.glsl
THREE.ShaderChunk[ 'alphamap_pars_fragment' ] = "#ifdef USE_ALPHAMAP\n uniform sampler2D alphaMap;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/alphatest_fragment.glsl
THREE.ShaderChunk[ 'alphatest_fragment' ] = "#ifdef ALPHATEST\n if ( diffuseColor.a < ALPHATEST ) discard;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/aomap_fragment.glsl
THREE.ShaderChunk[ 'aomap_fragment' ] = "#ifdef USE_AOMAP\n float ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n reflectedLight.indirectDiffuse *= ambientOcclusion;\n #if defined( USE_ENVMAP ) && defined( PHYSICAL )\n float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n reflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/aomap_pars_fragment.glsl
THREE.ShaderChunk[ 'aomap_pars_fragment' ] = "#ifdef USE_AOMAP\n uniform sampler2D aoMap;\n uniform float aoMapIntensity;\n#endif";
// File:src/renderers/shaders/ShaderChunk/begin_vertex.glsl
THREE.ShaderChunk[ 'begin_vertex' ] = "\nvec3 transformed = vec3( position );\n";
// File:src/renderers/shaders/ShaderChunk/beginnormal_vertex.glsl
THREE.ShaderChunk[ 'beginnormal_vertex' ] = "\nvec3 objectNormal = vec3( normal );\n";
// File:src/renderers/shaders/ShaderChunk/bsdfs.glsl
THREE.ShaderChunk[ 'bsdfs' ] = "bool testLightInRange( const in float lightDistance, const in float cutoffDistance ) {\n return any( bvec2( cutoffDistance == 0.0, lightDistance < cutoffDistance ) );\n}\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n if( decayExponent > 0.0 ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n float maxDistanceCutoffFactor = pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n return distanceFalloff * maxDistanceCutoffFactor;\n#else\n return pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n#endif\n }\n return 1.0;\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n return RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n float fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n return ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n float a2 = pow2( alpha );\n float gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n float gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n return 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n float a2 = pow2( alpha );\n float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n return 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n float a2 = pow2( alpha );\n float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n return RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n float alpha = pow2( roughness );\n vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n float dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\n float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n float dotNH = saturate( dot( geometry.normal, halfDir ) );\n float dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n vec3 F = F_Schlick( specularColor, dotLH );\n float G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n float D = D_GGX( alpha, dotNH );\n return F * ( G * D );\n}\nvec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n vec4 r = roughness * c0 + c1;\n float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;\n return specularColor * AB.x + AB.y;\n}\nfloat G_BlinnPhong_Implicit( ) {\n return 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n float dotNH = saturate( dot( geometry.normal, halfDir ) );\n float dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n vec3 F = F_Schlick( specularColor, dotLH );\n float G = G_BlinnPhong_Implicit( );\n float D = D_BlinnPhong( shininess, dotNH );\n return F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n return ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n return sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n";
// File:src/renderers/shaders/ShaderChunk/bumpmap_pars_fragment.glsl
THREE.ShaderChunk[ 'bumpmap_pars_fragment' ] = "#ifdef USE_BUMPMAP\n uniform sampler2D bumpMap;\n uniform float bumpScale;\n vec2 dHdxy_fwd() {\n vec2 dSTdx = dFdx( vUv );\n vec2 dSTdy = dFdy( vUv );\n float Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n float dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n float dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n return vec2( dBx, dBy );\n }\n vec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n vec3 vSigmaX = dFdx( surf_pos );\n vec3 vSigmaY = dFdy( surf_pos );\n vec3 vN = surf_norm;\n vec3 R1 = cross( vSigmaY, vN );\n vec3 R2 = cross( vN, vSigmaX );\n float fDet = dot( vSigmaX, R1 );\n vec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n return normalize( abs( fDet ) * surf_norm - vGrad );\n }\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/clipping_planes_fragment.glsl
THREE.ShaderChunk[ 'clipping_planes_fragment' ] = "#if NUM_CLIPPING_PLANES > 0\n for ( int i = 0; i < NUM_CLIPPING_PLANES; ++ i ) {\n vec4 plane = clippingPlanes[ i ];\n if ( dot( vViewPosition, plane.xyz ) > plane.w ) discard;\n }\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/clipping_planes_pars_fragment.glsl
THREE.ShaderChunk[ 'clipping_planes_pars_fragment' ] = "#if NUM_CLIPPING_PLANES > 0\n #if ! defined( PHYSICAL ) && ! defined( PHONG )\n varying vec3 vViewPosition;\n #endif\n uniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/clipping_planes_pars_vertex.glsl
THREE.ShaderChunk[ 'clipping_planes_pars_vertex' ] = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\n varying vec3 vViewPosition;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/clipping_planes_vertex.glsl
THREE.ShaderChunk[ 'clipping_planes_vertex' ] = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\n vViewPosition = - mvPosition.xyz;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/color_fragment.glsl
THREE.ShaderChunk[ 'color_fragment' ] = "#ifdef USE_COLOR\n diffuseColor.rgb *= vColor;\n#endif";
// File:src/renderers/shaders/ShaderChunk/color_pars_fragment.glsl
THREE.ShaderChunk[ 'color_pars_fragment' ] = "#ifdef USE_COLOR\n varying vec3 vColor;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/color_pars_vertex.glsl
THREE.ShaderChunk[ 'color_pars_vertex' ] = "#ifdef USE_COLOR\n varying vec3 vColor;\n#endif";
// File:src/renderers/shaders/ShaderChunk/color_vertex.glsl
THREE.ShaderChunk[ 'color_vertex' ] = "#ifdef USE_COLOR\n vColor.xyz = color.xyz;\n#endif";
// File:src/renderers/shaders/ShaderChunk/common.glsl
THREE.ShaderChunk[ 'common' ] = "#define PI 3.14159265359\n#define PI2 6.28318530718\n#define RECIPROCAL_PI 0.31830988618\n#define RECIPROCAL_PI2 0.15915494\n#define LOG2 1.442695\n#define EPSILON 1e-6\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#define whiteCompliment(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n const highp float a = 12.9898, b = 78.233, c = 43758.5453;\n highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n return fract(sin(sn) * c);\n}\nstruct IncidentLight {\n vec3 color;\n vec3 direction;\n bool visible;\n};\nstruct ReflectedLight {\n vec3 directDiffuse;\n vec3 directSpecular;\n vec3 indirectDiffuse;\n vec3 indirectSpecular;\n};\nstruct GeometricContext {\n vec3 position;\n vec3 normal;\n vec3 viewDir;\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n float distance = dot( planeNormal, point - pointOnPlane );\n return - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n return sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n return lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\n";
// File:src/renderers/shaders/ShaderChunk/cube_uv_reflection_fragment.glsl
THREE.ShaderChunk[ 'cube_uv_reflection_fragment' ] = "#ifdef ENVMAP_TYPE_CUBE_UV\nconst float cubeUV_textureSize = 1024.0;\nint getFaceFromDirection(vec3 direction) {\n vec3 absDirection = abs(direction);\n int face = -1;\n if( absDirection.x > absDirection.z ) {\n if(absDirection.x > absDirection.y )\n face = direction.x > 0.0 ? 0 : 3;\n else\n face = direction.y > 0.0 ? 1 : 4;\n }\n else {\n if(absDirection.z > absDirection.y )\n face = direction.z > 0.0 ? 2 : 5;\n else\n face = direction.y > 0.0 ? 1 : 4;\n }\n return face;\n}\nfloat cubeUV_maxLods1 = log2(cubeUV_textureSize*0.25) - 1.0;\nfloat cubeUV_rangeClamp = exp2((6.0 - 1.0) * 2.0);\nvec2 MipLevelInfo( vec3 vec, float roughnessLevel, float roughness ) {\n float scale = exp2(cubeUV_maxLods1 - roughnessLevel);\n float dxRoughness = dFdx(roughness);\n float dyRoughness = dFdy(roughness);\n vec3 dx = dFdx( vec * scale * dxRoughness );\n vec3 dy = dFdy( vec * scale * dyRoughness );\n float d = max( dot( dx, dx ), dot( dy, dy ) );\n d = clamp(d, 1.0, cubeUV_rangeClamp);\n float mipLevel = 0.5 * log2(d);\n return vec2(floor(mipLevel), fract(mipLevel));\n}\nfloat cubeUV_maxLods2 = log2(cubeUV_textureSize*0.25) - 2.0;\nconst float cubeUV_rcpTextureSize = 1.0 / cubeUV_textureSize;\nvec2 getCubeUV(vec3 direction, float roughnessLevel, float mipLevel) {\n mipLevel = roughnessLevel > cubeUV_maxLods2 - 3.0 ? 0.0 : mipLevel;\n float a = 16.0 * cubeUV_rcpTextureSize;\n vec2 exp2_packed = exp2( vec2( roughnessLevel, mipLevel ) );\n vec2 rcp_exp2_packed = vec2( 1.0 ) / exp2_packed;\n float powScale = exp2_packed.x * exp2_packed.y;\n float scale = rcp_exp2_packed.x * rcp_exp2_packed.y * 0.25;\n float mipOffset = 0.75*(1.0 - rcp_exp2_packed.y) * rcp_exp2_packed.x;\n bool bRes = mipLevel == 0.0;\n scale = bRes && (scale < a) ? a : scale;\n vec3 r;\n vec2 offset;\n int face = getFaceFromDirection(direction);\n float rcpPowScale = 1.0 / powScale;\n if( face == 0) {\n r = vec3(direction.x, -direction.z, direction.y);\n offset = vec2(0.0+mipOffset,0.75 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n }\n else if( face == 1) {\n r = vec3(direction.y, direction.x, direction.z);\n offset = vec2(scale+mipOffset, 0.75 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n }\n else if( face == 2) {\n r = vec3(direction.z, direction.x, direction.y);\n offset = vec2(2.0*scale+mipOffset, 0.75 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n }\n else if( face == 3) {\n r = vec3(direction.x, direction.z, direction.y);\n offset = vec2(0.0+mipOffset,0.5 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n }\n else if( face == 4) {\n r = vec3(direction.y, direction.x, -direction.z);\n offset = vec2(scale+mipOffset, 0.5 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n }\n else {\n r = vec3(direction.z, -direction.x, direction.y);\n offset = vec2(2.0*scale+mipOffset, 0.5 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n }\n r = normalize(r);\n float texelOffset = 0.5 * cubeUV_rcpTextureSize;\n vec2 s = ( r.yz / abs( r.x ) + vec2( 1.0 ) ) * 0.5;\n vec2 base = offset + vec2( texelOffset );\n return base + s * ( scale - 2.0 * texelOffset );\n}\nfloat cubeUV_maxLods3 = log2(cubeUV_textureSize*0.25) - 3.0;\nvec4 textureCubeUV(vec3 reflectedDirection, float roughness ) {\n float roughnessVal = roughness* cubeUV_maxLods3;\n float r1 = floor(roughnessVal);\n float r2 = r1 + 1.0;\n float t = fract(roughnessVal);\n vec2 mipInfo = MipLevelInfo(reflectedDirection, r1, roughness);\n float s = mipInfo.y;\n float level0 = mipInfo.x;\n float level1 = level0 + 1.0;\n level1 = level1 > 5.0 ? 5.0 : level1;\n level0 += min( floor( s + 0.5 ), 5.0 );\n vec2 uv_10 = getCubeUV(reflectedDirection, r1, level0);\n vec4 color10 = envMapTexelToLinear(texture2D(envMap, uv_10));\n vec2 uv_20 = getCubeUV(reflectedDirection, r2, level0);\n vec4 color20 = envMapTexelToLinear(texture2D(envMap, uv_20));\n vec4 result = mix(color10, color20, t);\n return vec4(
// File:src/renderers/shaders/ShaderChunk/defaultnormal_vertex.glsl
THREE.ShaderChunk[ 'defaultnormal_vertex' ] = "#ifdef FLIP_SIDED\n objectNormal = -objectNormal;\n#endif\nvec3 transformedNormal = normalMatrix * objectNormal;\n";
// File:src/renderers/shaders/ShaderChunk/displacementmap_vertex.glsl
THREE.ShaderChunk[ 'displacementmap_vertex' ] = "#ifdef USE_DISPLACEMENTMAP\n transformed += normal * ( texture2D( displacementMap, uv ).x * displacementScale + displacementBias );\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/displacementmap_pars_vertex.glsl
THREE.ShaderChunk[ 'displacementmap_pars_vertex' ] = "#ifdef USE_DISPLACEMENTMAP\n uniform sampler2D displacementMap;\n uniform float displacementScale;\n uniform float displacementBias;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/emissivemap_fragment.glsl
THREE.ShaderChunk[ 'emissivemap_fragment' ] = "#ifdef USE_EMISSIVEMAP\n vec4 emissiveColor = texture2D( emissiveMap, vUv );\n emissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n totalEmissiveRadiance *= emissiveColor.rgb;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/emissivemap_pars_fragment.glsl
THREE.ShaderChunk[ 'emissivemap_pars_fragment' ] = "#ifdef USE_EMISSIVEMAP\n uniform sampler2D emissiveMap;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/encodings_pars_fragment.glsl
THREE.ShaderChunk[ 'encodings_pars_fragment' ] = "\nvec4 LinearToLinear( in vec4 value ) {\n return value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n return vec4( pow( value.xyz, vec3( gammaFactor ) ), value.w );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n return vec4( pow( value.xyz, vec3( 1.0 / gammaFactor ) ), value.w );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n return vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.w );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n return vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.w );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n return vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n float maxComponent = max( max( value.r, value.g ), value.b );\n float fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n return vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n return vec4( value.xyz * value.w * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n float maxRGB = max( value.x, max( value.g, value.b ) );\n float M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n M = ceil( M * 255.0 ) / 255.0;\n return vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n return vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n float maxRGB = max( value.x, max( value.g, value.b ) );\n float D = max( maxRange / maxRGB, 1.0 );\n D = min( floor( D ) / 255.0, 1.0 );\n return vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n vec3 Xp_Y_XYZp = value.rgb * cLogLuvM;\n Xp_Y_XYZp = max(Xp_Y_XYZp, vec3(1e-6, 1e-6, 1e-6));\n vec4 vResult;\n vResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n float Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n vResult.w = fract(Le);\n vResult.z = (Le - (floor(vResult.w*255.0))/255.0)/255.0;\n return vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n float Le = value.z * 255.0 + value.w;\n vec3 Xp_Y_XYZp;\n Xp_Y_XYZp.y = exp2((Le - 127.0) / 2.0);\n Xp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n Xp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n vec3 vRGB = Xp_Y_XYZp.rgb * cLogLuvInverseM;\n return vec4( max(vRGB, 0.0), 1.0 );\n}\n";
// File:src/renderers/shaders/ShaderChunk/encodings_fragment.glsl
THREE.ShaderChunk[ 'encodings_fragment' ] = " gl_FragColor = linearToOutputTexel( gl_FragColor );\n";
// File:src/renderers/shaders/ShaderChunk/envmap_fragment.glsl
THREE.ShaderChunk[ 'envmap_fragment' ] = "#ifdef USE_ENVMAP\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n vec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\n vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n #ifdef ENVMAP_MODE_REFLECTION\n vec3 reflectVec = reflect( cameraToVertex, worldNormal );\n #else\n vec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\n #endif\n #else\n vec3 reflectVec = vReflect;\n #endif\n #ifdef DOUBLE_SIDED\n float flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n #else\n float flipNormal = 1.0;\n #endif\n #ifdef ENVMAP_TYPE_CUBE\n vec4 envColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n #elif defined( ENVMAP_TYPE_EQUIREC )\n vec2 sampleUV;\n sampleUV.y = saturate( flipNormal * reflectVec.y * 0.5 + 0.5 );\n sampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n vec4 envColor = texture2D( envMap, sampleUV );\n #elif defined( ENVMAP_TYPE_SPHERE )\n vec3 reflectView = flipNormal * normalize((viewMatrix * vec4( reflectVec, 0.0 )).xyz + vec3(0.0,0.0,1.0));\n vec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\n #endif\n envColor = envMapTexelToLinear( envColor );\n #ifdef ENVMAP_BLENDING_MULTIPLY\n outgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n #elif defined( ENVMAP_BLENDING_MIX )\n outgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n #elif defined( ENVMAP_BLENDING_ADD )\n outgoingLight += envColor.xyz * specularStrength * reflectivity;\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/envmap_pars_fragment.glsl
THREE.ShaderChunk[ 'envmap_pars_fragment' ] = "#if defined( USE_ENVMAP ) || defined( PHYSICAL )\n uniform float reflectivity;\n uniform float envMapIntenstiy;\n#endif\n#ifdef USE_ENVMAP\n #if ! defined( PHYSICAL ) && ( defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) )\n varying vec3 vWorldPosition;\n #endif\n #ifdef ENVMAP_TYPE_CUBE\n uniform samplerCube envMap;\n #else\n uniform sampler2D envMap;\n #endif\n uniform float flipEnvMap;\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( PHYSICAL )\n uniform float refractionRatio;\n #else\n varying vec3 vReflect;\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/envmap_pars_vertex.glsl
THREE.ShaderChunk[ 'envmap_pars_vertex' ] = "#ifdef USE_ENVMAP\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n varying vec3 vWorldPosition;\n #else\n varying vec3 vReflect;\n uniform float refractionRatio;\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/envmap_vertex.glsl
THREE.ShaderChunk[ 'envmap_vertex' ] = "#ifdef USE_ENVMAP\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n vWorldPosition = worldPosition.xyz;\n #else\n vec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n vec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n #ifdef ENVMAP_MODE_REFLECTION\n vReflect = reflect( cameraToVertex, worldNormal );\n #else\n vReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n #endif\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/fog_fragment.glsl
THREE.ShaderChunk[ 'fog_fragment' ] = "#ifdef USE_FOG\n #ifdef USE_LOGDEPTHBUF_EXT\n float depth = gl_FragDepthEXT / gl_FragCoord.w;\n #else\n float depth = gl_FragCoord.z / gl_FragCoord.w;\n #endif\n #ifdef FOG_EXP2\n float fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * depth * depth * LOG2 ) );\n #else\n float fogFactor = smoothstep( fogNear, fogFar, depth );\n #endif\n gl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/fog_pars_fragment.glsl
THREE.ShaderChunk[ 'fog_pars_fragment' ] = "#ifdef USE_FOG\n uniform vec3 fogColor;\n #ifdef FOG_EXP2\n uniform float fogDensity;\n #else\n uniform float fogNear;\n uniform float fogFar;\n #endif\n#endif";
// File:src/renderers/shaders/ShaderChunk/lightmap_fragment.glsl
THREE.ShaderChunk[ 'lightmap_fragment' ] = "#ifdef USE_LIGHTMAP\n reflectedLight.indirectDiffuse += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/lightmap_pars_fragment.glsl
THREE.ShaderChunk[ 'lightmap_pars_fragment' ] = "#ifdef USE_LIGHTMAP\n uniform sampler2D lightMap;\n uniform float lightMapIntensity;\n#endif";
// File:src/renderers/shaders/ShaderChunk/lights_lambert_vertex.glsl
THREE.ShaderChunk[ 'lights_lambert_vertex' ] = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n vLightBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\n#if NUM_POINT_LIGHTS > 0\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n getPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n#endif\n#if NUM_SPOT_LIGHTS > 0\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n getSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n#endif\n#if NUM_DIR_LIGHTS > 0\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n getDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n#endif\n#if NUM_HEMI_LIGHTS > 0\n for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n vLightFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n #ifdef DOUBLE_SIDED\n vLightBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n #endif\n }\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/lights_pars.glsl
THREE.ShaderChunk[ 'lights_pars' ] = "uniform vec3 ambientLightColor;\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n vec3 irradiance = ambientLightColor;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n return irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n struct DirectionalLight {\n vec3 direction;\n vec3 color;\n int shadow;\n float shadowBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n void getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n directLight.color = directionalLight.color;\n directLight.direction = directionalLight.direction;\n directLight.visible = true;\n }\n#endif\n#if NUM_POINT_LIGHTS > 0\n struct PointLight {\n vec3 position;\n vec3 color;\n float distance;\n float decay;\n int shadow;\n float shadowBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n void getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n vec3 lVector = pointLight.position - geometry.position;\n directLight.direction = normalize( lVector );\n float lightDistance = length( lVector );\n if ( testLightInRange( lightDistance, pointLight.distance ) ) {\n directLight.color = pointLight.color;\n directLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n directLight.visible = true;\n } else {\n directLight.color = vec3( 0.0 );\n directLight.visible = false;\n }\n }\n#endif\n#if NUM_SPOT_LIGHTS > 0\n struct SpotLight {\n vec3 position;\n vec3 direction;\n vec3 color;\n float distance;\n float decay;\n float coneCos;\n float penumbraCos;\n int shadow;\n float shadowBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n void getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n vec3 lVector = spotLight.position - geometry.position;\n directLight.direction = normalize( lVector );\n float lightDistance = length( lVector );\n float angleCos = dot( directLight.direction, spotLight.direction );\n if ( all( bvec2( angleCos > spotLight.coneCos, testLightInRange( lightDistance, spotLight.distance ) ) ) ) {\n float spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n directLight.color = spotLight.color;\n directLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n directLight.visible = true;\n } else {\n directLight.color = vec3( 0.0 );\n directLight.visible = false;\n }\n }\n#endif\n#if NUM_HEMI_LIGHTS > 0\n struct HemisphereLight {\n vec3 direction;\n vec3 skyColor;\n vec3 groundColor;\n };\n uniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n vec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n float dotNL = dot( geometry.normal, hemiLight.direction );\n float hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n vec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n return irradiance;\n }\n#endif\n#if defined( USE_ENVMAP ) && defined( PHYSICAL )\n vec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n #ifdef DOUBLE_SIDED\n float flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n #else\n float flipNormal = 1.0;\n #endif\n vec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n #ifdef ENVMAP_TYPE_CUBE\n vec3 queryVec = flipNormal * vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n #else\n
// File:src/renderers/shaders/ShaderChunk/lights_phong_fragment.glsl
THREE.ShaderChunk[ 'lights_phong_fragment' ] = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;\n";
// File:src/renderers/shaders/ShaderChunk/lights_phong_pars_fragment.glsl
THREE.ShaderChunk[ 'lights_phong_pars_fragment' ] = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n vec3 diffuseColor;\n vec3 specularColor;\n float specularShininess;\n float specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n float dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n vec3 irradiance = dotNL * directLight.color;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n reflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n reflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct RE_Direct_BlinnPhong\n#define RE_IndirectDiffuse RE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material ) (0)\n";
// File:src/renderers/shaders/ShaderChunk/lights_physical_fragment.glsl
THREE.ShaderChunk[ 'lights_physical_fragment' ] = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nmaterial.specularRoughness = clamp( roughnessFactor, 0.04, 1.0 );\n#ifdef STANDARD\n material.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n#else\n material.specularColor = mix( vec3( 0.16 * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/lights_physical_pars_fragment.glsl
THREE.ShaderChunk[ 'lights_physical_pars_fragment' ] = "struct PhysicalMaterial {\n vec3 diffuseColor;\n float specularRoughness;\n vec3 specularColor;\n #ifndef STANDARD\n #endif\n};\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n float dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n vec3 irradiance = dotNL * directLight.color;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n reflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n reflectedLight.directSpecular += irradiance * BRDF_Specular_GGX( directLight, geometry, material.specularColor, material.specularRoughness );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectSpecular += radiance * BRDF_Specular_GGX_Environment( geometry, material.specularColor, material.specularRoughness );\n}\n#define RE_Direct RE_Direct_Physical\n#define RE_IndirectDiffuse RE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular RE_IndirectSpecular_Physical\n#define Material_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.specularRoughness )\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n return saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}\n";
// File:src/renderers/shaders/ShaderChunk/lights_template.glsl
THREE.ShaderChunk[ 'lights_template' ] = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = normalize( vViewPosition );\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n PointLight pointLight;\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n pointLight = pointLights[ i ];\n getPointDirectLightIrradiance( pointLight, geometry, directLight );\n #ifdef USE_SHADOWMAP\n directLight.color *= all( bvec2( pointLight.shadow, directLight.visible ) ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n SpotLight spotLight;\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n spotLight = spotLights[ i ];\n getSpotDirectLightIrradiance( spotLight, geometry, directLight );\n #ifdef USE_SHADOWMAP\n directLight.color *= all( bvec2( spotLight.shadow, directLight.visible ) ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n DirectionalLight directionalLight;\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n directionalLight = directionalLights[ i ];\n getDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n #ifdef USE_SHADOWMAP\n directLight.color *= all( bvec2( directionalLight.shadow, directLight.visible ) ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n#endif\n#if defined( RE_IndirectDiffuse )\n vec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n #ifdef USE_LIGHTMAP\n vec3 lightMapIrradiance = texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n lightMapIrradiance *= PI;\n #endif\n irradiance += lightMapIrradiance;\n #endif\n #if ( NUM_HEMI_LIGHTS > 0 )\n for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n irradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n }\n #endif\n #if defined( USE_ENVMAP ) && defined( PHYSICAL ) && defined( ENVMAP_TYPE_CUBE_UV )\n irradiance += getLightProbeIndirectIrradiance( geometry, 8 );\n #endif\n RE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n vec3 radiance = getLightProbeIndirectRadiance( geometry, Material_BlinnShininessExponent( material ), 8 );\n RE_IndirectSpecular( radiance, geometry, material, reflectedLight );\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/logdepthbuf_fragment.glsl
THREE.ShaderChunk[ 'logdepthbuf_fragment' ] = "#if defined(USE_LOGDEPTHBUF) && defined(USE_LOGDEPTHBUF_EXT)\n gl_FragDepthEXT = log2(vFragDepth) * logDepthBufFC * 0.5;\n#endif";
// File:src/renderers/shaders/ShaderChunk/logdepthbuf_pars_fragment.glsl
THREE.ShaderChunk[ 'logdepthbuf_pars_fragment' ] = "#ifdef USE_LOGDEPTHBUF\n uniform float logDepthBufFC;\n #ifdef USE_LOGDEPTHBUF_EXT\n varying float vFragDepth;\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/logdepthbuf_pars_vertex.glsl
THREE.ShaderChunk[ 'logdepthbuf_pars_vertex' ] = "#ifdef USE_LOGDEPTHBUF\n #ifdef USE_LOGDEPTHBUF_EXT\n varying float vFragDepth;\n #endif\n uniform float logDepthBufFC;\n#endif";
// File:src/renderers/shaders/ShaderChunk/logdepthbuf_vertex.glsl
THREE.ShaderChunk[ 'logdepthbuf_vertex' ] = "#ifdef USE_LOGDEPTHBUF\n gl_Position.z = log2(max( EPSILON, gl_Position.w + 1.0 )) * logDepthBufFC;\n #ifdef USE_LOGDEPTHBUF_EXT\n vFragDepth = 1.0 + gl_Position.w;\n #else\n gl_Position.z = (gl_Position.z - 1.0) * gl_Position.w;\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/map_fragment.glsl
THREE.ShaderChunk[ 'map_fragment' ] = "#ifdef USE_MAP\n vec4 texelColor = texture2D( map, vUv );\n texelColor = mapTexelToLinear( texelColor );\n diffuseColor *= texelColor;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/map_pars_fragment.glsl
THREE.ShaderChunk[ 'map_pars_fragment' ] = "#ifdef USE_MAP\n uniform sampler2D map;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/map_particle_fragment.glsl
THREE.ShaderChunk[ 'map_particle_fragment' ] = "#ifdef USE_MAP\n vec4 mapTexel = texture2D( map, vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y ) * offsetRepeat.zw + offsetRepeat.xy );\n diffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/map_particle_pars_fragment.glsl
THREE.ShaderChunk[ 'map_particle_pars_fragment' ] = "#ifdef USE_MAP\n uniform vec4 offsetRepeat;\n uniform sampler2D map;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/metalnessmap_fragment.glsl
THREE.ShaderChunk[ 'metalnessmap_fragment' ] = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n vec4 texelMetalness = texture2D( metalnessMap, vUv );\n metalnessFactor *= texelMetalness.r;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/metalnessmap_pars_fragment.glsl
THREE.ShaderChunk[ 'metalnessmap_pars_fragment' ] = "#ifdef USE_METALNESSMAP\n uniform sampler2D metalnessMap;\n#endif";
// File:src/renderers/shaders/ShaderChunk/morphnormal_vertex.glsl
THREE.ShaderChunk[ 'morphnormal_vertex' ] = "#ifdef USE_MORPHNORMALS\n objectNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\n objectNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\n objectNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\n objectNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/morphtarget_pars_vertex.glsl
THREE.ShaderChunk[ 'morphtarget_pars_vertex' ] = "#ifdef USE_MORPHTARGETS\n #ifndef USE_MORPHNORMALS\n uniform float morphTargetInfluences[ 8 ];\n #else\n uniform float morphTargetInfluences[ 4 ];\n #endif\n#endif";
// File:src/renderers/shaders/ShaderChunk/morphtarget_vertex.glsl
THREE.ShaderChunk[ 'morphtarget_vertex' ] = "#ifdef USE_MORPHTARGETS\n transformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\n transformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\n transformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\n transformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\n #ifndef USE_MORPHNORMALS\n transformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\n transformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\n transformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\n transformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/normal_fragment.glsl
THREE.ShaderChunk[ 'normal_fragment' ] = "#ifdef FLAT_SHADED\n vec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n vec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n vec3 normal = normalize( cross( fdx, fdy ) );\n#else\n vec3 normal = normalize( vNormal );\n #ifdef DOUBLE_SIDED\n normal = normal * ( -1.0 + 2.0 * float( gl_FrontFacing ) );\n #endif\n#endif\n#ifdef USE_NORMALMAP\n normal = perturbNormal2Arb( -vViewPosition, normal );\n#elif defined( USE_BUMPMAP )\n normal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/normalmap_pars_fragment.glsl
THREE.ShaderChunk[ 'normalmap_pars_fragment' ] = "#ifdef USE_NORMALMAP\n uniform sampler2D normalMap;\n uniform vec2 normalScale;\n vec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\n vec3 q0 = dFdx( eye_pos.xyz );\n vec3 q1 = dFdy( eye_pos.xyz );\n vec2 st0 = dFdx( vUv.st );\n vec2 st1 = dFdy( vUv.st );\n vec3 S = normalize( q0 * st1.t - q1 * st0.t );\n vec3 T = normalize( -q0 * st1.s + q1 * st0.s );\n vec3 N = normalize( surf_norm );\n vec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n mapN.xy = normalScale * mapN.xy;\n mat3 tsn = mat3( S, T, N );\n return normalize( tsn * mapN );\n }\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/packing.glsl
THREE.ShaderChunk[ 'packing' ] = "vec3 packNormalToRGB( const in vec3 normal ) {\n return normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n return 1.0 - 2.0 * rgb.xyz;\n}\nvec4 packDepthToRGBA( const in float value ) {\n const vec4 bit_shift = vec4( 256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0 );\n const vec4 bit_mask = vec4( 0.0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0 );\n vec4 res = mod( value * bit_shift * vec4( 255 ), vec4( 256 ) ) / vec4( 255 );\n res -= res.xxyz * bit_mask;\n return res;\n}\nfloat unpackRGBAToDepth( const in vec4 rgba ) {\n const vec4 bitSh = vec4( 1.0 / ( 256.0 * 256.0 * 256.0 ), 1.0 / ( 256.0 * 256.0 ), 1.0 / 256.0, 1.0 );\n return dot( rgba, bitSh );\n}\nfloat viewZToOrthoDepth( const in float viewZ, const in float near, const in float far ) {\n return ( viewZ + near ) / ( near - far );\n}\nfloat OrthoDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n return linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n return (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n return ( near * far ) / ( ( far - near ) * invClipZ - far );\n}\n";
// File:src/renderers/shaders/ShaderChunk/premultiplied_alpha_fragment.glsl
THREE.ShaderChunk[ 'premultiplied_alpha_fragment' ] = "#ifdef PREMULTIPLIED_ALPHA\n gl_FragColor.rgb *= gl_FragColor.a;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/project_vertex.glsl
THREE.ShaderChunk[ 'project_vertex' ] = "#ifdef USE_SKINNING\n vec4 mvPosition = modelViewMatrix * skinned;\n#else\n vec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );\n#endif\ngl_Position = projectionMatrix * mvPosition;\n";
// File:src/renderers/shaders/ShaderChunk/roughnessmap_fragment.glsl
THREE.ShaderChunk[ 'roughnessmap_fragment' ] = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n vec4 texelRoughness = texture2D( roughnessMap, vUv );\n roughnessFactor *= texelRoughness.r;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/roughnessmap_pars_fragment.glsl
THREE.ShaderChunk[ 'roughnessmap_pars_fragment' ] = "#ifdef USE_ROUGHNESSMAP\n uniform sampler2D roughnessMap;\n#endif";
// File:src/renderers/shaders/ShaderChunk/shadowmap_pars_fragment.glsl
THREE.ShaderChunk[ 'shadowmap_pars_fragment' ] = "#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n uniform sampler2D directionalShadowMap[ NUM_DIR_LIGHTS ];\n varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n #endif\n #if NUM_SPOT_LIGHTS > 0\n uniform sampler2D spotShadowMap[ NUM_SPOT_LIGHTS ];\n varying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n #endif\n #if NUM_POINT_LIGHTS > 0\n uniform sampler2D pointShadowMap[ NUM_POINT_LIGHTS ];\n varying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n #endif\n float texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n return step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n }\n float texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {\n const vec2 offset = vec2( 0.0, 1.0 );\n vec2 texelSize = vec2( 1.0 ) / size;\n vec2 centroidUV = floor( uv * size + 0.5 ) / size;\n float lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );\n float lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );\n float rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );\n float rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );\n vec2 f = fract( uv * size + 0.5 );\n float a = mix( lb, lt, f.y );\n float b = mix( rb, rt, f.y );\n float c = mix( a, b, f.x );\n return c;\n }\n float getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n shadowCoord.xyz /= shadowCoord.w;\n shadowCoord.z += shadowBias;\n bvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n bool inFrustum = all( inFrustumVec );\n bvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n bool frustumTest = all( frustumTestVec );\n if ( frustumTest ) {\n #if defined( SHADOWMAP_TYPE_PCF )\n vec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n float dx0 = - texelSize.x * shadowRadius;\n float dy0 = - texelSize.y * shadowRadius;\n float dx1 = + texelSize.x * shadowRadius;\n float dy1 = + texelSize.y * shadowRadius;\n return (\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n ) * ( 1.0 / 9.0 );\n #elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n vec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n float dx0 = - texelSize.x * shadowRadius;\n float dy0 = - texelSize.y * shadowRadius;\n float dx1 = + texelSize.x * shadowRadius;\n float dy1 = + texelSize.y * shadowRadius;\n return (\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy, shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shado
// File:src/renderers/shaders/ShaderChunk/shadowmap_pars_vertex.glsl
THREE.ShaderChunk[ 'shadowmap_pars_vertex' ] = "#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n uniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHTS ];\n varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n #endif\n #if NUM_SPOT_LIGHTS > 0\n uniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHTS ];\n varying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n #endif\n #if NUM_POINT_LIGHTS > 0\n uniform mat4 pointShadowMatrix[ NUM_POINT_LIGHTS ];\n varying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/shadowmap_vertex.glsl
THREE.ShaderChunk[ 'shadowmap_vertex' ] = "#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n vDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\n }\n #endif\n #if NUM_SPOT_LIGHTS > 0\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n vSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\n }\n #endif\n #if NUM_POINT_LIGHTS > 0\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n vPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\n }\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/shadowmask_pars_fragment.glsl
THREE.ShaderChunk[ 'shadowmask_pars_fragment' ] = "float getShadowMask() {\n float shadow = 1.0;\n #ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n DirectionalLight directionalLight;\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n directionalLight = directionalLights[ i ];\n shadow *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n }\n #endif\n #if NUM_SPOT_LIGHTS > 0\n SpotLight spotLight;\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n spotLight = spotLights[ i ];\n shadow *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n }\n #endif\n #if NUM_POINT_LIGHTS > 0\n PointLight pointLight;\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n pointLight = pointLights[ i ];\n shadow *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\n }\n #endif\n #endif\n return shadow;\n}\n";
// File:src/renderers/shaders/ShaderChunk/skinbase_vertex.glsl
THREE.ShaderChunk[ 'skinbase_vertex' ] = "#ifdef USE_SKINNING\n mat4 boneMatX = getBoneMatrix( skinIndex.x );\n mat4 boneMatY = getBoneMatrix( skinIndex.y );\n mat4 boneMatZ = getBoneMatrix( skinIndex.z );\n mat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";
// File:src/renderers/shaders/ShaderChunk/skinning_pars_vertex.glsl
THREE.ShaderChunk[ 'skinning_pars_vertex' ] = "#ifdef USE_SKINNING\n uniform mat4 bindMatrix;\n uniform mat4 bindMatrixInverse;\n #ifdef BONE_TEXTURE\n uniform sampler2D boneTexture;\n uniform int boneTextureWidth;\n uniform int boneTextureHeight;\n mat4 getBoneMatrix( const in float i ) {\n float j = i * 4.0;\n float x = mod( j, float( boneTextureWidth ) );\n float y = floor( j / float( boneTextureWidth ) );\n float dx = 1.0 / float( boneTextureWidth );\n float dy = 1.0 / float( boneTextureHeight );\n y = dy * ( y + 0.5 );\n vec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n vec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n vec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n vec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n mat4 bone = mat4( v1, v2, v3, v4 );\n return bone;\n }\n #else\n uniform mat4 boneMatrices[ MAX_BONES ];\n mat4 getBoneMatrix( const in float i ) {\n mat4 bone = boneMatrices[ int(i) ];\n return bone;\n }\n #endif\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/skinning_vertex.glsl
THREE.ShaderChunk[ 'skinning_vertex' ] = "#ifdef USE_SKINNING\n vec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n vec4 skinned = vec4( 0.0 );\n skinned += boneMatX * skinVertex * skinWeight.x;\n skinned += boneMatY * skinVertex * skinWeight.y;\n skinned += boneMatZ * skinVertex * skinWeight.z;\n skinned += boneMatW * skinVertex * skinWeight.w;\n skinned = bindMatrixInverse * skinned;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/skinnormal_vertex.glsl
THREE.ShaderChunk[ 'skinnormal_vertex' ] = "#ifdef USE_SKINNING\n mat4 skinMatrix = mat4( 0.0 );\n skinMatrix += skinWeight.x * boneMatX;\n skinMatrix += skinWeight.y * boneMatY;\n skinMatrix += skinWeight.z * boneMatZ;\n skinMatrix += skinWeight.w * boneMatW;\n skinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n objectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/specularmap_fragment.glsl
THREE.ShaderChunk[ 'specularmap_fragment' ] = "float specularStrength;\n#ifdef USE_SPECULARMAP\n vec4 texelSpecular = texture2D( specularMap, vUv );\n specularStrength = texelSpecular.r;\n#else\n specularStrength = 1.0;\n#endif";
// File:src/renderers/shaders/ShaderChunk/specularmap_pars_fragment.glsl
THREE.ShaderChunk[ 'specularmap_pars_fragment' ] = "#ifdef USE_SPECULARMAP\n uniform sampler2D specularMap;\n#endif";
// File:src/renderers/shaders/ShaderChunk/tonemapping_fragment.glsl
THREE.ShaderChunk[ 'tonemapping_fragment' ] = "#if defined( TONE_MAPPING )\n gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/tonemapping_pars_fragment.glsl
THREE.ShaderChunk[ 'tonemapping_pars_fragment' ] = "#define saturate(a) clamp( a, 0.0, 1.0 )\nuniform float toneMappingExposure;\nuniform float toneMappingWhitePoint;\nvec3 LinearToneMapping( vec3 color ) {\n return toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n return saturate( color / ( vec3( 1.0 ) + color ) );\n}\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\nvec3 Uncharted2ToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n return saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n color = max( vec3( 0.0 ), color - 0.004 );\n return pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\n";
// File:src/renderers/shaders/ShaderChunk/uv2_pars_fragment.glsl
THREE.ShaderChunk[ 'uv2_pars_fragment' ] = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n varying vec2 vUv2;\n#endif";
// File:src/renderers/shaders/ShaderChunk/uv2_pars_vertex.glsl
THREE.ShaderChunk[ 'uv2_pars_vertex' ] = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n attribute vec2 uv2;\n varying vec2 vUv2;\n#endif";
// File:src/renderers/shaders/ShaderChunk/uv2_vertex.glsl
THREE.ShaderChunk[ 'uv2_vertex' ] = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n vUv2 = uv2;\n#endif";
// File:src/renderers/shaders/ShaderChunk/uv_pars_fragment.glsl
THREE.ShaderChunk[ 'uv_pars_fragment' ] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n varying vec2 vUv;\n#endif";
// File:src/renderers/shaders/ShaderChunk/uv_pars_vertex.glsl
THREE.ShaderChunk[ 'uv_pars_vertex' ] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n varying vec2 vUv;\n uniform vec4 offsetRepeat;\n#endif\n";
// File:src/renderers/shaders/ShaderChunk/uv_vertex.glsl
THREE.ShaderChunk[ 'uv_vertex' ] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n vUv = uv * offsetRepeat.zw + offsetRepeat.xy;\n#endif";
// File:src/renderers/shaders/ShaderChunk/worldpos_vertex.glsl
THREE.ShaderChunk[ 'worldpos_vertex' ] = "#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( PHYSICAL ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )\n #ifdef USE_SKINNING\n vec4 worldPosition = modelMatrix * skinned;\n #else\n vec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );\n #endif\n#endif\n";
// File:src/renderers/shaders/UniformsUtils.js
/**
* Uniform Utilities
*/
THREE.UniformsUtils = {
merge: function ( uniforms ) {
var merged = {};
for ( var u = 0; u < uniforms.length; u ++ ) {
var tmp = this.clone( uniforms[ u ] );
for ( var p in tmp ) {
merged[ p ] = tmp[ p ];
}
}
return merged;
},
clone: function ( uniforms_src ) {
var uniforms_dst = {};
for ( var u in uniforms_src ) {
uniforms_dst[ u ] = {};
for ( var p in uniforms_src[ u ] ) {
var parameter_src = uniforms_src[ u ][ p ];
if ( parameter_src instanceof THREE.Color ||
parameter_src instanceof THREE.Vector2 ||
parameter_src instanceof THREE.Vector3 ||
parameter_src instanceof THREE.Vector4 ||
parameter_src instanceof THREE.Matrix3 ||
parameter_src instanceof THREE.Matrix4 ||
parameter_src instanceof THREE.Texture ) {
uniforms_dst[ u ][ p ] = parameter_src.clone();
} else if ( Array.isArray( parameter_src ) ) {
uniforms_dst[ u ][ p ] = parameter_src.slice();
} else {
uniforms_dst[ u ][ p ] = parameter_src;
}
}
}
return uniforms_dst;
}
};
// File:src/renderers/shaders/UniformsLib.js
/**
* Uniforms library for shared webgl shaders
*/
THREE.UniformsLib = {
common: {
"diffuse": { type: "c", value: new THREE.Color( 0xeeeeee ) },
"opacity": { type: "1f", value: 1.0 },
"map": { type: "t", value: null },
"offsetRepeat": { type: "v4", value: new THREE.Vector4( 0, 0, 1, 1 ) },
"specularMap": { type: "t", value: null },
"alphaMap": { type: "t", value: null },
"envMap": { type: "t", value: null },
"flipEnvMap": { type: "1f", value: - 1 },
"reflectivity": { type: "1f", value: 1.0 },
"refractionRatio": { type: "1f", value: 0.98 }
},
aomap: {
"aoMap": { type: "t", value: null },
"aoMapIntensity": { type: "1f", value: 1 }
},
lightmap: {
"lightMap": { type: "t", value: null },
"lightMapIntensity": { type: "1f", value: 1 }
},
emissivemap: {
"emissiveMap": { type: "t", value: null }
},
bumpmap: {
"bumpMap": { type: "t", value: null },
"bumpScale": { type: "1f", value: 1 }
},
normalmap: {
"normalMap": { type: "t", value: null },
"normalScale": { type: "v2", value: new THREE.Vector2( 1, 1 ) }
},
displacementmap: {
"displacementMap": { type: "t", value: null },
"displacementScale": { type: "1f", value: 1 },
"displacementBias": { type: "1f", value: 0 }
},
roughnessmap: {
"roughnessMap": { type: "t", value: null }
},
metalnessmap: {
"metalnessMap": { type: "t", value: null }
},
fog: {
"fogDensity": { type: "1f", value: 0.00025 },
"fogNear": { type: "1f", value: 1 },
"fogFar": { type: "1f", value: 2000 },
"fogColor": { type: "c", value: new THREE.Color( 0xffffff ) }
},
lights: {
"ambientLightColor": { type: "3fv", value: [] },
"directionalLights": { type: "sa", value: [], properties: {
"direction": { type: "v3" },
"color": { type: "c" },
"shadow": { type: "1i" },
"shadowBias": { type: "1f" },
"shadowRadius": { type: "1f" },
"shadowMapSize": { type: "v2" }
} },
"directionalShadowMap": { type: "tv", value: [] },
"directionalShadowMatrix": { type: "m4v", value: [] },
"spotLights": { type: "sa", value: [], properties: {
"color": { type: "c" },
"position": { type: "v3" },
"direction": { type: "v3" },
"distance": { type: "1f" },
"coneCos": { type: "1f" },
"penumbraCos": { type: "1f" },
"decay": { type: "1f" },
"shadow": { type: "1i" },
"shadowBias": { type: "1f" },
"shadowRadius": { type: "1f" },
"shadowMapSize": { type: "v2" }
} },
"spotShadowMap": { type: "tv", value: [] },
"spotShadowMatrix": { type: "m4v", value: [] },
"pointLights": { type: "sa", value: [], properties: {
"color": { type: "c" },
"position": { type: "v3" },
"decay": { type: "1f" },
"distance": { type: "1f" },
"shadow": { type: "1i" },
"shadowBias": { type: "1f" },
"shadowRadius": { type: "1f" },
"shadowMapSize": { type: "v2" }
} },
"pointShadowMap": { type: "tv", value: [] },
"pointShadowMatrix": { type: "m4v", value: [] },
"hemisphereLights": { type: "sa", value: [], properties: {
"direction": { type: "v3" },
"skyColor": { type: "c" },
"groundColor": { type: "c" }
} }
},
points: {
"diffuse": { type: "c", value: new THREE.Color( 0xeeeeee ) },
"opacity": { type: "1f", value: 1.0 },
"size": { type: "1f", value: 1.0 },
"scale": { type: "1f", value: 1.0 },
"map": { type: "t", value: null },
"offsetRepeat": { type: "v4", value: new THREE.Vector4( 0, 0, 1, 1 ) }
}
};
// File:src/renderers/shaders/ShaderLib/cube_frag.glsl
THREE.ShaderChunk[ 'cube_frag' ] = "uniform samplerCube tCube;\nuniform float tFlip;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n gl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\n #include <logdepthbuf_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/cube_vert.glsl
THREE.ShaderChunk[ 'cube_vert' ] = "varying vec3 vWorldPosition;\n#include <common>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n vWorldPosition = transformDirection( position, modelMatrix );\n #include <begin_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/depth_frag.glsl
THREE.ShaderChunk[ 'depth_frag' ] = "#if DEPTH_PACKING == 3200\n uniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n vec4 diffuseColor = vec4( 1.0 );\n #if DEPTH_PACKING == 3200\n diffuseColor.a = opacity;\n #endif\n #include <map_fragment>\n #include <alphamap_fragment>\n #include <alphatest_fragment>\n #include <logdepthbuf_fragment>\n #if DEPTH_PACKING == 3200\n gl_FragColor = vec4( vec3( gl_FragCoord.z ), opacity );\n #elif DEPTH_PACKING == 3201\n gl_FragColor = packDepthToRGBA( gl_FragCoord.z );\n #endif\n}\n";
// File:src/renderers/shaders/ShaderLib/depth_vert.glsl
THREE.ShaderChunk[ 'depth_vert' ] = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <uv_vertex>\n #include <skinbase_vertex>\n #include <begin_vertex>\n #include <displacementmap_vertex>\n #include <morphtarget_vertex>\n #include <skinning_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/distanceRGBA_frag.glsl
THREE.ShaderChunk[ 'distanceRGBA_frag' ] = "uniform vec3 lightPos;\nvarying vec4 vWorldPosition;\n#include <common>\n#include <packing>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n #include <clipping_planes_fragment>\n gl_FragColor = packDepthToRGBA( length( vWorldPosition.xyz - lightPos.xyz ) / 1000.0 );\n}\n";
// File:src/renderers/shaders/ShaderLib/distanceRGBA_vert.glsl
THREE.ShaderChunk[ 'distanceRGBA_vert' ] = "varying vec4 vWorldPosition;\n#include <common>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <skinbase_vertex>\n #include <begin_vertex>\n #include <morphtarget_vertex>\n #include <skinning_vertex>\n #include <project_vertex>\n #include <worldpos_vertex>\n #include <clipping_planes_vertex>\n vWorldPosition = worldPosition;\n}\n";
// File:src/renderers/shaders/ShaderLib/equirect_frag.glsl
THREE.ShaderChunk[ 'equirect_frag' ] = "uniform sampler2D tEquirect;\nuniform float tFlip;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n vec3 direction = normalize( vWorldPosition );\n vec2 sampleUV;\n sampleUV.y = saturate( tFlip * direction.y * -0.5 + 0.5 );\n sampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\n gl_FragColor = texture2D( tEquirect, sampleUV );\n #include <logdepthbuf_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/equirect_vert.glsl
THREE.ShaderChunk[ 'equirect_vert' ] = "varying vec3 vWorldPosition;\n#include <common>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n vWorldPosition = transformDirection( position, modelMatrix );\n #include <begin_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/linedashed_frag.glsl
THREE.ShaderChunk[ 'linedashed_frag' ] = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n if ( mod( vLineDistance, totalSize ) > dashSize ) {\n discard;\n }\n vec3 outgoingLight = vec3( 0.0 );\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include <logdepthbuf_fragment>\n #include <color_fragment>\n outgoingLight = diffuseColor.rgb;\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include <premultiplied_alpha_fragment>\n #include <tonemapping_fragment>\n #include <encodings_fragment>\n #include <fog_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/linedashed_vert.glsl
THREE.ShaderChunk[ 'linedashed_vert' ] = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <color_vertex>\n vLineDistance = scale * lineDistance;\n vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );\n gl_Position = projectionMatrix * mvPosition;\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshbasic_frag.glsl
THREE.ShaderChunk[ 'meshbasic_frag' ] = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\n#include <common>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include <logdepthbuf_fragment>\n #include <map_fragment>\n #include <color_fragment>\n #include <alphamap_fragment>\n #include <alphatest_fragment>\n #include <specularmap_fragment>\n ReflectedLight reflectedLight;\n reflectedLight.directDiffuse = vec3( 0.0 );\n reflectedLight.directSpecular = vec3( 0.0 );\n reflectedLight.indirectDiffuse = diffuseColor.rgb;\n reflectedLight.indirectSpecular = vec3( 0.0 );\n #include <aomap_fragment>\n vec3 outgoingLight = reflectedLight.indirectDiffuse;\n #include <envmap_fragment>\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include <premultiplied_alpha_fragment>\n #include <tonemapping_fragment>\n #include <encodings_fragment>\n #include <fog_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshbasic_vert.glsl
THREE.ShaderChunk[ 'meshbasic_vert' ] = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <uv_vertex>\n #include <uv2_vertex>\n #include <color_vertex>\n #include <skinbase_vertex>\n #ifdef USE_ENVMAP\n #include <beginnormal_vertex>\n #include <morphnormal_vertex>\n #include <skinnormal_vertex>\n #include <defaultnormal_vertex>\n #endif\n #include <begin_vertex>\n #include <morphtarget_vertex>\n #include <skinning_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <worldpos_vertex>\n #include <clipping_planes_vertex>\n #include <envmap_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshlambert_frag.glsl
THREE.ShaderChunk[ 'meshlambert_frag' ] = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n varying vec3 vLightBack;\n#endif\n#include <common>\n#include <packing>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <bsdfs>\n#include <lights_pars>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n vec4 diffuseColor = vec4( diffuse, opacity );\n ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n vec3 totalEmissiveRadiance = emissive;\n #include <logdepthbuf_fragment>\n #include <map_fragment>\n #include <color_fragment>\n #include <alphamap_fragment>\n #include <alphatest_fragment>\n #include <specularmap_fragment>\n #include <emissivemap_fragment>\n reflectedLight.indirectDiffuse = getAmbientLightIrradiance( ambientLightColor );\n #include <lightmap_fragment>\n reflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n #ifdef DOUBLE_SIDED\n reflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n #else\n reflectedLight.directDiffuse = vLightFront;\n #endif\n reflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n #include <aomap_fragment>\n vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n #include <envmap_fragment>\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include <premultiplied_alpha_fragment>\n #include <tonemapping_fragment>\n #include <encodings_fragment>\n #include <fog_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshlambert_vert.glsl
THREE.ShaderChunk[ 'meshlambert_vert' ] = "#define LAMBERT\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n varying vec3 vLightBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars>\n#include <color_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <uv_vertex>\n #include <uv2_vertex>\n #include <color_vertex>\n #include <beginnormal_vertex>\n #include <morphnormal_vertex>\n #include <skinbase_vertex>\n #include <skinnormal_vertex>\n #include <defaultnormal_vertex>\n #include <begin_vertex>\n #include <morphtarget_vertex>\n #include <skinning_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n #include <worldpos_vertex>\n #include <envmap_vertex>\n #include <lights_lambert_vertex>\n #include <shadowmap_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshphong_frag.glsl
THREE.ShaderChunk[ 'meshphong_frag' ] = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n vec4 diffuseColor = vec4( diffuse, opacity );\n ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n vec3 totalEmissiveRadiance = emissive;\n #include <logdepthbuf_fragment>\n #include <map_fragment>\n #include <color_fragment>\n #include <alphamap_fragment>\n #include <alphatest_fragment>\n #include <specularmap_fragment>\n #include <normal_fragment>\n #include <emissivemap_fragment>\n #include <lights_phong_fragment>\n #include <lights_template>\n #include <aomap_fragment>\n vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n #include <envmap_fragment>\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include <premultiplied_alpha_fragment>\n #include <tonemapping_fragment>\n #include <encodings_fragment>\n #include <fog_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshphong_vert.glsl
THREE.ShaderChunk[ 'meshphong_vert' ] = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <uv_vertex>\n #include <uv2_vertex>\n #include <color_vertex>\n #include <beginnormal_vertex>\n #include <morphnormal_vertex>\n #include <skinbase_vertex>\n #include <skinnormal_vertex>\n #include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n vNormal = normalize( transformedNormal );\n#endif\n #include <begin_vertex>\n #include <displacementmap_vertex>\n #include <morphtarget_vertex>\n #include <skinning_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n vViewPosition = - mvPosition.xyz;\n #include <worldpos_vertex>\n #include <envmap_vertex>\n #include <shadowmap_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshphysical_frag.glsl
THREE.ShaderChunk[ 'meshphysical_frag' ] = "#define PHYSICAL\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\nuniform float envMapIntensity;\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\n#include <common>\n#include <packing>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <cube_uv_reflection_fragment>\n#include <lights_pars>\n#include <lights_physical_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n vec4 diffuseColor = vec4( diffuse, opacity );\n ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n vec3 totalEmissiveRadiance = emissive;\n #include <logdepthbuf_fragment>\n #include <map_fragment>\n #include <color_fragment>\n #include <alphamap_fragment>\n #include <alphatest_fragment>\n #include <specularmap_fragment>\n #include <roughnessmap_fragment>\n #include <metalnessmap_fragment>\n #include <normal_fragment>\n #include <emissivemap_fragment>\n #include <lights_physical_fragment>\n #include <lights_template>\n #include <aomap_fragment>\n vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include <premultiplied_alpha_fragment>\n #include <tonemapping_fragment>\n #include <encodings_fragment>\n #include <fog_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/meshphysical_vert.glsl
THREE.ShaderChunk[ 'meshphysical_vert' ] = "#define PHYSICAL\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <uv_vertex>\n #include <uv2_vertex>\n #include <color_vertex>\n #include <beginnormal_vertex>\n #include <morphnormal_vertex>\n #include <skinbase_vertex>\n #include <skinnormal_vertex>\n #include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n vNormal = normalize( transformedNormal );\n#endif\n #include <begin_vertex>\n #include <displacementmap_vertex>\n #include <morphtarget_vertex>\n #include <skinning_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n vViewPosition = - mvPosition.xyz;\n #include <worldpos_vertex>\n #include <shadowmap_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/normal_frag.glsl
THREE.ShaderChunk[ 'normal_frag' ] = "uniform float opacity;\nvarying vec3 vNormal;\n#include <common>\n#include <packing>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n gl_FragColor = vec4( packNormalToRGB( vNormal ), opacity );\n #include <logdepthbuf_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/normal_vert.glsl
THREE.ShaderChunk[ 'normal_vert' ] = "varying vec3 vNormal;\n#include <common>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n vNormal = normalize( normalMatrix * normal );\n #include <begin_vertex>\n #include <morphtarget_vertex>\n #include <project_vertex>\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib/points_frag.glsl
THREE.ShaderChunk[ 'points_frag' ] = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n #include <clipping_planes_fragment>\n vec3 outgoingLight = vec3( 0.0 );\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include <logdepthbuf_fragment>\n #include <map_particle_fragment>\n #include <color_fragment>\n #include <alphatest_fragment>\n outgoingLight = diffuseColor.rgb;\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include <premultiplied_alpha_fragment>\n #include <tonemapping_fragment>\n #include <encodings_fragment>\n #include <fog_fragment>\n}\n";
// File:src/renderers/shaders/ShaderLib/points_vert.glsl
THREE.ShaderChunk[ 'points_vert' ] = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n #include <color_vertex>\n #include <begin_vertex>\n #include <project_vertex>\n #ifdef USE_SIZEATTENUATION\n gl_PointSize = size * ( scale / - mvPosition.z );\n #else\n gl_PointSize = size;\n #endif\n #include <logdepthbuf_vertex>\n #include <clipping_planes_vertex>\n #include <worldpos_vertex>\n #include <shadowmap_vertex>\n}\n";
// File:src/renderers/shaders/ShaderLib.js
/**
* Webgl Shader Library for three.js
*
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
*/
THREE.ShaderLib = {
'basic': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ 'common' ],
THREE.UniformsLib[ 'aomap' ],
THREE.UniformsLib[ 'fog' ]
] ),
vertexShader: THREE.ShaderChunk[ 'meshbasic_vert' ],
fragmentShader: THREE.ShaderChunk[ 'meshbasic_frag' ]
},
'lambert': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ 'common' ],
THREE.UniformsLib[ 'aomap' ],
THREE.UniformsLib[ 'lightmap' ],
THREE.UniformsLib[ 'emissivemap' ],
THREE.UniformsLib[ 'fog' ],
THREE.UniformsLib[ 'lights' ],
{
"emissive" : { type: "c", value: new THREE.Color( 0x000000 ) }
}
] ),
vertexShader: THREE.ShaderChunk[ 'meshlambert_vert' ],
fragmentShader: THREE.ShaderChunk[ 'meshlambert_frag' ]
},
'phong': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ 'common' ],
THREE.UniformsLib[ 'aomap' ],
THREE.UniformsLib[ 'lightmap' ],
THREE.UniformsLib[ 'emissivemap' ],
THREE.UniformsLib[ 'bumpmap' ],
THREE.UniformsLib[ 'normalmap' ],
THREE.UniformsLib[ 'displacementmap' ],
THREE.UniformsLib[ 'fog' ],
THREE.UniformsLib[ 'lights' ],
{
"emissive" : { type: "c", value: new THREE.Color( 0x000000 ) },
"specular" : { type: "c", value: new THREE.Color( 0x111111 ) },
"shininess": { type: "1f", value: 30 }
}
] ),
vertexShader: THREE.ShaderChunk[ 'meshphong_vert' ],
fragmentShader: THREE.ShaderChunk[ 'meshphong_frag' ]
},
'standard': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ 'common' ],
THREE.UniformsLib[ 'aomap' ],
THREE.UniformsLib[ 'lightmap' ],
THREE.UniformsLib[ 'emissivemap' ],
THREE.UniformsLib[ 'bumpmap' ],
THREE.UniformsLib[ 'normalmap' ],
THREE.UniformsLib[ 'displacementmap' ],
THREE.UniformsLib[ 'roughnessmap' ],
THREE.UniformsLib[ 'metalnessmap' ],
THREE.UniformsLib[ 'fog' ],
THREE.UniformsLib[ 'lights' ],
{
"emissive" : { type: "c", value: new THREE.Color( 0x000000 ) },
"roughness": { type: "1f", value: 0.5 },
"metalness": { type: "1f", value: 0 },
"envMapIntensity" : { type: "1f", value: 1 } // temporary
}
] ),
vertexShader: THREE.ShaderChunk[ 'meshphysical_vert' ],
fragmentShader: THREE.ShaderChunk[ 'meshphysical_frag' ]
},
'points': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ 'points' ],
THREE.UniformsLib[ 'fog' ]
] ),
vertexShader: THREE.ShaderChunk[ 'points_vert' ],
fragmentShader: THREE.ShaderChunk[ 'points_frag' ]
},
'dashed': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ 'common' ],
THREE.UniformsLib[ 'fog' ],
{
"scale" : { type: "1f", value: 1 },
"dashSize" : { type: "1f", value: 1 },
"totalSize": { type: "1f", value: 2 }
}
] ),
vertexShader: THREE.ShaderChunk[ 'linedashed_vert' ],
fragmentShader: THREE.ShaderChunk[ 'linedashed_frag' ]
},
'depth': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ 'common' ],
THREE.UniformsLib[ 'displacementmap' ]
] ),
vertexShader: THREE.ShaderChunk[ 'depth_vert' ],
fragmentShader: THREE.ShaderChunk[ 'depth_frag' ]
},
'normal': {
uniforms: {
"opacity" : { type: "1f", value: 1.0 }
},
vertexShader: THREE.ShaderChunk[ 'normal_vert' ],
fragmentShader: THREE.ShaderChunk[ 'normal_frag' ]
},
/* -------------------------------------------------------------------------
// Cube map shader
------------------------------------------------------------------------- */
'cube': {
uniforms: {
"tCube": { type: "t", value: null },
"tFlip": { type: "1f", value: - 1 }
},
vertexShader: THREE.ShaderChunk[ 'cube_vert' ],
fragmentShader: THREE.ShaderChunk[ 'cube_frag' ]
},
/* -------------------------------------------------------------------------
// Cube map shader
------------------------------------------------------------------------- */
'equirect': {
uniforms: {
"tEquirect": { type: "t", value: null },
"tFlip": { type: "1f", value: - 1 }
},
vertexShader: THREE.ShaderChunk[ 'equirect_vert' ],
fragmentShader: THREE.ShaderChunk[ 'equirect_frag' ]
},
'distanceRGBA': {
uniforms: {
"lightPos": { type: "v3", value: new THREE.Vector3() }
},
vertexShader: THREE.ShaderChunk[ 'distanceRGBA_vert' ],
fragmentShader: THREE.ShaderChunk[ 'distanceRGBA_frag' ]
}
};
THREE.ShaderLib[ 'physical' ] = {
uniforms: THREE.UniformsUtils.merge( [
THREE.ShaderLib[ 'standard' ].uniforms,
{
// future
}
] ),
vertexShader: THREE.ShaderChunk[ 'meshphysical_vert' ],
fragmentShader: THREE.ShaderChunk[ 'meshphysical_frag' ]
};
// File:src/renderers/WebGLRenderer.js
/**
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author szimek / https://github.com/szimek/
* @author tschw
*/
THREE.WebGLRenderer = function ( parameters ) {
console.log( 'THREE.WebGLRenderer', THREE.REVISION );
parameters = parameters || {};
var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElement( 'canvas' ),
_context = parameters.context !== undefined ? parameters.context : null,
_alpha = parameters.alpha !== undefined ? parameters.alpha : false,
_depth = parameters.depth !== undefined ? parameters.depth : true,
_stencil = parameters.stencil !== undefined ? parameters.stencil : true,
_antialias = parameters.antialias !== undefined ? parameters.antialias : false,
_premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
_preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false;
var lights = [];
var opaqueObjects = [];
var opaqueObjectsLastIndex = - 1;
var transparentObjects = [];
var transparentObjectsLastIndex = - 1;
var morphInfluences = new Float32Array( 8 );
var sprites = [];
var lensFlares = [];
// public properties
this.domElement = _canvas;
this.context = null;
// clearing
this.autoClear = true;
this.autoClearColor = true;
this.autoClearDepth = true;
this.autoClearStencil = true;
// scene graph
this.sortObjects = true;
// user-defined clipping
this.clippingPlanes = [];
this.localClippingEnabled = false;
// physically based shading
this.gammaFactor = 2.0; // for backwards compatibility
this.gammaInput = false;
this.gammaOutput = false;
// physical lights
this.physicallyCorrectLights = false;
// tone mapping
this.toneMapping = THREE.LinearToneMapping;
this.toneMappingExposure = 1.0;
this.toneMappingWhitePoint = 1.0;
// morphs
this.maxMorphTargets = 8;
this.maxMorphNormals = 4;
// flags
this.autoScaleCubemaps = true;
// internal properties
var _this = this,
// internal state cache
_currentProgram = null,
_currentRenderTarget = null,
_currentFramebuffer = null,
_currentMaterialId = - 1,
_currentGeometryProgram = '',
_currentCamera = null,
_currentScissor = new THREE.Vector4(),
_currentScissorTest = null,
_currentViewport = new THREE.Vector4(),
//
_usedTextureUnits = 0,
//
_clearColor = new THREE.Color( 0x000000 ),
_clearAlpha = 0,
_width = _canvas.width,
_height = _canvas.height,
_pixelRatio = 1,
_scissor = new THREE.Vector4( 0, 0, _width, _height ),
_scissorTest = false,
_viewport = new THREE.Vector4( 0, 0, _width, _height ),
// frustum
_frustum = new THREE.Frustum(),
// clipping
_clippingEnabled = false,
_localClippingEnabled = false,
_clipRenderingShadows = false,
_numClippingPlanes = 0,
_clippingPlanesUniform = {
type: '4fv', value: null, needsUpdate: false },
_globalClippingState = null,
_numGlobalClippingPlanes = 0,
_matrix3 = new THREE.Matrix3(),
_sphere = new THREE.Sphere(),
_plane = new THREE.Plane(),
// camera matrices cache
_projScreenMatrix = new THREE.Matrix4(),
_vector3 = new THREE.Vector3(),
// light arrays cache
_lights = {
hash: '',
ambient: [ 0, 0, 0 ],
directional: [],
directionalShadowMap: [],
directionalShadowMatrix: [],
spot: [],
spotShadowMap: [],
spotShadowMatrix: [],
point: [],
pointShadowMap: [],
pointShadowMatrix: [],
hemi: [],
shadows: []
},
// info
_infoMemory = {
geometries: 0,
textures: 0
},
_infoRender = {
calls: 0,
vertices: 0,
faces: 0,
points: 0
};
this.info = {
render: _infoRender,
memory: _infoMemory,
programs: null
};
// initialize
var _gl;
try {
var attributes = {
alpha: _alpha,
depth: _depth,
stencil: _stencil,
antialias: _antialias,
premultipliedAlpha: _premultipliedAlpha,
preserveDrawingBuffer: _preserveDrawingBuffer
};
_gl = _context || _canvas.getContext( 'webgl', attributes ) || _canvas.getContext( 'experimental-webgl', attributes );
if ( _gl === null ) {
if ( _canvas.getContext( 'webgl' ) !== null ) {
throw 'Error creating WebGL context with your selected attributes.';
} else {
throw 'Error creating WebGL context.';
}
}
// Some experimental-webgl implementations do not have getShaderPrecisionFormat
if ( _gl.getShaderPrecisionFormat === undefined ) {
_gl.getShaderPrecisionFormat = function () {
return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 };
};
}
_canvas.addEventListener( 'webglcontextlost', onContextLost, false );
} catch ( error ) {
console.error( 'THREE.WebGLRenderer: ' + error );
}
var _isWebGL2 = (typeof WebGL2RenderingContext !== 'undefined' && _gl instanceof WebGL2RenderingContext);
var extensions = new THREE.WebGLExtensions( _gl );
extensions.get( 'WEBGL_depth_texture' );
extensions.get( 'OES_texture_float' );
extensions.get( 'OES_texture_float_linear' );
extensions.get( 'OES_texture_half_float' );
extensions.get( 'OES_texture_half_float_linear' );
extensions.get( 'OES_standard_derivatives' );
extensions.get( 'ANGLE_instanced_arrays' );
if ( extensions.get( 'OES_element_index_uint' ) ) {
THREE.BufferGeometry.MaxIndex = 4294967296;
}
var capabilities = new THREE.WebGLCapabilities( _gl, extensions, parameters );
var state = new THREE.WebGLState( _gl, extensions, paramThreeToGL );
var properties = new THREE.WebGLProperties();
var objects = new THREE.WebGLObjects( _gl, properties, this.info );
var programCache = new THREE.WebGLPrograms( this, capabilities );
var lightCache = new THREE.WebGLLights();
this.info.programs = programCache.programs;
var bufferRenderer = new THREE.WebGLBufferRenderer( _gl, extensions, _infoRender );
var indexedBufferRenderer = new THREE.WebGLIndexedBufferRenderer( _gl, extensions, _infoRender );
//
function getTargetPixelRatio() {
return _currentRenderTarget === null ? _pixelRatio : 1;
}
function glClearColor( r, g, b, a ) {
if ( _premultipliedAlpha === true ) {
r *= a; g *= a; b *= a;
}
state.clearColor( r, g, b, a );
}
function setDefaultGLState() {
state.init();
state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ) );
state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ) );
glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha );
}
function resetGLState() {
_currentProgram = null;
_currentCamera = null;
_currentGeometryProgram = '';
_currentMaterialId = - 1;
state.reset();
}
setDefaultGLState();
this.context = _gl;
this.capabilities = capabilities;
this.extensions = extensions;
this.properties = properties;
this.state = state;
// shadow map
var shadowMap = new THREE.WebGLShadowMap( this, _lights, objects );
this.shadowMap = shadowMap;
// Plugins
var spritePlugin = new THREE.SpritePlugin( this, sprites );
var lensFlarePlugin = new THREE.LensFlarePlugin( this, lensFlares );
// API
this.getContext = function () {
return _gl;
};
this.getContextAttributes = function () {
return _gl.getContextAttributes();
};
this.forceContextLoss = function () {
extensions.get( 'WEBGL_lose_context' ).loseContext();
};
this.getMaxAnisotropy = ( function () {
var value;
return function getMaxAnisotropy() {
if ( value !== undefined ) return value;
var extension = extensions.get( 'EXT_texture_filter_anisotropic' );
if ( extension !== null ) {
value = _gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT );
} else {
value = 0;
}
return value;
};
} )();
this.getPrecision = function () {
return capabilities.precision;
};
this.getPixelRatio = function () {
return _pixelRatio;
};
this.setPixelRatio = function ( value ) {
if ( value === undefined ) return;
_pixelRatio = value;
this.setSize( _viewport.z, _viewport.w, false );
};
this.getSize = function () {
return {
width: _width,
height: _height
};
};
this.setSize = function ( width, height, updateStyle ) {
_width = width;
_height = height;
_canvas.width = width * _pixelRatio;
_canvas.height = height * _pixelRatio;
if ( updateStyle !== false ) {
_canvas.style.width = width + 'px';
_canvas.style.height = height + 'px';
}
this.setViewport( 0, 0, width, height );
};
this.setViewport = function ( x, y, width, height ) {
state.viewport( _viewport.set( x, y, width, height ) );
};
this.setScissor = function ( x, y, width, height ) {
state.scissor( _scissor.set( x, y, width, height ) );
};
this.setScissorTest = function ( boolean ) {
state.setScissorTest( _scissorTest = boolean );
};
// Clearing
this.getClearColor = function () {
return _clearColor;
};
this.setClearColor = function ( color, alpha ) {
_clearColor.set( color );
_clearAlpha = alpha !== undefined ? alpha : 1;
glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha );
};
this.getClearAlpha = function () {
return _clearAlpha;
};
this.setClearAlpha = function ( alpha ) {
_clearAlpha = alpha;
glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha );
};
this.clear = function ( color, depth, stencil ) {
var bits = 0;
if ( color === undefined || color ) bits |= _gl.COLOR_BUFFER_BIT;
if ( depth === undefined || depth ) bits |= _gl.DEPTH_BUFFER_BIT;
if ( stencil === undefined || stencil ) bits |= _gl.STENCIL_BUFFER_BIT;
_gl.clear( bits );
};
this.clearColor = function () {
this.clear( true, false, false );
};
this.clearDepth = function () {
this.clear( false, true, false );
};
this.clearStencil = function () {
this.clear( false, false, true );
};
this.clearTarget = function ( renderTarget, color, depth, stencil ) {
this.setRenderTarget( renderTarget );
this.clear( color, depth, stencil );
};
// Reset
this.resetGLState = resetGLState;
this.dispose = function() {
_canvas.removeEventListener( 'webglcontextlost', onContextLost, false );
};
// Events
function onContextLost( event ) {
event.preventDefault();
resetGLState();
setDefaultGLState();
properties.clear();
}
function onTextureDispose( event ) {
var texture = event.target;
texture.removeEventListener( 'dispose', onTextureDispose );
deallocateTexture( texture );
_infoMemory.textures --;
}
function onRenderTargetDispose( event ) {
var renderTarget = event.target;
renderTarget.removeEventListener( 'dispose', onRenderTargetDispose );
deallocateRenderTarget( renderTarget );
_infoMemory.textures --;
}
function onMaterialDispose( event ) {
var material = event.target;
material.removeEventListener( 'dispose', onMaterialDispose );
deallocateMaterial( material );
}
// Buffer deallocation
function deallocateTexture( texture ) {
var textureProperties = properties.get( texture );
if ( texture.image && textureProperties.__image__webglTextureCube ) {
// cube texture
_gl.deleteTexture( textureProperties.__image__webglTextureCube );
} else {
// 2D texture
if ( textureProperties.__webglInit === undefined ) return;
_gl.deleteTexture( textureProperties.__webglTexture );
}
// remove all webgl properties
properties.delete( texture );
}
function deallocateRenderTarget( renderTarget ) {
var renderTargetProperties = properties.get( renderTarget );
var textureProperties = properties.get( renderTarget.texture );
if ( ! renderTarget ) return;
if ( textureProperties.__webglTexture !== undefined ) {
_gl.deleteTexture( textureProperties.__webglTexture );
}
if ( renderTarget.depthTexture ) {
renderTarget.depthTexture.dispose();
}
if ( renderTarget instanceof THREE.WebGLRenderTargetCube ) {
for ( var i = 0; i < 6; i ++ ) {
_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] );
if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] );
}
} else {
_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer );
if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer );
}
properties.delete( renderTarget.texture );
properties.delete( renderTarget );
}
function deallocateMaterial( material ) {
releaseMaterialProgramReference( material );
properties.delete( material );
}
function releaseMaterialProgramReference( material ) {
var programInfo = properties.get( material ).program;
material.program = undefined;
if ( programInfo !== undefined ) {
programCache.releaseProgram( programInfo );
}
}
// Buffer rendering
this.renderBufferImmediate = function ( object, program, material ) {
state.initAttributes();
var buffers = properties.get( object );
if ( object.hasPositions && ! buffers.position ) buffers.position = _gl.createBuffer();
if ( object.hasNormals && ! buffers.normal ) buffers.normal = _gl.createBuffer();
if ( object.hasUvs && ! buffers.uv ) buffers.uv = _gl.createBuffer();
if ( object.hasColors && ! buffers.color ) buffers.color = _gl.createBuffer();
var attributes = program.getAttributes();
if ( object.hasPositions ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.position );
_gl.bufferData( _gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW );
state.enableAttribute( attributes.position );
_gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 );
}
if ( object.hasNormals ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.normal );
if ( material.type !== 'MeshPhongMaterial' && material.type !== 'MeshStandardMaterial' && material.type !== 'MeshPhysicalMaterial' && material.shading === THREE.FlatShading ) {
for ( var i = 0, l = object.count * 3; i < l; i += 9 ) {
var array = object.normalArray;
var nx = ( array[ i + 0 ] + array[ i + 3 ] + array[ i + 6 ] ) / 3;
var ny = ( array[ i + 1 ] + array[ i + 4 ] + array[ i + 7 ] ) / 3;
var nz = ( array[ i + 2 ] + array[ i + 5 ] + array[ i + 8 ] ) / 3;
array[ i + 0 ] = nx;
array[ i + 1 ] = ny;
array[ i + 2 ] = nz;
array[ i + 3 ] = nx;
array[ i + 4 ] = ny;
array[ i + 5 ] = nz;
array[ i + 6 ] = nx;
array[ i + 7 ] = ny;
array[ i + 8 ] = nz;
}
}
_gl.bufferData( _gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW );
state.enableAttribute( attributes.normal );
_gl.vertexAttribPointer( attributes.normal, 3, _gl.FLOAT, false, 0, 0 );
}
if ( object.hasUvs && material.map ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.uv );
_gl.bufferData( _gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW );
state.enableAttribute( attributes.uv );
_gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 0, 0 );
}
if ( object.hasColors && material.vertexColors !== THREE.NoColors ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.color );
_gl.bufferData( _gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW );
state.enableAttribute( attributes.color );
_gl.vertexAttribPointer( attributes.color, 3, _gl.FLOAT, false, 0, 0 );
}
state.disableUnusedAttributes();
_gl.drawArrays( _gl.TRIANGLES, 0, object.count );
object.count = 0;
};
this.renderBufferDirect = function ( camera, fog, geometry, material, object, group ) {
setMaterial( material );
var program = setProgram( camera, fog, material, object );
var updateBuffers = false;
var geometryProgram = geometry.id + '_' + program.id + '_' + material.wireframe;
if ( geometryProgram !== _currentGeometryProgram ) {
_currentGeometryProgram = geometryProgram;
updateBuffers = true;
}
// morph targets
var morphTargetInfluences = object.morphTargetInfluences;
if ( morphTargetInfluences !== undefined ) {
var activeInfluences = [];
for ( var i = 0, l = morphTargetInfluences.length; i < l; i ++ ) {
var influence = morphTargetInfluences[ i ];
activeInfluences.push( [ influence, i ] );
}
activeInfluences.sort( absNumericalSort );
if ( activeInfluences.length > 8 ) {
activeInfluences.length = 8;
}
var morphAttributes = geometry.morphAttributes;
for ( var i = 0, l = activeInfluences.length; i < l; i ++ ) {
var influence = activeInfluences[ i ];
morphInfluences[ i ] = influence[ 0 ];
if ( influence[ 0 ] !== 0 ) {
var index = influence[ 1 ];
if ( material.morphTargets === true && morphAttributes.position ) geometry.addAttribute( 'morphTarget' + i, morphAttributes.position[ index ] );
if ( material.morphNormals === true && morphAttributes.normal ) geometry.addAttribute( 'morphNormal' + i, morphAttributes.normal[ index ] );
} else {
if ( material.morphTargets === true ) geometry.removeAttribute( 'morphTarget' + i );
if ( material.morphNormals === true ) geometry.removeAttribute( 'morphNormal' + i );
}
}
program.getUniforms().setValue(
_gl, 'morphTargetInfluences', morphInfluences );
updateBuffers = true;
}
//
var index = geometry.index;
var position = geometry.attributes.position;
if ( material.wireframe === true ) {
index = objects.getWireframeAttribute( geometry );
}
var renderer;
if ( index !== null ) {
renderer = indexedBufferRenderer;
renderer.setIndex( index );
} else {
renderer = bufferRenderer;
}
if ( updateBuffers ) {
setupVertexAttributes( material, program, geometry );
if ( index !== null ) {
_gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, objects.getAttributeBuffer( index ) );
}
}
//
var dataStart = 0;
var dataCount = Infinity;
if ( index !== null ) {
dataCount = index.count;
} else if ( position !== undefined ) {
dataCount = position.count;
}
var rangeStart = geometry.drawRange.start;
var rangeCount = geometry.drawRange.count;
var groupStart = group !== null ? group.start : 0;
var groupCount = group !== null ? group.count : Infinity;
var drawStart = Math.max( dataStart, rangeStart, groupStart );
var drawEnd = Math.min( dataStart + dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1;
var drawCount = Math.max( 0, drawEnd - drawStart + 1 );
//
if ( object instanceof THREE.Mesh ) {
if ( material.wireframe === true ) {
state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() );
renderer.setMode( _gl.LINES );
} else {
switch ( object.drawMode ) {
case THREE.TrianglesDrawMode:
renderer.setMode( _gl.TRIANGLES );
break;
case THREE.TriangleStripDrawMode:
renderer.setMode( _gl.TRIANGLE_STRIP );
break;
case THREE.TriangleFanDrawMode:
renderer.setMode( _gl.TRIANGLE_FAN );
break;
}
}
} else if ( object instanceof THREE.Line ) {
var lineWidth = material.linewidth;
if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material
state.setLineWidth( lineWidth * getTargetPixelRatio() );
if ( object instanceof THREE.LineSegments ) {
renderer.setMode( _gl.LINES );
} else {
renderer.setMode( _gl.LINE_STRIP );
}
} else if ( object instanceof THREE.Points ) {
renderer.setMode( _gl.POINTS );
}
if ( geometry instanceof THREE.InstancedBufferGeometry ) {
if ( geometry.maxInstancedCount > 0 ) {
renderer.renderInstances( geometry, drawStart, drawCount );
}
} else {
renderer.render( drawStart, drawCount );
}
};
function setupVertexAttributes( material, program, geometry, startIndex ) {
var extension;
if ( geometry instanceof THREE.InstancedBufferGeometry ) {
extension = extensions.get( 'ANGLE_instanced_arrays' );
if ( extension === null ) {
console.error( 'THREE.WebGLRenderer.setupVertexAttributes: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
return;
}
}
if ( startIndex === undefined ) startIndex = 0;
state.initAttributes();
var geometryAttributes = geometry.attributes;
var programAttributes = program.getAttributes();
var materialDefaultAttributeValues = material.defaultAttributeValues;
for ( var name in programAttributes ) {
var programAttribute = programAttributes[ name ];
if ( programAttribute >= 0 ) {
var geometryAttribute = geometryAttributes[ name ];
if ( geometryAttribute !== undefined ) {
var type = _gl.FLOAT;
var array = geometryAttribute.array;
var normalized = geometryAttribute.normalized;
if ( array instanceof Float32Array ) {
type = _gl.FLOAT;
} else if ( array instanceof Float64Array ) {
console.warn("Unsupported data buffer format: Float64Array");
} else if ( array instanceof Uint16Array ) {
type = _gl.UNSIGNED_SHORT;
} else if ( array instanceof Int16Array ) {
type = _gl.SHORT;
} else if ( array instanceof Uint32Array ) {
type = _gl.UNSIGNED_INT;
} else if ( array instanceof Int32Array ) {
type = _gl.INT;
} else if ( array instanceof Int8Array ) {
type = _gl.BYTE;
} else if ( array instanceof Uint8Array ) {
type = _gl.UNSIGNED_BYTE;
}
var size = geometryAttribute.itemSize;
var buffer = objects.getAttributeBuffer( geometryAttribute );
if ( geometryAttribute instanceof THREE.InterleavedBufferAttribute ) {
var data = geometryAttribute.data;
var stride = data.stride;
var offset = geometryAttribute.offset;
if ( data instanceof THREE.InstancedInterleavedBuffer ) {
state.enableAttributeAndDivisor( programAttribute, data.meshPerAttribute, extension );
if ( geometry.maxInstancedCount === undefined ) {
geometry.maxInstancedCount = data.meshPerAttribute * data.count;
}
} else {
state.enableAttribute( programAttribute );
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, buffer );
_gl.vertexAttribPointer( programAttribute, size, type, normalized, stride * data.array.BYTES_PER_ELEMENT, ( startIndex * stride + offset ) * data.array.BYTES_PER_ELEMENT );
} else {
if ( geometryAttribute instanceof THREE.InstancedBufferAttribute ) {
state.enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute, extension );
if ( geometry.maxInstancedCount === undefined ) {
geometry.maxInstancedCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;
}
} else {
state.enableAttribute( programAttribute );
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, buffer );
_gl.vertexAttribPointer( programAttribute, size, type, normalized, 0, startIndex * size * geometryAttribute.array.BYTES_PER_ELEMENT );
}
} else if ( materialDefaultAttributeValues !== undefined ) {
var value = materialDefaultAttributeValues[ name ];
if ( value !== undefined ) {
switch ( value.length ) {
case 2:
_gl.vertexAttrib2fv( programAttribute, value );
break;
case 3:
_gl.vertexAttrib3fv( programAttribute, value );
break;
case 4:
_gl.vertexAttrib4fv( programAttribute, value );
break;
default:
_gl.vertexAttrib1fv( programAttribute, value );
}
}
}
}
}
state.disableUnusedAttributes();
}
// Sorting
function absNumericalSort( a, b ) {
return Math.abs( b[ 0 ] ) - Math.abs( a[ 0 ] );
}
function painterSortStable ( a, b ) {
if ( a.object.renderOrder !== b.object.renderOrder ) {
return a.object.renderOrder - b.object.renderOrder;
} else if ( a.material.id !== b.material.id ) {
return a.material.id - b.material.id;
} else if ( a.z !== b.z ) {
return a.z - b.z;
} else {
return a.id - b.id;
}
}
function reversePainterSortStable ( a, b ) {
if ( a.object.renderOrder !== b.object.renderOrder ) {
return a.object.renderOrder - b.object.renderOrder;
} if ( a.z !== b.z ) {
return b.z - a.z;
} else {
return a.id - b.id;
}
}
// Rendering
this.render = function ( scene, camera, renderTarget, forceClear ) {
if ( camera instanceof THREE.Camera === false ) {
console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' );
return;
}
var fog = scene.fog;
// reset caching for this frame
_currentGeometryProgram = '';
_currentMaterialId = - 1;
_currentCamera = null;
// update scene graph
if ( scene.autoUpdate === true ) scene.updateMatrixWorld();
// update camera matrices and frustum
if ( camera.parent === null ) camera.updateMatrixWorld();
camera.matrixWorldInverse.getInverse( camera.matrixWorld );
_projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
_frustum.setFromMatrix( _projScreenMatrix );
lights.length = 0;
opaqueObjectsLastIndex = - 1;
transparentObjectsLastIndex = - 1;
sprites.length = 0;
lensFlares.length = 0;
setupGlobalClippingPlanes( this.clippingPlanes, camera );
projectObject( scene, camera );
opaqueObjects.length = opaqueObjectsLastIndex + 1;
transparentObjects.length = transparentObjectsLastIndex + 1;
if ( _this.sortObjects === true ) {
opaqueObjects.sort( painterSortStable );
transparentObjects.sort( reversePainterSortStable );
}
//
if ( _clippingEnabled ) {
_clipRenderingShadows = true;
setupClippingPlanes( null );
}
setupShadows( lights );
shadowMap.render( scene, camera );
setupLights( lights, camera );
if ( _clippingEnabled ) {
_clipRenderingShadows = false;
resetGlobalClippingState();
}
//
_infoRender.calls = 0;
_infoRender.vertices = 0;
_infoRender.faces = 0;
_infoRender.points = 0;
if ( renderTarget === undefined ) {
renderTarget = null;
}
this.setRenderTarget( renderTarget );
if ( this.autoClear || forceClear ) {
this.clear( this.autoClearColor, this.autoClearDepth, this.autoClearStencil );
}
//
if ( scene.overrideMaterial ) {
var overrideMaterial = scene.overrideMaterial;
renderObjects( opaqueObjects, camera, fog, overrideMaterial );
renderObjects( transparentObjects, camera, fog, overrideMaterial );
} else {
// opaque pass (front-to-back order)
state.setBlending( THREE.NoBlending );
renderObjects( opaqueObjects, camera, fog );
// transparent pass (back-to-front order)
renderObjects( transparentObjects, camera, fog );
}
// custom render plugins (post pass)
spritePlugin.render( scene, camera );
lensFlarePlugin.render( scene, camera, _currentViewport );
// Generate mipmap if we're using any kind of mipmap filtering
if ( renderTarget ) {
var texture = renderTarget.texture;
if ( texture.generateMipmaps && isPowerOfTwo( renderTarget ) &&
texture.minFilter !== THREE.NearestFilter &&
texture.minFilter !== THREE.LinearFilter ) {
updateRenderTargetMipmap( renderTarget );
}
}
// Ensure depth buffer writing is enabled so it can be cleared on next render
state.setDepthTest( true );
state.setDepthWrite( true );
state.setColorWrite( true );
// _gl.finish();
};
function pushRenderItem( object, geometry, material, z, group ) {
var array, index;
// allocate the next position in the appropriate array
if ( material.transparent ) {
array = transparentObjects;
index = ++ transparentObjectsLastIndex;
} else {
array = opaqueObjects;
index = ++ opaqueObjectsLastIndex;
}
// recycle existing render item or grow the array
var renderItem = array[ index ];
if ( renderItem !== undefined ) {
renderItem.id = object.id;
renderItem.object = object;
renderItem.geometry = geometry;
renderItem.material = material;
renderItem.z = _vector3.z;
renderItem.group = group;
} else {
renderItem = {
id: object.id,
object: object,
geometry: geometry,
material: material,
z: _vector3.z,
group: group
};
// assert( index === array.length );
array.push( renderItem );
}
}
function isObjectViewable( object ) {
var geometry = object.geometry;
if ( geometry.boundingSphere === null )
geometry.computeBoundingSphere();
var sphere = _sphere.
copy( geometry.boundingSphere ).
applyMatrix4( object.matrixWorld );
if ( ! _frustum.intersectsSphere( sphere ) ) return false;
if ( _numClippingPlanes === 0 ) return true;
var planes = _this.clippingPlanes,
center = sphere.center,
negRad = - sphere.radius,
i = 0;
do {
// out when deeper than radius in the negative halfspace
if ( planes[ i ].distanceToPoint( center ) < negRad ) return false;
} while ( ++ i !== _numClippingPlanes );
return true;
}
function projectObject( object, camera ) {
if ( object.visible === false ) return;
if ( object.layers.test( camera.layers ) ) {
if ( object instanceof THREE.Light ) {
lights.push( object );
} else if ( object instanceof THREE.Sprite ) {
if ( object.frustumCulled === false || isObjectViewable( object ) === true ) {
sprites.push( object );
}
} else if ( object instanceof THREE.LensFlare ) {
lensFlares.push( object );
} else if ( object instanceof THREE.ImmediateRenderObject ) {
if ( _this.sortObjects === true ) {
_vector3.setFromMatrixPosition( object.matrixWorld );
_vector3.applyProjection( _projScreenMatrix );
}
pushRenderItem( object, null, object.material, _vector3.z, null );
} else if ( object instanceof THREE.Mesh || object instanceof THREE.Line || object instanceof THREE.Points ) {
if ( object instanceof THREE.SkinnedMesh ) {
object.skeleton.update();
}
if ( object.frustumCulled === false || isObjectViewable( object ) === true ) {
var material = object.material;
if ( material.visible === true ) {
if ( _this.sortObjects === true ) {
_vector3.setFromMatrixPosition( object.matrixWorld );
_vector3.applyProjection( _projScreenMatrix );
}
var geometry = objects.update( object );
if ( material instanceof THREE.MultiMaterial ) {
var groups = geometry.groups;
var materials = material.materials;
for ( var i = 0, l = groups.length; i < l; i ++ ) {
var group = groups[ i ];
var groupMaterial = materials[ group.materialIndex ];
if ( groupMaterial.visible === true ) {
pushRenderItem( object, geometry, groupMaterial, _vector3.z, group );
}
}
} else {
pushRenderItem( object, geometry, material, _vector3.z, null );
}
}
}
}
}
var children = object.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
projectObject( children[ i ], camera );
}
}
function renderObjects( renderList, camera, fog, overrideMaterial ) {
for ( var i = 0, l = renderList.length; i < l; i ++ ) {
var renderItem = renderList[ i ];
var object = renderItem.object;
var geometry = renderItem.geometry;
var material = overrideMaterial === undefined ? renderItem.material : overrideMaterial;
var group = renderItem.group;
object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld );
object.normalMatrix.getNormalMatrix( object.modelViewMatrix );
if ( object instanceof THREE.ImmediateRenderObject ) {
setMaterial( material );
var program = setProgram( camera, fog, material, object );
_currentGeometryProgram = '';
object.render( function ( object ) {
_this.renderBufferImmediate( object, program, material );
} );
} else {
_this.renderBufferDirect( camera, fog, geometry, material, object, group );
}
}
}
function initMaterial( material, fog, object ) {
var materialProperties = properties.get( material );
var parameters = programCache.getParameters(
material, _lights, fog, _numClippingPlanes, object );
var code = programCache.getProgramCode( material, parameters );
var program = materialProperties.program;
var programChange = true;
if ( program === undefined ) {
// new material
material.addEventListener( 'dispose', onMaterialDispose );
} else if ( program.code !== code ) {
// changed glsl or parameters
releaseMaterialProgramReference( material );
} else if ( parameters.shaderID !== undefined ) {
// same glsl and uniform list
return;
} else {
// only rebuild uniform list
programChange = false;
}
if ( programChange ) {
if ( parameters.shaderID ) {
var shader = THREE.ShaderLib[ parameters.shaderID ];
materialProperties.__webglShader = {
name: material.type,
uniforms: THREE.UniformsUtils.clone( shader.uniforms ),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader
};
} else {
materialProperties.__webglShader = {
name: material.type,
uniforms: material.uniforms,
vertexShader: material.vertexShader,
fragmentShader: material.fragmentShader
};
}
material.__webglShader = materialProperties.__webglShader;
program = programCache.acquireProgram( material, parameters, code );
materialProperties.program = program;
material.program = program;
}
var attributes = program.getAttributes();
if ( material.morphTargets ) {
material.numSupportedMorphTargets = 0;
for ( var i = 0; i < _this.maxMorphTargets; i ++ ) {
if ( attributes[ 'morphTarget' + i ] >= 0 ) {
material.numSupportedMorphTargets ++;
}
}
}
if ( material.morphNormals ) {
material.numSupportedMorphNormals = 0;
for ( var i = 0; i < _this.maxMorphNormals; i ++ ) {
if ( attributes[ 'morphNormal' + i ] >= 0 ) {
material.numSupportedMorphNormals ++;
}
}
}
var uniforms = materialProperties.__webglShader.uniforms;
if ( ! ( material instanceof THREE.ShaderMaterial ) &&
! ( material instanceof THREE.RawShaderMaterial ) ||
material.clipping === true ) {
materialProperties.numClippingPlanes = _numClippingPlanes;
uniforms.clippingPlanes = _clippingPlanesUniform;
}
if ( material instanceof THREE.MeshPhongMaterial ||
material instanceof THREE.MeshLambertMaterial ||
material instanceof THREE.MeshStandardMaterial ||
material.lights ) {
// store the light setup it was created for
materialProperties.lightsHash = _lights.hash;
// wire up the material to this renderer's lighting state
uniforms.ambientLightColor.value = _lights.ambient;
uniforms.directionalLights.value = _lights.directional;
uniforms.spotLights.value = _lights.spot;
uniforms.pointLights.value = _lights.point;
uniforms.hemisphereLights.value = _lights.hemi;
uniforms.directionalShadowMap.value = _lights.directionalShadowMap;
uniforms.directionalShadowMatrix.value = _lights.directionalShadowMatrix;
uniforms.spotShadowMap.value = _lights.spotShadowMap;
uniforms.spotShadowMatrix.value = _lights.spotShadowMatrix;
uniforms.pointShadowMap.value = _lights.pointShadowMap;
uniforms.pointShadowMatrix.value = _lights.pointShadowMatrix;
}
var progUniforms = materialProperties.program.getUniforms(),
uniformsList =
THREE.WebGLUniforms.seqWithValue( progUniforms.seq, uniforms );
materialProperties.uniformsList = uniformsList;
materialProperties.dynamicUniforms =
THREE.WebGLUniforms.splitDynamic( uniformsList, uniforms );
}
function setMaterial( material ) {
setMaterialFaces( material );
if ( material.transparent === true ) {
state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha );
} else {
state.setBlending( THREE.NoBlending );
}
state.setDepthFunc( material.depthFunc );
state.setDepthTest( material.depthTest );
state.setDepthWrite( material.depthWrite );
state.setColorWrite( material.colorWrite );
state.setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits );
}
function setMaterialFaces( material ) {
material.side !== THREE.DoubleSide ? state.enable( _gl.CULL_FACE ) : state.disable( _gl.CULL_FACE );
state.setFlipSided( material.side === THREE.BackSide );
}
function setProgram( camera, fog, material, object ) {
_usedTextureUnits = 0;
var materialProperties = properties.get( material );
if ( _clippingEnabled ) {
if ( _localClippingEnabled || camera !== _currentCamera ) {
var useCache =
camera === _currentCamera &&
material.id === _currentMaterialId;
// we might want to call this function with some ClippingGroup
// object instead of the material, once it becomes feasible
// (#8465, #8379)
setClippingState(
material.clippingPlanes, material.clipShadows,
camera, materialProperties, useCache );
}
if ( materialProperties.numClippingPlanes !== undefined &&
materialProperties.numClippingPlanes !== _numClippingPlanes ) {
material.needsUpdate = true;
}
}
if ( materialProperties.program === undefined ) {
material.needsUpdate = true;
}
if ( materialProperties.lightsHash !== undefined &&
materialProperties.lightsHash !== _lights.hash ) {
material.needsUpdate = true;
}
if ( material.needsUpdate ) {
initMaterial( material, fog, object );
material.needsUpdate = false;
}
var refreshProgram = false;
var refreshMaterial = false;
var refreshLights = false;
var program = materialProperties.program,
p_uniforms = program.getUniforms(),
m_uniforms = materialProperties.__webglShader.uniforms;
if ( program.id !== _currentProgram ) {
_gl.useProgram( program.program );
_currentProgram = program.id;
refreshProgram = true;
refreshMaterial = true;
refreshLights = true;
}
if ( material.id !== _currentMaterialId ) {
_currentMaterialId = material.id;
refreshMaterial = true;
}
if ( refreshProgram || camera !== _currentCamera ) {
p_uniforms.set( _gl, camera, 'projectionMatrix' );
if ( capabilities.logarithmicDepthBuffer ) {
p_uniforms.setValue( _gl, 'logDepthBufFC',
2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) );
}
if ( camera !== _currentCamera ) {
_currentCamera = camera;
// lighting uniforms depend on the camera so enforce an update
// now, in case this material supports lights - or later, when
// the next material that does gets activated:
refreshMaterial = true; // set to true on material change
refreshLights = true; // remains set until update done
}
// load material specific uniforms
// (shader material also gets them for the sake of genericity)
if ( material instanceof THREE.ShaderMaterial ||
material instanceof THREE.MeshPhongMaterial ||
material instanceof THREE.MeshStandardMaterial ||
material.envMap ) {
var uCamPos = p_uniforms.map.cameraPosition;
if ( uCamPos !== undefined ) {
uCamPos.setValue( _gl,
_vector3.setFromMatrixPosition( camera.matrixWorld ) );
}
}
if ( material instanceof THREE.MeshPhongMaterial ||
material instanceof THREE.MeshLambertMaterial ||
material instanceof THREE.MeshBasicMaterial ||
material instanceof THREE.MeshStandardMaterial ||
material instanceof THREE.ShaderMaterial ||
material.skinning ) {
p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse );
}
p_uniforms.set( _gl, _this, 'toneMappingExposure' );
p_uniforms.set( _gl, _this, 'toneMappingWhitePoint' );
}
// skinning uniforms must be set even if material didn't change
// auto-setting of texture unit for bone texture must go before other textures
// not sure why, but otherwise weird things happen
if ( material.skinning ) {
p_uniforms.setOptional( _gl, object, 'bindMatrix' );
p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' );
var skeleton = object.skeleton;
if ( skeleton ) {
if ( capabilities.floatVertexTextures && skeleton.useVertexTexture ) {
p_uniforms.set( _gl, skeleton, 'boneTexture' );
p_uniforms.set( _gl, skeleton, 'boneTextureWidth' );
p_uniforms.set( _gl, skeleton, 'boneTextureHeight' );
} else {
p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' );
}
}
}
if ( refreshMaterial ) {
if ( material instanceof THREE.MeshPhongMaterial ||
material instanceof THREE.MeshLambertMaterial ||
material instanceof THREE.MeshStandardMaterial ||
material.lights ) {
// the current material requires lighting info
// note: all lighting uniforms are always set correctly
// they simply reference the renderer's state for their
// values
//
// use the current material's .needsUpdate flags to set
// the GL state when required
markUniformsLightsNeedsUpdate( m_uniforms, refreshLights );
}
// refresh uniforms common to several materials
if ( fog && material.fog ) {
refreshUniformsFog( m_uniforms, fog );
}
if ( material instanceof THREE.MeshBasicMaterial ||
material instanceof THREE.MeshLambertMaterial ||
material instanceof THREE.MeshPhongMaterial ||
material instanceof THREE.MeshStandardMaterial ||
material instanceof THREE.MeshDepthMaterial ) {
refreshUniformsCommon( m_uniforms, material );
}
// refresh single material specific uniforms
if ( material instanceof THREE.LineBasicMaterial ) {
refreshUniformsLine( m_uniforms, material );
} else if ( material instanceof THREE.LineDashedMaterial ) {
refreshUniformsLine( m_uniforms, material );
refreshUniformsDash( m_uniforms, material );
} else if ( material instanceof THREE.PointsMaterial ) {
refreshUniformsPoints( m_uniforms, material );
} else if ( material instanceof THREE.MeshLambertMaterial ) {
refreshUniformsLambert( m_uniforms, material );
} else if ( material instanceof THREE.MeshPhongMaterial ) {
refreshUniformsPhong( m_uniforms, material );
} else if ( material instanceof THREE.MeshPhysicalMaterial ) {
refreshUniformsPhysical( m_uniforms, material );
} else if ( material instanceof THREE.MeshStandardMaterial ) {
refreshUniformsStandard( m_uniforms, material );
} else if ( material instanceof THREE.MeshDepthMaterial ) {
if ( material.displacementMap ) {
m_uniforms.displacementMap.value = material.displacementMap;
m_uniforms.displacementScale.value = material.displacementScale;
m_uniforms.displacementBias.value = material.displacementBias;
}
} else if ( material instanceof THREE.MeshNormalMaterial ) {
m_uniforms.opacity.value = material.opacity;
}
THREE.WebGLUniforms.upload(
_gl, materialProperties.uniformsList, m_uniforms, _this );
}
// common matrices
p_uniforms.set( _gl, object, 'modelViewMatrix' );
p_uniforms.set( _gl, object, 'normalMatrix' );
p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld );
// dynamic uniforms
var dynUniforms = materialProperties.dynamicUniforms;
if ( dynUniforms !== null ) {
THREE.WebGLUniforms.evalDynamic(
dynUniforms, m_uniforms, object, camera );
THREE.WebGLUniforms.upload( _gl, dynUniforms, m_uniforms, _this );
}
return program;
}
// Uniforms (refresh uniforms objects)
function refreshUniformsCommon ( uniforms, material ) {
uniforms.opacity.value = material.opacity;
uniforms.diffuse.value = material.color;
if ( material.emissive ) {
uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity );
}
uniforms.map.value = material.map;
uniforms.specularMap.value = material.specularMap;
uniforms.alphaMap.value = material.alphaMap;
if ( material.aoMap ) {
uniforms.aoMap.value = material.aoMap;
uniforms.aoMapIntensity.value = material.aoMapIntensity;
}
// uv repeat and offset setting priorities
// 1. color map
// 2. specular map
// 3. normal map
// 4. bump map
// 5. alpha map
// 6. emissive map
var uvScaleMap;
if ( material.map ) {
uvScaleMap = material.map;
} else if ( material.specularMap ) {
uvScaleMap = material.specularMap;
} else if ( material.displacementMap ) {
uvScaleMap = material.displacementMap;
} else if ( material.normalMap ) {
uvScaleMap = material.normalMap;
} else if ( material.bumpMap ) {
uvScaleMap = material.bumpMap;
} else if ( material.roughnessMap ) {
uvScaleMap = material.roughnessMap;
} else if ( material.metalnessMap ) {
uvScaleMap = material.metalnessMap;
} else if ( material.alphaMap ) {
uvScaleMap = material.alphaMap;
} else if ( material.emissiveMap ) {
uvScaleMap = material.emissiveMap;
}
if ( uvScaleMap !== undefined ) {
if ( uvScaleMap instanceof THREE.WebGLRenderTarget ) {
uvScaleMap = uvScaleMap.texture;
}
var offset = uvScaleMap.offset;
var repeat = uvScaleMap.repeat;
uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y );
}
uniforms.envMap.value = material.envMap;
uniforms.flipEnvMap.value = ( material.envMap instanceof THREE.WebGLRenderTargetCube ) ? 1 : - 1;
uniforms.reflectivity.value = material.reflectivity;
uniforms.refractionRatio.value = material.refractionRatio;
}
function refreshUniformsLine ( uniforms, material ) {
uniforms.diffuse.value = material.color;
uniforms.opacity.value = material.opacity;
}
function refreshUniformsDash ( uniforms, material ) {
uniforms.dashSize.value = material.dashSize;
uniforms.totalSize.value = material.dashSize + material.gapSize;
uniforms.scale.value = material.scale;
}
function refreshUniformsPoints ( uniforms, material ) {
uniforms.diffuse.value = material.color;
uniforms.opacity.value = material.opacity;
uniforms.size.value = material.size * _pixelRatio;
uniforms.scale.value = _canvas.clientHeight * 0.5;
uniforms.map.value = material.map;
if ( material.map !== null ) {
var offset = material.map.offset;
var repeat = material.map.repeat;
uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y );
}
}
function refreshUniformsFog ( uniforms, fog ) {
uniforms.fogColor.value = fog.color;
if ( fog instanceof THREE.Fog ) {
uniforms.fogNear.value = fog.near;
uniforms.fogFar.value = fog.far;
} else if ( fog instanceof THREE.FogExp2 ) {
uniforms.fogDensity.value = fog.density;
}
}
function refreshUniformsLambert ( uniforms, material ) {
if ( material.lightMap ) {
uniforms.lightMap.value = material.lightMap;
uniforms.lightMapIntensity.value = material.lightMapIntensity;
}
if ( material.emissiveMap ) {
uniforms.emissiveMap.value = material.emissiveMap;
}
}
function refreshUniformsPhong ( uniforms, material ) {
uniforms.specular.value = material.specular;
uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 )
if ( material.lightMap ) {
uniforms.lightMap.value = material.lightMap;
uniforms.lightMapIntensity.value = material.lightMapIntensity;
}
if ( material.emissiveMap ) {
uniforms.emissiveMap.value = material.emissiveMap;
}
if ( material.bumpMap ) {
uniforms.bumpMap.value = material.bumpMap;
uniforms.bumpScale.value = material.bumpScale;
}
if ( material.normalMap ) {
uniforms.normalMap.value = material.normalMap;
uniforms.normalScale.value.copy( material.normalScale );
}
if ( material.displacementMap ) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
}
function refreshUniformsStandard ( uniforms, material ) {
uniforms.roughness.value = material.roughness;
uniforms.metalness.value = material.metalness;
if ( material.roughnessMap ) {
uniforms.roughnessMap.value = material.roughnessMap;
}
if ( material.metalnessMap ) {
uniforms.metalnessMap.value = material.metalnessMap;
}
if ( material.lightMap ) {
uniforms.lightMap.value = material.lightMap;
uniforms.lightMapIntensity.value = material.lightMapIntensity;
}
if ( material.emissiveMap ) {
uniforms.emissiveMap.value = material.emissiveMap;
}
if ( material.bumpMap ) {
uniforms.bumpMap.value = material.bumpMap;
uniforms.bumpScale.value = material.bumpScale;
}
if ( material.normalMap ) {
uniforms.normalMap.value = material.normalMap;
uniforms.normalScale.value.copy( material.normalScale );
}
if ( material.displacementMap ) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
if ( material.envMap ) {
//uniforms.envMap.value = material.envMap; // part of uniforms common
uniforms.envMapIntensity.value = material.envMapIntensity;
}
}
function refreshUniformsPhysical ( uniforms, material ) {
refreshUniformsStandard( uniforms, material );
}
// If uniforms are marked as clean, they don't need to be loaded to the GPU.
function markUniformsLightsNeedsUpdate ( uniforms, value ) {
uniforms.ambientLightColor.needsUpdate = value;
uniforms.directionalLights.needsUpdate = value;
uniforms.pointLights.needsUpdate = value;
uniforms.spotLights.needsUpdate = value;
uniforms.hemisphereLights.needsUpdate = value;
}
// Lighting
function setupShadows ( lights ) {
var lightShadowsLength = 0;
for ( var i = 0, l = lights.length; i < l; i ++ ) {
var light = lights[ i ];
if ( light.castShadow ) {
_lights.shadows[ lightShadowsLength ++ ] = light;
}
}
_lights.shadows.length = lightShadowsLength;
}
function setupLights ( lights, camera ) {
var l, ll, light,
r = 0, g = 0, b = 0,
color,
intensity,
distance,
viewMatrix = camera.matrixWorldInverse,
directionalLength = 0,
pointLength = 0,
spotLength = 0,
hemiLength = 0;
for ( l = 0, ll = lights.length; l < ll; l ++ ) {
light = lights[ l ];
color = light.color;
intensity = light.intensity;
distance = light.distance;
if ( light instanceof THREE.AmbientLight ) {
r += color.r * intensity;
g += color.g * intensity;
b += color.b * intensity;
} else if ( light instanceof THREE.DirectionalLight ) {
var uniforms = lightCache.get( light );
uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
uniforms.direction.setFromMatrixPosition( light.matrixWorld );
_vector3.setFromMatrixPosition( light.target.matrixWorld );
uniforms.direction.sub( _vector3 );
uniforms.direction.transformDirection( viewMatrix );
uniforms.shadow = light.castShadow;
if ( light.castShadow ) {
uniforms.shadowBias = light.shadow.bias;
uniforms.shadowRadius = light.shadow.radius;
uniforms.shadowMapSize = light.shadow.mapSize;
}
_lights.directionalShadowMap[ directionalLength ] = light.shadow.map;
_lights.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix;
_lights.directional[ directionalLength ++ ] = uniforms;
} else if ( light instanceof THREE.SpotLight ) {
var uniforms = lightCache.get( light );
uniforms.position.setFromMatrixPosition( light.matrixWorld );
uniforms.position.applyMatrix4( viewMatrix );
uniforms.color.copy( color ).multiplyScalar( intensity );
uniforms.distance = distance;
uniforms.direction.setFromMatrixPosition( light.matrixWorld );
_vector3.setFromMatrixPosition( light.target.matrixWorld );
uniforms.direction.sub( _vector3 );
uniforms.direction.transformDirection( viewMatrix );
uniforms.coneCos = Math.cos( light.angle );
uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) );
uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay;
uniforms.shadow = light.castShadow;
if ( light.castShadow ) {
uniforms.shadowBias = light.shadow.bias;
uniforms.shadowRadius = light.shadow.radius;
uniforms.shadowMapSize = light.shadow.mapSize;
}
_lights.spotShadowMap[ spotLength ] = light.shadow.map;
_lights.spotShadowMatrix[ spotLength ] = light.shadow.matrix;
_lights.spot[ spotLength ++ ] = uniforms;
} else if ( light instanceof THREE.PointLight ) {
var uniforms = lightCache.get( light );
uniforms.position.setFromMatrixPosition( light.matrixWorld );
uniforms.position.applyMatrix4( viewMatrix );
uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
uniforms.distance = light.distance;
uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay;
uniforms.shadow = light.castShadow;
if ( light.castShadow ) {
uniforms.shadowBias = light.shadow.bias;
uniforms.shadowRadius = light.shadow.radius;
uniforms.shadowMapSize = light.shadow.mapSize;
}
_lights.pointShadowMap[ pointLength ] = light.shadow.map;
if ( _lights.pointShadowMatrix[ pointLength ] === undefined ) {
_lights.pointShadowMatrix[ pointLength ] = new THREE.Matrix4();
}
// for point lights we set the shadow matrix to be a translation-only matrix
// equal to inverse of the light's position
_vector3.setFromMatrixPosition( light.matrixWorld ).negate();
_lights.pointShadowMatrix[ pointLength ].identity().setPosition( _vector3 );
_lights.point[ pointLength ++ ] = uniforms;
} else if ( light instanceof THREE.HemisphereLight ) {
var uniforms = lightCache.get( light );
uniforms.direction.setFromMatrixPosition( light.matrixWorld );
uniforms.direction.transformDirection( viewMatrix );
uniforms.direction.normalize();
uniforms.skyColor.copy( light.color ).multiplyScalar( intensity );
uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity );
_lights.hemi[ hemiLength ++ ] = uniforms;
}
}
_lights.ambient[ 0 ] = r;
_lights.ambient[ 1 ] = g;
_lights.ambient[ 2 ] = b;
_lights.directional.length = directionalLength;
_lights.spot.length = spotLength;
_lights.point.length = pointLength;
_lights.hemi.length = hemiLength;
_lights.hash = directionalLength + ',' + pointLength + ',' + spotLength + ',' + hemiLength + ',' + _lights.shadows.length;
}
// Clipping
function setupGlobalClippingPlanes( planes, camera ) {
_clippingEnabled =
_this.clippingPlanes.length !== 0 ||
_this.localClippingEnabled ||
// enable state of previous frame - the clipping code has to
// run another frame in order to reset the state:
_numGlobalClippingPlanes !== 0 ||
_localClippingEnabled;
_localClippingEnabled = _this.localClippingEnabled;
_globalClippingState = setupClippingPlanes( planes, camera, 0 );
_numGlobalClippingPlanes = planes !== null ? planes.length : 0;
}
function setupClippingPlanes( planes, camera, dstOffset, skipTransform ) {
var nPlanes = planes !== null ? planes.length : 0,
dstArray = null;
if ( nPlanes !== 0 ) {
dstArray = _clippingPlanesUniform.value;
if ( skipTransform !== true || dstArray === null ) {
var flatSize = dstOffset + nPlanes * 4,
viewMatrix = camera.matrixWorldInverse,
viewNormalMatrix = _matrix3.getNormalMatrix( viewMatrix );
if ( dstArray === null || dstArray.length < flatSize ) {
dstArray = new Float32Array( flatSize );
}
for ( var i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) {
var plane = _plane.copy( planes[ i ] ).
applyMatrix4( viewMatrix, viewNormalMatrix );
plane.normal.toArray( dstArray, i4 );
dstArray[ i4 + 3 ] = plane.constant;
}
}
_clippingPlanesUniform.value = dstArray;
_clippingPlanesUniform.needsUpdate = true;
}
_numClippingPlanes = nPlanes;
return dstArray;
}
function resetGlobalClippingState() {
if ( _clippingPlanesUniform.value !== _globalClippingState ) {
_clippingPlanesUniform.value = _globalClippingState;
_clippingPlanesUniform.needsUpdate = _numGlobalClippingPlanes > 0;
}
_numClippingPlanes = _numGlobalClippingPlanes;
}
function setClippingState( planes, clipShadows, camera, cache, fromCache ) {
if ( ! _localClippingEnabled ||
planes === null || planes.length === 0 ||
_clipRenderingShadows && ! clipShadows ) {
// there's no local clipping
if ( _clipRenderingShadows ) {
// there's no global clipping
setupClippingPlanes( null );
} else {
resetGlobalClippingState();
}
} else {
var nGlobal = _clipRenderingShadows ? 0 : _numGlobalClippingPlanes,
lGlobal = nGlobal * 4,
dstArray = cache.clippingState || null;
_clippingPlanesUniform.value = dstArray; // ensure unique state
dstArray = setupClippingPlanes(
planes, camera, lGlobal, fromCache );
for ( var i = 0; i !== lGlobal; ++ i ) {
dstArray[ i ] = _globalClippingState[ i ];
}
cache.clippingState = dstArray;
_numClippingPlanes += nGlobal;
}
}
// GL state setting
this.setFaceCulling = function ( cullFace, frontFaceDirection ) {
if ( cullFace === THREE.CullFaceNone ) {
state.disable( _gl.CULL_FACE );
} else {
if ( frontFaceDirection === THREE.FrontFaceDirectionCW ) {
_gl.frontFace( _gl.CW );
} else {
_gl.frontFace( _gl.CCW );
}
if ( cullFace === THREE.CullFaceBack ) {
_gl.cullFace( _gl.BACK );
} else if ( cullFace === THREE.CullFaceFront ) {
_gl.cullFace( _gl.FRONT );
} else {
_gl.cullFace( _gl.FRONT_AND_BACK );
}
state.enable( _gl.CULL_FACE );
}
};
// Textures
function allocTextureUnit() {
var textureUnit = _usedTextureUnits;
if ( textureUnit >= capabilities.maxTextures ) {
console.warn( 'WebGLRenderer: trying to use ' + textureUnit + ' texture units while this GPU supports only ' + capabilities.maxTextures );
}
_usedTextureUnits += 1;
return textureUnit;
}
function setTextureParameters ( textureType, texture, isPowerOfTwoImage ) {
var extension;
if ( isPowerOfTwoImage ) {
_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, paramThreeToGL( texture.wrapS ) );
_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, paramThreeToGL( texture.wrapT ) );
_gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, paramThreeToGL( texture.magFilter ) );
_gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, paramThreeToGL( texture.minFilter ) );
} else {
_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE );
_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE );
if ( texture.wrapS !== THREE.ClampToEdgeWrapping || texture.wrapT !== THREE.ClampToEdgeWrapping ) {
console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.', texture );
}
_gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) );
_gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) );
if ( texture.minFilter !== THREE.NearestFilter && texture.minFilter !== THREE.LinearFilter ) {
console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.', texture );
}
}
extension = extensions.get( 'EXT_texture_filter_anisotropic' );
if ( extension ) {
if ( texture.type === THREE.FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) return;
if ( texture.type === THREE.HalfFloatType && extensions.get( 'OES_texture_half_float_linear' ) === null ) return;
if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) {
_gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, _this.getMaxAnisotropy() ) );
properties.get( texture ).__currentAnisotropy = texture.anisotropy;
}
}
}
function uploadTexture( textureProperties, texture, slot ) {
if ( textureProperties.__webglInit === undefined ) {
textureProperties.__webglInit = true;
texture.addEventListener( 'dispose', onTextureDispose );
textureProperties.__webglTexture = _gl.createTexture();
_infoMemory.textures ++;
}
state.activeTexture( _gl.TEXTURE0 + slot );
state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );
_gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY );
_gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha );
_gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment );
var image = clampToMaxSize( texture.image, capabilities.maxTextureSize );
if ( textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( image ) === false ) {
image = makePowerOfTwo( image );
}
var isPowerOfTwoImage = isPowerOfTwo( image ),
glFormat = paramThreeToGL( texture.format ),
glType = paramThreeToGL( texture.type );
setTextureParameters( _gl.TEXTURE_2D, texture, isPowerOfTwoImage );
var mipmap, mipmaps = texture.mipmaps;
if ( texture instanceof THREE.DepthTexture ) {
// populate depth texture with dummy data
var internalFormat = _gl.DEPTH_COMPONENT;
if ( texture.type === THREE.FloatType ) {
if ( !_isWebGL2 ) throw new Error('Float Depth Texture only supported in WebGL2.0');
internalFormat = _gl.DEPTH_COMPONENT32F;
} else if ( _isWebGL2 ) {
// WebGL 2.0 requires signed internalformat for glTexImage2D
internalFormat = _gl.DEPTH_COMPONENT16;
}
state.texImage2D( _gl.TEXTURE_2D, 0, internalFormat, image.width, image.height, 0, glFormat, glType, null );
} else if ( texture instanceof THREE.DataTexture ) {
// use manually created mipmaps if available
// if there are no manual mipmaps
// set 0 level mipmap and then use GL to generate other mipmap levels
if ( mipmaps.length > 0 && isPowerOfTwoImage ) {
for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {
mipmap = mipmaps[ i ];
state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
}
texture.generateMipmaps = false;
} else {
state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, image.width, image.height, 0, glFormat, glType, image.data );
}
} else if ( texture instanceof THREE.CompressedTexture ) {
for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {
mipmap = mipmaps[ i ];
if ( texture.format !== THREE.RGBAFormat && texture.format !== THREE.RGBFormat ) {
if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) {
state.compressedTexImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, mipmap.data );
} else {
console.warn( "THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()" );
}
} else {
state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
}
}
} else {
// regular Texture (image, video, canvas)
// use manually created mipmaps if available
// if there are no manual mipmaps
// set 0 level mipmap and then use GL to generate other mipmap levels
if ( mipmaps.length > 0 && isPowerOfTwoImage ) {
for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {
mipmap = mipmaps[ i ];
state.texImage2D( _gl.TEXTURE_2D, i, glFormat, glFormat, glType, mipmap );
}
texture.generateMipmaps = false;
} else {
state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, glFormat, glType, image );
}
}
if ( texture.generateMipmaps && isPowerOfTwoImage ) _gl.generateMipmap( _gl.TEXTURE_2D );
textureProperties.__version = texture.version;
if ( texture.onUpdate ) texture.onUpdate( texture );
}
function setTexture2D( texture, slot ) {
if ( texture instanceof THREE.WebGLRenderTarget ) texture = texture.texture;
var textureProperties = properties.get( texture );
if ( texture.version > 0 && textureProperties.__version !== texture.version ) {
var image = texture.image;
if ( image === undefined ) {
console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined', texture );
return;
}
if ( image.complete === false ) {
console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete', texture );
return;
}
uploadTexture( textureProperties, texture, slot );
return;
}
state.activeTexture( _gl.TEXTURE0 + slot );
state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );
}
function clampToMaxSize ( image, maxSize ) {
if ( image.width > maxSize || image.height > maxSize ) {
// Warning: Scaling through the canvas will only work with images that use
// premultiplied alpha.
var scale = maxSize / Math.max( image.width, image.height );
var canvas = document.createElement( 'canvas' );
canvas.width = Math.floor( image.width * scale );
canvas.height = Math.floor( image.height * scale );
var context = canvas.getContext( '2d' );
context.drawImage( image, 0, 0, image.width, image.height, 0, 0, canvas.width, canvas.height );
console.warn( 'THREE.WebGLRenderer: image is too big (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image );
return canvas;
}
return image;
}
function isPowerOfTwo( image ) {
return THREE.Math.isPowerOfTwo( image.width ) && THREE.Math.isPowerOfTwo( image.height );
}
function textureNeedsPowerOfTwo( texture ) {
if ( texture.wrapS !== THREE.ClampToEdgeWrapping || texture.wrapT !== THREE.ClampToEdgeWrapping ) return true;
if ( texture.minFilter !== THREE.NearestFilter && texture.minFilter !== THREE.LinearFilter ) return true;
return false;
}
function makePowerOfTwo( image ) {
if ( image instanceof HTMLImageElement || image instanceof HTMLCanvasElement ) {
var canvas = document.createElement( 'canvas' );
canvas.width = THREE.Math.nearestPowerOfTwo( image.width );
canvas.height = THREE.Math.nearestPowerOfTwo( image.height );
var context = canvas.getContext( '2d' );
context.drawImage( image, 0, 0, canvas.width, canvas.height );
console.warn( 'THREE.WebGLRenderer: image is not power of two (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image );
return canvas;
}
return image;
}
function setCubeTexture ( texture, slot ) {
var textureProperties = properties.get( texture );
if ( texture.image.length === 6 ) {
if ( texture.version > 0 && textureProperties.__version !== texture.version ) {
if ( ! textureProperties.__image__webglTextureCube ) {
texture.addEventListener( 'dispose', onTextureDispose );
textureProperties.__image__webglTextureCube = _gl.createTexture();
_infoMemory.textures ++;
}
state.activeTexture( _gl.TEXTURE0 + slot );
state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube );
_gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY );
var isCompressed = texture instanceof THREE.CompressedTexture;
var isDataTexture = texture.image[ 0 ] instanceof THREE.DataTexture;
var cubeImage = [];
for ( var i = 0; i < 6; i ++ ) {
if ( _this.autoScaleCubemaps && ! isCompressed && ! isDataTexture ) {
cubeImage[ i ] = clampToMaxSize( texture.image[ i ], capabilities.maxCubemapSize );
} else {
cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ];
}
}
var image = cubeImage[ 0 ],
isPowerOfTwoImage = isPowerOfTwo( image ),
glFormat = paramThreeToGL( texture.format ),
glType = paramThreeToGL( texture.type );
setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, isPowerOfTwoImage );
for ( var i = 0; i < 6; i ++ ) {
if ( ! isCompressed ) {
if ( isDataTexture ) {
state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data );
} else {
state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, glFormat, glType, cubeImage[ i ] );
}
} else {
var mipmap, mipmaps = cubeImage[ i ].mipmaps;
for ( var j = 0, jl = mipmaps.length; j < jl; j ++ ) {
mipmap = mipmaps[ j ];
if ( texture.format !== THREE.RGBAFormat && texture.format !== THREE.RGBFormat ) {
if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) {
state.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, mipmap.data );
} else {
console.warn( "THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setCubeTexture()" );
}
} else {
state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
}
}
}
}
if ( texture.generateMipmaps && isPowerOfTwoImage ) {
_gl.generateMipmap( _gl.TEXTURE_CUBE_MAP );
}
textureProperties.__version = texture.version;
if ( texture.onUpdate ) texture.onUpdate( texture );
} else {
state.activeTexture( _gl.TEXTURE0 + slot );
state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube );
}
}
}
function setCubeTextureDynamic ( texture, slot ) {
state.activeTexture( _gl.TEXTURE0 + slot );
state.bindTexture( _gl.TEXTURE_CUBE_MAP, properties.get( texture ).__webglTexture );
}
var setTextureWarned = false;
this.setTexture = function( texture, slot ) {
if ( ! setTextureWarned ) {
console.warn( "THREE.WebGLRenderer: .setTexture is deprecated, " +
"use setTexture2D instead." );
setTextureWarned = true;
}
setTexture2D( texture, slot );
};
this.allocTextureUnit = allocTextureUnit;
this.setTexture2D = setTexture2D;
this.setTextureCube = function( texture, slot ) {
if ( texture instanceof THREE.CubeTexture ||
( Array.isArray( texture.image ) && texture.image.length === 6 ) ) {
// CompressedTexture can have Array in image :/
setCubeTexture( texture, slot );
} else {
// assumed: texture instanceof THREE.WebGLRenderTargetCube
setCubeTextureDynamic( texture.texture, slot );
}
};
// Render targets
// Setup storage for target texture and bind it to correct framebuffer
function setupFrameBufferTexture ( framebuffer, renderTarget, attachment, textureTarget ) {
var glFormat = paramThreeToGL( renderTarget.texture.format );
var glType = paramThreeToGL( renderTarget.texture.type );
state.texImage2D( textureTarget, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null );
_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
_gl.framebufferTexture2D( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 );
_gl.bindFramebuffer( _gl.FRAMEBUFFER, null );
}
// Setup storage for internal depth/stencil buffers and bind to correct framebuffer
function setupRenderBufferStorage ( renderbuffer, renderTarget ) {
_gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer );
if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) {
_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height );
_gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );
} else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) {
_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height );
_gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );
} else {
// FIXME: We don't support !depth !stencil
_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height );
}
_gl.bindRenderbuffer( _gl.RENDERBUFFER, null );
}
// Setup resources for a Depth Texture for a FBO (needs an extension)
function setupDepthTexture ( framebuffer, renderTarget ) {
var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube );
if ( isCube ) throw new Error('Depth Texture with cube render targets is not supported!');
_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
if ( !( renderTarget.depthTexture instanceof THREE.DepthTexture ) ) {
throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture');
}
// upload an empty depth texture with framebuffer size
if ( !properties.get( renderTarget.depthTexture ).__webglTexture ||
renderTarget.depthTexture.image.width !== renderTarget.width ||
renderTarget.depthTexture.image.height !== renderTarget.height ) {
renderTarget.depthTexture.image.width = renderTarget.width;
renderTarget.depthTexture.image.height = renderTarget.height;
renderTarget.depthTexture.needsUpdate = true;
}
_this.setTexture( renderTarget.depthTexture, 0 );
var webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture;
_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 );
}
// Setup GL resources for a non-texture depth buffer
function setupDepthRenderbuffer( renderTarget ) {
var renderTargetProperties = properties.get( renderTarget );
var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube );
if ( renderTarget.depthTexture ) {
if ( isCube ) throw new Error('target.depthTexture not supported in Cube render targets');
setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget );
} else {
if ( isCube ) {
renderTargetProperties.__webglDepthbuffer = [];
for ( var i = 0; i < 6; i ++ ) {
_gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ i ] );
renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer();
setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget );
}
} else {
_gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer );
renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget );
}
}
_gl.bindFramebuffer( _gl.FRAMEBUFFER, null );
}
// Set up GL resources for the render target
function setupRenderTarget( renderTarget ) {
var renderTargetProperties = properties.get( renderTarget );
var textureProperties = properties.get( renderTarget.texture );
renderTarget.addEventListener( 'dispose', onRenderTargetDispose );
textureProperties.__webglTexture = _gl.createTexture();
_infoMemory.textures ++;
var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube );
var isTargetPowerOfTwo = THREE.Math.isPowerOfTwo( renderTarget.width ) && THREE.Math.isPowerOfTwo( renderTarget.height );
// Setup framebuffer
if ( isCube ) {
renderTargetProperties.__webglFramebuffer = [];
for ( var i = 0; i < 6; i ++ ) {
renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer();
}
} else {
renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();
}
// Setup color buffer
if ( isCube ) {
state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture );
setTextureParameters( _gl.TEXTURE_CUBE_MAP, renderTarget.texture, isTargetPowerOfTwo );
for ( var i = 0; i < 6; i ++ ) {
setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i );
}
if ( renderTarget.texture.generateMipmaps && isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP );
state.bindTexture( _gl.TEXTURE_CUBE_MAP, null );
} else {
state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );
setTextureParameters( _gl.TEXTURE_2D, renderTarget.texture, isTargetPowerOfTwo );
setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D );
if ( renderTarget.texture.generateMipmaps && isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_2D );
state.bindTexture( _gl.TEXTURE_2D, null );
}
// Setup depth and stencil buffers
if ( renderTarget.depthBuffer ) {
setupDepthRenderbuffer( renderTarget );
}
}
this.getCurrentRenderTarget = function() {
return _currentRenderTarget;
};
this.setRenderTarget = function ( renderTarget ) {
_currentRenderTarget = renderTarget;
if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) {
setupRenderTarget( renderTarget );
}
var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube );
var framebuffer;
if ( renderTarget ) {
var renderTargetProperties = properties.get( renderTarget );
if ( isCube ) {
framebuffer = renderTargetProperties.__webglFramebuffer[ renderTarget.activeCubeFace ];
} else {
framebuffer = renderTargetProperties.__webglFramebuffer;
}
_currentScissor.copy( renderTarget.scissor );
_currentScissorTest = renderTarget.scissorTest;
_currentViewport.copy( renderTarget.viewport );
} else {
framebuffer = null;
_currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio );
_currentScissorTest = _scissorTest;
_currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio );
}
if ( _currentFramebuffer !== framebuffer ) {
_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
_currentFramebuffer = framebuffer;
}
state.scissor( _currentScissor );
state.setScissorTest( _currentScissorTest );
state.viewport( _currentViewport );
if ( isCube ) {
var textureProperties = properties.get( renderTarget.texture );
_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + renderTarget.activeCubeFace, textureProperties.__webglTexture, renderTarget.activeMipMapLevel );
}
};
this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer ) {
if ( renderTarget instanceof THREE.WebGLRenderTarget === false ) {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' );
return;
}
var framebuffer = properties.get( renderTarget ).__webglFramebuffer;
if ( framebuffer ) {
var restore = false;
if ( framebuffer !== _currentFramebuffer ) {
_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
restore = true;
}
try {
var texture = renderTarget.texture;
if ( texture.format !== THREE.RGBAFormat && paramThreeToGL( texture.format ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_FORMAT ) ) {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' );
return;
}
if ( texture.type !== THREE.UnsignedByteType &&
paramThreeToGL( texture.type ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_TYPE ) &&
! ( texture.type === THREE.FloatType && extensions.get( 'WEBGL_color_buffer_float' ) ) &&
! ( texture.type === THREE.HalfFloatType && extensions.get( 'EXT_color_buffer_half_float' ) ) ) {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' );
return;
}
if ( _gl.checkFramebufferStatus( _gl.FRAMEBUFFER ) === _gl.FRAMEBUFFER_COMPLETE ) {
// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)
if ( ( x > 0 && x <= ( renderTarget.width - width ) ) && ( y > 0 && y <= ( renderTarget.height - height ) ) ) {
_gl.readPixels( x, y, width, height, paramThreeToGL( texture.format ), paramThreeToGL( texture.type ), buffer );
}
} else {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' );
}
} finally {
if ( restore ) {
_gl.bindFramebuffer( _gl.FRAMEBUFFER, _currentFramebuffer );
}
}
}
};
function updateRenderTargetMipmap( renderTarget ) {
var target = renderTarget instanceof THREE.WebGLRenderTargetCube ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D;
var texture = properties.get( renderTarget.texture ).__webglTexture;
state.bindTexture( target, texture );
_gl.generateMipmap( target );
state.bindTexture( target, null );
}
// Fallback filters for non-power-of-2 textures
function filterFallback ( f ) {
if ( f === THREE.NearestFilter || f === THREE.NearestMipMapNearestFilter || f === THREE.NearestMipMapLinearFilter ) {
return _gl.NEAREST;
}
return _gl.LINEAR;
}
// Map three.js constants to WebGL constants
function paramThreeToGL ( p ) {
var extension;
if ( p === THREE.RepeatWrapping ) return _gl.REPEAT;
if ( p === THREE.ClampToEdgeWrapping ) return _gl.CLAMP_TO_EDGE;
if ( p === THREE.MirroredRepeatWrapping ) return _gl.MIRRORED_REPEAT;
if ( p === THREE.NearestFilter ) return _gl.NEAREST;
if ( p === THREE.NearestMipMapNearestFilter ) return _gl.NEAREST_MIPMAP_NEAREST;
if ( p === THREE.NearestMipMapLinearFilter ) return _gl.NEAREST_MIPMAP_LINEAR;
if ( p === THREE.LinearFilter ) return _gl.LINEAR;
if ( p === THREE.LinearMipMapNearestFilter ) return _gl.LINEAR_MIPMAP_NEAREST;
if ( p === THREE.LinearMipMapLinearFilter ) return _gl.LINEAR_MIPMAP_LINEAR;
if ( p === THREE.UnsignedByteType ) return _gl.UNSIGNED_BYTE;
if ( p === THREE.UnsignedShort4444Type ) return _gl.UNSIGNED_SHORT_4_4_4_4;
if ( p === THREE.UnsignedShort5551Type ) return _gl.UNSIGNED_SHORT_5_5_5_1;
if ( p === THREE.UnsignedShort565Type ) return _gl.UNSIGNED_SHORT_5_6_5;
if ( p === THREE.ByteType ) return _gl.BYTE;
if ( p === THREE.ShortType ) return _gl.SHORT;
if ( p === THREE.UnsignedShortType ) return _gl.UNSIGNED_SHORT;
if ( p === THREE.IntType ) return _gl.INT;
if ( p === THREE.UnsignedIntType ) return _gl.UNSIGNED_INT;
if ( p === THREE.FloatType ) return _gl.FLOAT;
extension = extensions.get( 'OES_texture_half_float' );
if ( extension !== null ) {
if ( p === THREE.HalfFloatType ) return extension.HALF_FLOAT_OES;
}
if ( p === THREE.AlphaFormat ) return _gl.ALPHA;
if ( p === THREE.RGBFormat ) return _gl.RGB;
if ( p === THREE.RGBAFormat ) return _gl.RGBA;
if ( p === THREE.LuminanceFormat ) return _gl.LUMINANCE;
if ( p === THREE.LuminanceAlphaFormat ) return _gl.LUMINANCE_ALPHA;
if ( p === THREE.DepthFormat ) return _gl.DEPTH_COMPONENT;
if ( p === THREE.AddEquation ) return _gl.FUNC_ADD;
if ( p === THREE.SubtractEquation ) return _gl.FUNC_SUBTRACT;
if ( p === THREE.ReverseSubtractEquation ) return _gl.FUNC_REVERSE_SUBTRACT;
if ( p === THREE.ZeroFactor ) return _gl.ZERO;
if ( p === THREE.OneFactor ) return _gl.ONE;
if ( p === THREE.SrcColorFactor ) return _gl.SRC_COLOR;
if ( p === THREE.OneMinusSrcColorFactor ) return _gl.ONE_MINUS_SRC_COLOR;
if ( p === THREE.SrcAlphaFactor ) return _gl.SRC_ALPHA;
if ( p === THREE.OneMinusSrcAlphaFactor ) return _gl.ONE_MINUS_SRC_ALPHA;
if ( p === THREE.DstAlphaFactor ) return _gl.DST_ALPHA;
if ( p === THREE.OneMinusDstAlphaFactor ) return _gl.ONE_MINUS_DST_ALPHA;
if ( p === THREE.DstColorFactor ) return _gl.DST_COLOR;
if ( p === THREE.OneMinusDstColorFactor ) return _gl.ONE_MINUS_DST_COLOR;
if ( p === THREE.SrcAlphaSaturateFactor ) return _gl.SRC_ALPHA_SATURATE;
extension = extensions.get( 'WEBGL_compressed_texture_s3tc' );
if ( extension !== null ) {
if ( p === THREE.RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;
if ( p === THREE.RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;
if ( p === THREE.RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;
if ( p === THREE.RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;
}
extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' );
if ( extension !== null ) {
if ( p === THREE.RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
if ( p === THREE.RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
if ( p === THREE.RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
if ( p === THREE.RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
}
extension = extensions.get( 'WEBGL_compressed_texture_etc1' );
if ( extension !== null ) {
if ( p === THREE.RGB_ETC1_Format ) return extension.COMPRESSED_RGB_ETC1_WEBGL;
}
extension = extensions.get( 'EXT_blend_minmax' );
if ( extension !== null ) {
if ( p === THREE.MinEquation ) return extension.MIN_EXT;
if ( p === THREE.MaxEquation ) return extension.MAX_EXT;
}
return 0;
}
};
// File:src/renderers/WebGLRenderTarget.js
/**
* @author szimek / https://github.com/szimek/
* @author alteredq / http://alteredqualia.com/
* @author Marius Kintel / https://github.com/kintel
*/
/*
In options, we can specify:
* Texture parameters for an auto-generated target texture
* depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
*/
THREE.WebGLRenderTarget = function ( width, height, options ) {
this.uuid = THREE.Math.generateUUID();
this.width = width;
this.height = height;
this.scissor = new THREE.Vector4( 0, 0, width, height );
this.scissorTest = false;
this.viewport = new THREE.Vector4( 0, 0, width, height );
options = options || {};
if ( options.minFilter === undefined ) options.minFilter = THREE.LinearFilter;
this.texture = new THREE.Texture( undefined, undefined, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );
this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true;
this.depthTexture = null;
};
THREE.WebGLRenderTarget.prototype = {
constructor: THREE.WebGLRenderTarget,
setSize: function ( width, height ) {
if ( this.width !== width || this.height !== height ) {
this.width = width;
this.height = height;
this.dispose();
}
this.viewport.set( 0, 0, width, height );
this.scissor.set( 0, 0, width, height );
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.width = source.width;
this.height = source.height;
this.viewport.copy( source.viewport );
this.texture = source.texture.clone();
this.depthBuffer = source.depthBuffer;
this.stencilBuffer = source.stencilBuffer;
this.depthTexture = source.depthTexture;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
};
THREE.EventDispatcher.prototype.apply( THREE.WebGLRenderTarget.prototype );
// File:src/renderers/WebGLRenderTargetCube.js
/**
* @author alteredq / http://alteredqualia.com
*/
THREE.WebGLRenderTargetCube = function ( width, height, options ) {
THREE.WebGLRenderTarget.call( this, width, height, options );
this.activeCubeFace = 0; // PX 0, NX 1, PY 2, NY 3, PZ 4, NZ 5
this.activeMipMapLevel = 0;
};
THREE.WebGLRenderTargetCube.prototype = Object.create( THREE.WebGLRenderTarget.prototype );
THREE.WebGLRenderTargetCube.prototype.constructor = THREE.WebGLRenderTargetCube;
// File:src/renderers/webgl/WebGLBufferRenderer.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLBufferRenderer = function ( _gl, extensions, _infoRender ) {
var mode;
function setMode( value ) {
mode = value;
}
function render( start, count ) {
_gl.drawArrays( mode, start, count );
_infoRender.calls ++;
_infoRender.vertices += count;
if ( mode === _gl.TRIANGLES ) _infoRender.faces += count / 3;
}
function renderInstances( geometry ) {
var extension = extensions.get( 'ANGLE_instanced_arrays' );
if ( extension === null ) {
console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
return;
}
var position = geometry.attributes.position;
var count = 0;
if ( position instanceof THREE.InterleavedBufferAttribute ) {
count = position.data.count;
extension.drawArraysInstancedANGLE( mode, 0, count, geometry.maxInstancedCount );
} else {
count = position.count;
extension.drawArraysInstancedANGLE( mode, 0, count, geometry.maxInstancedCount );
}
_infoRender.calls ++;
_infoRender.vertices += count * geometry.maxInstancedCount;
if ( mode === _gl.TRIANGLES ) _infoRender.faces += geometry.maxInstancedCount * count / 3;
}
this.setMode = setMode;
this.render = render;
this.renderInstances = renderInstances;
};
// File:src/renderers/webgl/WebGLIndexedBufferRenderer.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLIndexedBufferRenderer = function ( _gl, extensions, _infoRender ) {
var mode;
function setMode( value ) {
mode = value;
}
var type, size;
function setIndex( index ) {
if ( index.array instanceof Uint32Array && extensions.get( 'OES_element_index_uint' ) ) {
type = _gl.UNSIGNED_INT;
size = 4;
} else {
type = _gl.UNSIGNED_SHORT;
size = 2;
}
}
function render( start, count ) {
_gl.drawElements( mode, count, type, start * size );
_infoRender.calls ++;
_infoRender.vertices += count;
if ( mode === _gl.TRIANGLES ) _infoRender.faces += count / 3;
}
function renderInstances( geometry, start, count ) {
var extension = extensions.get( 'ANGLE_instanced_arrays' );
if ( extension === null ) {
console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
return;
}
extension.drawElementsInstancedANGLE( mode, count, type, start * size, geometry.maxInstancedCount );
_infoRender.calls ++;
_infoRender.vertices += count * geometry.maxInstancedCount;
if ( mode === _gl.TRIANGLES ) _infoRender.faces += geometry.maxInstancedCount * count / 3;
}
this.setMode = setMode;
this.setIndex = setIndex;
this.render = render;
this.renderInstances = renderInstances;
};
// File:src/renderers/webgl/WebGLExtensions.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLExtensions = function ( gl ) {
var extensions = {};
this.get = function ( name ) {
if ( extensions[ name ] !== undefined ) {
return extensions[ name ];
}
var extension;
switch ( name ) {
case 'WEBGL_depth_texture':
extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' );
case 'EXT_texture_filter_anisotropic':
extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' );
break;
case 'WEBGL_compressed_texture_s3tc':
extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' );
break;
case 'WEBGL_compressed_texture_pvrtc':
extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' );
break;
case 'WEBGL_compressed_texture_etc1':
extension = gl.getExtension( 'WEBGL_compressed_texture_etc1' );
break;
default:
extension = gl.getExtension( name );
}
if ( extension === null ) {
console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' );
}
extensions[ name ] = extension;
return extension;
};
};
// File:src/renderers/webgl/WebGLCapabilities.js
THREE.WebGLCapabilities = function ( gl, extensions, parameters ) {
function getMaxPrecision( precision ) {
if ( precision === 'highp' ) {
if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 &&
gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) {
return 'highp';
}
precision = 'mediump';
}
if ( precision === 'mediump' ) {
if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 &&
gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) {
return 'mediump';
}
}
return 'lowp';
}
this.getMaxPrecision = getMaxPrecision;
this.precision = parameters.precision !== undefined ? parameters.precision : 'highp',
this.logarithmicDepthBuffer = parameters.logarithmicDepthBuffer !== undefined ? parameters.logarithmicDepthBuffer : false;
this.maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS );
this.maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS );
this.maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE );
this.maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE );
this.maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS );
this.maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS );
this.maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS );
this.maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS );
this.vertexTextures = this.maxVertexTextures > 0;
this.floatFragmentTextures = !! extensions.get( 'OES_texture_float' );
this.floatVertexTextures = this.vertexTextures && this.floatFragmentTextures;
var _maxPrecision = getMaxPrecision( this.precision );
if ( _maxPrecision !== this.precision ) {
console.warn( 'THREE.WebGLRenderer:', this.precision, 'not supported, using', _maxPrecision, 'instead.' );
this.precision = _maxPrecision;
}
if ( this.logarithmicDepthBuffer ) {
this.logarithmicDepthBuffer = !! extensions.get( 'EXT_frag_depth' );
}
};
// File:src/renderers/webgl/WebGLGeometries.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLGeometries = function ( gl, properties, info ) {
var geometries = {};
function get( object ) {
var geometry = object.geometry;
if ( geometries[ geometry.id ] !== undefined ) {
return geometries[ geometry.id ];
}
geometry.addEventListener( 'dispose', onGeometryDispose );
var buffergeometry;
if ( geometry instanceof THREE.BufferGeometry ) {
buffergeometry = geometry;
} else if ( geometry instanceof THREE.Geometry ) {
if ( geometry._bufferGeometry === undefined ) {
geometry._bufferGeometry = new THREE.BufferGeometry().setFromObject( object );
}
buffergeometry = geometry._bufferGeometry;
}
geometries[ geometry.id ] = buffergeometry;
info.memory.geometries ++;
return buffergeometry;
}
function onGeometryDispose( event ) {
var geometry = event.target;
var buffergeometry = geometries[ geometry.id ];
if ( buffergeometry.index !== null ) {
deleteAttribute( buffergeometry.index );
}
deleteAttributes( buffergeometry.attributes );
geometry.removeEventListener( 'dispose', onGeometryDispose );
delete geometries[ geometry.id ];
// TODO
var property = properties.get( geometry );
if ( property.wireframe ) {
deleteAttribute( property.wireframe );
}
properties.delete( geometry );
var bufferproperty = properties.get( buffergeometry );
if ( bufferproperty.wireframe ) {
deleteAttribute( bufferproperty.wireframe );
}
properties.delete( buffergeometry );
//
info.memory.geometries --;
}
function getAttributeBuffer( attribute ) {
if ( attribute instanceof THREE.InterleavedBufferAttribute ) {
return properties.get( attribute.data ).__webglBuffer;
}
return properties.get( attribute ).__webglBuffer;
}
function deleteAttribute( attribute ) {
var buffer = getAttributeBuffer( attribute );
if ( buffer !== undefined ) {
gl.deleteBuffer( buffer );
removeAttributeBuffer( attribute );
}
}
function deleteAttributes( attributes ) {
for ( var name in attributes ) {
deleteAttribute( attributes[ name ] );
}
}
function removeAttributeBuffer( attribute ) {
if ( attribute instanceof THREE.InterleavedBufferAttribute ) {
properties.delete( attribute.data );
} else {
properties.delete( attribute );
}
}
this.get = get;
};
// File:src/renderers/webgl/WebGLLights.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLLights = function () {
var lights = {};
this.get = function ( light ) {
if ( lights[ light.id ] !== undefined ) {
return lights[ light.id ];
}
var uniforms;
switch ( light.type ) {
case 'DirectionalLight':
uniforms = {
direction: new THREE.Vector3(),
color: new THREE.Color(),
shadow: false,
shadowBias: 0,
shadowRadius: 1,
shadowMapSize: new THREE.Vector2()
};
break;
case 'SpotLight':
uniforms = {
position: new THREE.Vector3(),
direction: new THREE.Vector3(),
color: new THREE.Color(),
distance: 0,
coneCos: 0,
penumbraCos: 0,
decay: 0,
shadow: false,
shadowBias: 0,
shadowRadius: 1,
shadowMapSize: new THREE.Vector2()
};
break;
case 'PointLight':
uniforms = {
position: new THREE.Vector3(),
color: new THREE.Color(),
distance: 0,
decay: 0,
shadow: false,
shadowBias: 0,
shadowRadius: 1,
shadowMapSize: new THREE.Vector2()
};
break;
case 'HemisphereLight':
uniforms = {
direction: new THREE.Vector3(),
skyColor: new THREE.Color(),
groundColor: new THREE.Color()
};
break;
}
lights[ light.id ] = uniforms;
return uniforms;
};
};
// File:src/renderers/webgl/WebGLObjects.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLObjects = function ( gl, properties, info ) {
var geometries = new THREE.WebGLGeometries( gl, properties, info );
//
function update( object ) {
// TODO: Avoid updating twice (when using shadowMap). Maybe add frame counter.
var geometry = geometries.get( object );
if ( object.geometry instanceof THREE.Geometry ) {
geometry.updateFromObject( object );
}
var index = geometry.index;
var attributes = geometry.attributes;
if ( index !== null ) {
updateAttribute( index, gl.ELEMENT_ARRAY_BUFFER );
}
for ( var name in attributes ) {
updateAttribute( attributes[ name ], gl.ARRAY_BUFFER );
}
// morph targets
var morphAttributes = geometry.morphAttributes;
for ( var name in morphAttributes ) {
var array = morphAttributes[ name ];
for ( var i = 0, l = array.length; i < l; i ++ ) {
updateAttribute( array[ i ], gl.ARRAY_BUFFER );
}
}
return geometry;
}
function updateAttribute( attribute, bufferType ) {
var data = ( attribute instanceof THREE.InterleavedBufferAttribute ) ? attribute.data : attribute;
var attributeProperties = properties.get( data );
if ( attributeProperties.__webglBuffer === undefined ) {
createBuffer( attributeProperties, data, bufferType );
} else if ( attributeProperties.version !== data.version ) {
updateBuffer( attributeProperties, data, bufferType );
}
}
function createBuffer( attributeProperties, data, bufferType ) {
attributeProperties.__webglBuffer = gl.createBuffer();
gl.bindBuffer( bufferType, attributeProperties.__webglBuffer );
var usage = data.dynamic ? gl.DYNAMIC_DRAW : gl.STATIC_DRAW;
gl.bufferData( bufferType, data.array, usage );
attributeProperties.version = data.version;
}
function updateBuffer( attributeProperties, data, bufferType ) {
gl.bindBuffer( bufferType, attributeProperties.__webglBuffer );
if ( data.dynamic === false || data.updateRange.count === - 1 ) {
// Not using update ranges
gl.bufferSubData( bufferType, 0, data.array );
} else if ( data.updateRange.count === 0 ) {
console.error( 'THREE.WebGLObjects.updateBuffer: dynamic THREE.BufferAttribute marked as needsUpdate but updateRange.count is 0, ensure you are using set methods or updating manually.' );
} else {
gl.bufferSubData( bufferType, data.updateRange.offset * data.array.BYTES_PER_ELEMENT,
data.array.subarray( data.updateRange.offset, data.updateRange.offset + data.updateRange.count ) );
data.updateRange.count = 0; // reset range
}
attributeProperties.version = data.version;
}
function getAttributeBuffer( attribute ) {
if ( attribute instanceof THREE.InterleavedBufferAttribute ) {
return properties.get( attribute.data ).__webglBuffer;
}
return properties.get( attribute ).__webglBuffer;
}
function getWireframeAttribute( geometry ) {
var property = properties.get( geometry );
if ( property.wireframe !== undefined ) {
return property.wireframe;
}
var indices = [];
var index = geometry.index;
var attributes = geometry.attributes;
var position = attributes.position;
// console.time( 'wireframe' );
if ( index !== null ) {
var edges = {};
var array = index.array;
for ( var i = 0, l = array.length; i < l; i += 3 ) {
var a = array[ i + 0 ];
var b = array[ i + 1 ];
var c = array[ i + 2 ];
if ( checkEdge( edges, a, b ) ) indices.push( a, b );
if ( checkEdge( edges, b, c ) ) indices.push( b, c );
if ( checkEdge( edges, c, a ) ) indices.push( c, a );
}
} else {
var array = attributes.position.array;
for ( var i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) {
var a = i + 0;
var b = i + 1;
var c = i + 2;
indices.push( a, b, b, c, c, a );
}
}
// console.timeEnd( 'wireframe' );
var TypeArray = position.count > 65535 ? Uint32Array : Uint16Array;
var attribute = new THREE.BufferAttribute( new TypeArray( indices ), 1 );
updateAttribute( attribute, gl.ELEMENT_ARRAY_BUFFER );
property.wireframe = attribute;
return attribute;
}
function checkEdge( edges, a, b ) {
if ( a > b ) {
var tmp = a;
a = b;
b = tmp;
}
var list = edges[ a ];
if ( list === undefined ) {
edges[ a ] = [ b ];
return true;
} else if ( list.indexOf( b ) === -1 ) {
list.push( b );
return true;
}
return false;
}
this.getAttributeBuffer = getAttributeBuffer;
this.getWireframeAttribute = getWireframeAttribute;
this.update = update;
};
// File:src/renderers/webgl/WebGLProgram.js
THREE.WebGLProgram = ( function () {
var programIdCount = 0;
function getEncodingComponents( encoding ) {
switch ( encoding ) {
case THREE.LinearEncoding:
return [ 'Linear','( value )' ];
case THREE.sRGBEncoding:
return [ 'sRGB','( value )' ];
case THREE.RGBEEncoding:
return [ 'RGBE','( value )' ];
case THREE.RGBM7Encoding:
return [ 'RGBM','( value, 7.0 )' ];
case THREE.RGBM16Encoding:
return [ 'RGBM','( value, 16.0 )' ];
case THREE.RGBDEncoding:
return [ 'RGBD','( value, 256.0 )' ];
case THREE.GammaEncoding:
return [ 'Gamma','( value, float( GAMMA_FACTOR ) )' ];
default:
throw new Error( 'unsupported encoding: ' + encoding );
}
}
function getTexelDecodingFunction( functionName, encoding ) {
var components = getEncodingComponents( encoding );
return "vec4 " + functionName + "( vec4 value ) { return " + components[ 0 ] + "ToLinear" + components[ 1 ] + "; }";
}
function getTexelEncodingFunction( functionName, encoding ) {
var components = getEncodingComponents( encoding );
return "vec4 " + functionName + "( vec4 value ) { return LinearTo" + components[ 0 ] + components[ 1 ] + "; }";
}
function getToneMappingFunction( functionName, toneMapping ) {
var toneMappingName;
switch ( toneMapping ) {
case THREE.LinearToneMapping:
toneMappingName = "Linear";
break;
case THREE.ReinhardToneMapping:
toneMappingName = "Reinhard";
break;
case THREE.Uncharted2ToneMapping:
toneMappingName = "Uncharted2";
break;
case THREE.CineonToneMapping:
toneMappingName = "OptimizedCineon";
break;
default:
throw new Error( 'unsupported toneMapping: ' + toneMapping );
}
return "vec3 " + functionName + "( vec3 color ) { return " + toneMappingName + "ToneMapping( color ); }";
}
function generateExtensions( extensions, parameters, rendererExtensions ) {
extensions = extensions || {};
var chunks = [
( extensions.derivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.normalMap || parameters.flatShading ) ? '#extension GL_OES_standard_derivatives : enable' : '',
( extensions.fragDepth || parameters.logarithmicDepthBuffer ) && rendererExtensions.get( 'EXT_frag_depth' ) ? '#extension GL_EXT_frag_depth : enable' : '',
( extensions.drawBuffers ) && rendererExtensions.get( 'WEBGL_draw_buffers' ) ? '#extension GL_EXT_draw_buffers : require' : '',
( extensions.shaderTextureLOD || parameters.envMap ) && rendererExtensions.get( 'EXT_shader_texture_lod' ) ? '#extension GL_EXT_shader_texture_lod : enable' : '',
];
return chunks.filter( filterEmptyLine ).join( '\n' );
}
function generateDefines( defines ) {
var chunks = [];
for ( var name in defines ) {
var value = defines[ name ];
if ( value === false ) continue;
chunks.push( '#define ' + name + ' ' + value );
}
return chunks.join( '\n' );
}
function fetchAttributeLocations( gl, program, identifiers ) {
var attributes = {};
var n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES );
for ( var i = 0; i < n; i ++ ) {
var info = gl.getActiveAttrib( program, i );
var name = info.name;
// console.log("THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:", name, i );
attributes[ name ] = gl.getAttribLocation( program, name );
}
return attributes;
}
function filterEmptyLine( string ) {
return string !== '';
}
function replaceLightNums( string, parameters ) {
return string
.replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights )
.replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights )
.replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights )
.replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights );
}
function parseIncludes( string ) {
var pattern = /#include +<([\w\d.]+)>/g;
function replace( match, include ) {
var replace = THREE.ShaderChunk[ include ];
if ( replace === undefined ) {
throw new Error( 'Can not resolve #include <' + include + '>' );
}
return parseIncludes( replace );
}
return string.replace( pattern, replace );
}
function unrollLoops( string ) {
var pattern = /for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
function replace( match, start, end, snippet ) {
var unroll = '';
for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) {
unroll += snippet.replace( /\[ i \]/g, '[ ' + i + ' ]' );
}
return unroll;
}
return string.replace( pattern, replace );
}
return function WebGLProgram( renderer, code, material, parameters ) {
var gl = renderer.context;
var extensions = material.extensions;
var defines = material.defines;
var vertexShader = material.__webglShader.vertexShader;
var fragmentShader = material.__webglShader.fragmentShader;
var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';
if ( parameters.shadowMapType === THREE.PCFShadowMap ) {
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';
} else if ( parameters.shadowMapType === THREE.PCFSoftShadowMap ) {
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';
}
var envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
var envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
var envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
if ( parameters.envMap ) {
switch ( material.envMap.mapping ) {
case THREE.CubeReflectionMapping:
case THREE.CubeRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
break;
case THREE.CubeUVReflectionMapping:
case THREE.CubeUVRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
break;
case THREE.EquirectangularReflectionMapping:
case THREE.EquirectangularRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC';
break;
case THREE.SphericalReflectionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_SPHERE';
break;
}
switch ( material.envMap.mapping ) {
case THREE.CubeRefractionMapping:
case THREE.EquirectangularRefractionMapping:
envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
break;
}
switch ( material.combine ) {
case THREE.MultiplyOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
break;
case THREE.MixOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
break;
case THREE.AddOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
break;
}
}
var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0;
// console.log( 'building new program ' );
//
var customExtensions = generateExtensions( extensions, parameters, renderer.extensions );
var customDefines = generateDefines( defines );
//
var program = gl.createProgram();
var prefixVertex, prefixFragment;
if ( material instanceof THREE.RawShaderMaterial ) {
prefixVertex = '';
prefixFragment = '';
} else {
prefixVertex = [
'precision ' + parameters.precision + ' float;',
'precision ' + parameters.precision + ' int;',
'#define SHADER_NAME ' + material.__webglShader.name,
customDefines,
parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '',
'#define GAMMA_FACTOR ' + gammaFactorDefine,
'#define MAX_BONES ' + parameters.maxBones,
parameters.map ? '#define USE_MAP' : '',
parameters.envMap ? '#define USE_ENVMAP' : '',
parameters.envMap ? '#define ' + envMapModeDefine : '',
parameters.lightMap ? '#define USE_LIGHTMAP' : '',
parameters.aoMap ? '#define USE_AOMAP' : '',
parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
parameters.bumpMap ? '#define USE_BUMPMAP' : '',
parameters.normalMap ? '#define USE_NORMALMAP' : '',
parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '',
parameters.specularMap ? '#define USE_SPECULARMAP' : '',
parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
parameters.vertexColors ? '#define USE_COLOR' : '',
parameters.flatShading ? '#define FLAT_SHADED' : '',
parameters.skinning ? '#define USE_SKINNING' : '',
parameters.useVertexTexture ? '#define BONE_TEXTURE' : '',
parameters.morphTargets ? '#define USE_MORPHTARGETS' : '',
parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '',
parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
parameters.flipSided ? '#define FLIP_SIDED' : '',
'#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes,
parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',
parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '',
parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '',
'uniform mat4 modelMatrix;',
'uniform mat4 modelViewMatrix;',
'uniform mat4 projectionMatrix;',
'uniform mat4 viewMatrix;',
'uniform mat3 normalMatrix;',
'uniform vec3 cameraPosition;',
'attribute vec3 position;',
'attribute vec3 normal;',
'attribute vec2 uv;',
'#ifdef USE_COLOR',
' attribute vec3 color;',
'#endif',
'#ifdef USE_MORPHTARGETS',
' attribute vec3 morphTarget0;',
' attribute vec3 morphTarget1;',
' attribute vec3 morphTarget2;',
' attribute vec3 morphTarget3;',
' #ifdef USE_MORPHNORMALS',
' attribute vec3 morphNormal0;',
' attribute vec3 morphNormal1;',
' attribute vec3 morphNormal2;',
' attribute vec3 morphNormal3;',
' #else',
' attribute vec3 morphTarget4;',
' attribute vec3 morphTarget5;',
' attribute vec3 morphTarget6;',
' attribute vec3 morphTarget7;',
' #endif',
'#endif',
'#ifdef USE_SKINNING',
' attribute vec4 skinIndex;',
' attribute vec4 skinWeight;',
'#endif',
'\n'
].filter( filterEmptyLine ).join( '\n' );
prefixFragment = [
customExtensions,
'precision ' + parameters.precision + ' float;',
'precision ' + parameters.precision + ' int;',
'#define SHADER_NAME ' + material.__webglShader.name,
customDefines,
parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest : '',
'#define GAMMA_FACTOR ' + gammaFactorDefine,
( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '',
parameters.map ? '#define USE_MAP' : '',
parameters.envMap ? '#define USE_ENVMAP' : '',
parameters.envMap ? '#define ' + envMapTypeDefine : '',
parameters.envMap ? '#define ' + envMapModeDefine : '',
parameters.envMap ? '#define ' + envMapBlendingDefine : '',
parameters.lightMap ? '#define USE_LIGHTMAP' : '',
parameters.aoMap ? '#define USE_AOMAP' : '',
parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
parameters.bumpMap ? '#define USE_BUMPMAP' : '',
parameters.normalMap ? '#define USE_NORMALMAP' : '',
parameters.specularMap ? '#define USE_SPECULARMAP' : '',
parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
parameters.vertexColors ? '#define USE_COLOR' : '',
parameters.flatShading ? '#define FLAT_SHADED' : '',
parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
parameters.flipSided ? '#define FLIP_SIDED' : '',
'#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes,
parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',
parameters.premultipliedAlpha ? "#define PREMULTIPLIED_ALPHA" : '',
parameters.physicallyCorrectLights ? "#define PHYSICALLY_CORRECT_LIGHTS" : '',
parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '',
parameters.envMap && renderer.extensions.get( 'EXT_shader_texture_lod' ) ? '#define TEXTURE_LOD_EXT' : '',
'uniform mat4 viewMatrix;',
'uniform vec3 cameraPosition;',
( parameters.toneMapping !== THREE.NoToneMapping ) ? "#define TONE_MAPPING" : '',
( parameters.toneMapping !== THREE.NoToneMapping ) ? THREE.ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below
( parameters.toneMapping !== THREE.NoToneMapping ) ? getToneMappingFunction( "toneMapping", parameters.toneMapping ) : '',
( parameters.outputEncoding || parameters.mapEncoding || parameters.envMapEncoding || parameters.emissiveMapEncoding ) ? THREE.ShaderChunk[ 'encodings_pars_fragment' ] : '', // this code is required here because it is used by the various encoding/decoding function defined below
parameters.mapEncoding ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '',
parameters.envMapEncoding ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '',
parameters.emissiveMapEncoding ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '',
parameters.outputEncoding ? getTexelEncodingFunction( "linearToOutputTexel", parameters.outputEncoding ) : '',
parameters.depthPacking ? "#define DEPTH_PACKING " + material.depthPacking : '',
'\n'
].filter( filterEmptyLine ).join( '\n' );
}
vertexShader = parseIncludes( vertexShader, parameters );
vertexShader = replaceLightNums( vertexShader, parameters );
fragmentShader = parseIncludes( fragmentShader, parameters );
fragmentShader = replaceLightNums( fragmentShader, parameters );
if ( material instanceof THREE.ShaderMaterial === false ) {
vertexShader = unrollLoops( vertexShader );
fragmentShader = unrollLoops( fragmentShader );
}
var vertexGlsl = prefixVertex + vertexShader;
var fragmentGlsl = prefixFragment + fragmentShader;
// console.log( '*VERTEX*', vertexGlsl );
// console.log( '*FRAGMENT*', fragmentGlsl );
var glVertexShader = THREE.WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl );
var glFragmentShader = THREE.WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl );
gl.attachShader( program, glVertexShader );
gl.attachShader( program, glFragmentShader );
// Force a particular attribute to index 0.
if ( material.index0AttributeName !== undefined ) {
gl.bindAttribLocation( program, 0, material.index0AttributeName );
} else if ( parameters.morphTargets === true ) {
// programs with morphTargets displace position out of attribute 0
gl.bindAttribLocation( program, 0, 'position' );
}
gl.linkProgram( program );
var programLog = gl.getProgramInfoLog( program );
var vertexLog = gl.getShaderInfoLog( glVertexShader );
var fragmentLog = gl.getShaderInfoLog( glFragmentShader );
var runnable = true;
var haveDiagnostics = true;
// console.log( '**VERTEX**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glVertexShader ) );
// console.log( '**FRAGMENT**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glFragmentShader ) );
if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) {
runnable = false;
console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter( program, gl.VALIDATE_STATUS ), 'gl.getProgramInfoLog', programLog, vertexLog, fragmentLog );
} else if ( programLog !== '' ) {
console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog );
} else if ( vertexLog === '' || fragmentLog === '' ) {
haveDiagnostics = false;
}
if ( haveDiagnostics ) {
this.diagnostics = {
runnable: runnable,
material: material,
programLog: programLog,
vertexShader: {
log: vertexLog,
prefix: prefixVertex
},
fragmentShader: {
log: fragmentLog,
prefix: prefixFragment
}
};
}
// clean up
gl.deleteShader( glVertexShader );
gl.deleteShader( glFragmentShader );
// set up caching for uniform locations
var cachedUniforms;
this.getUniforms = function() {
if ( cachedUniforms === undefined ) {
cachedUniforms =
new THREE.WebGLUniforms( gl, program, renderer );
}
return cachedUniforms;
};
// set up caching for attribute locations
var cachedAttributes;
this.getAttributes = function() {
if ( cachedAttributes === undefined ) {
cachedAttributes = fetchAttributeLocations( gl, program );
}
return cachedAttributes;
};
// free resource
this.destroy = function() {
gl.deleteProgram( program );
this.program = undefined;
};
// DEPRECATED
Object.defineProperties( this, {
uniforms: {
get: function() {
console.warn( 'THREE.WebGLProgram: .uniforms is now .getUniforms().' );
return this.getUniforms();
}
},
attributes: {
get: function() {
console.warn( 'THREE.WebGLProgram: .attributes is now .getAttributes().' );
return this.getAttributes();
}
}
} );
//
this.id = programIdCount ++;
this.code = code;
this.usedTimes = 1;
this.program = program;
this.vertexShader = glVertexShader;
this.fragmentShader = glFragmentShader;
return this;
};
} )();
// File:src/renderers/webgl/WebGLPrograms.js
THREE.WebGLPrograms = function ( renderer, capabilities ) {
var programs = [];
var shaderIDs = {
MeshDepthMaterial: 'depth',
MeshNormalMaterial: 'normal',
MeshBasicMaterial: 'basic',
MeshLambertMaterial: 'lambert',
MeshPhongMaterial: 'phong',
MeshStandardMaterial: 'physical',
MeshPhysicalMaterial: 'physical',
LineBasicMaterial: 'basic',
LineDashedMaterial: 'dashed',
PointsMaterial: 'points'
};
var parameterNames = [
"precision", "supportsVertexTextures", "map", "mapEncoding", "envMap", "envMapMode", "envMapEncoding",
"lightMap", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "displacementMap", "specularMap",
"roughnessMap", "metalnessMap",
"alphaMap", "combine", "vertexColors", "fog", "useFog", "fogExp",
"flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning",
"maxBones", "useVertexTexture", "morphTargets", "morphNormals",
"maxMorphTargets", "maxMorphNormals", "premultipliedAlpha",
"numDirLights", "numPointLights", "numSpotLights", "numHemiLights",
"shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights',
"alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "depthPacking"
];
function allocateBones ( object ) {
if ( capabilities.floatVertexTextures && object && object.skeleton && object.skeleton.useVertexTexture ) {
return 1024;
} else {
// default for when object is not specified
// ( for example when prebuilding shader to be used with multiple objects )
//
// - leave some extra space for other uniforms
// - limit here is ANGLE's 254 max uniform vectors
// (up to 54 should be safe)
var nVertexUniforms = capabilities.maxVertexUniforms;
var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 );
var maxBones = nVertexMatrices;
if ( object !== undefined && object instanceof THREE.SkinnedMesh ) {
maxBones = Math.min( object.skeleton.bones.length, maxBones );
if ( maxBones < object.skeleton.bones.length ) {
console.warn( 'WebGLRenderer: too many bones - ' + object.skeleton.bones.length + ', this GPU supports just ' + maxBones + ' (try OpenGL instead of ANGLE)' );
}
}
return maxBones;
}
}
function getTextureEncodingFromMap( map, gammaOverrideLinear ) {
var encoding;
if ( ! map ) {
encoding = THREE.LinearEncoding;
} else if ( map instanceof THREE.Texture ) {
encoding = map.encoding;
} else if ( map instanceof THREE.WebGLRenderTarget ) {
encoding = map.texture.encoding;
}
// add backwards compatibility for WebGLRenderer.gammaInput/gammaOutput parameter, should probably be removed at some point.
if ( encoding === THREE.LinearEncoding && gammaOverrideLinear ) {
encoding = THREE.GammaEncoding;
}
return encoding;
}
this.getParameters = function ( material, lights, fog, nClipPlanes, object ) {
var shaderID = shaderIDs[ material.type ];
// heuristics to create shader parameters according to lights in the scene
// (not to blow over maxLights budget)
var maxBones = allocateBones( object );
var precision = renderer.getPrecision();
if ( material.precision !== null ) {
precision = capabilities.getMaxPrecision( material.precision );
if ( precision !== material.precision ) {
console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' );
}
}
var parameters = {
shaderID: shaderID,
precision: precision,
supportsVertexTextures: capabilities.vertexTextures,
outputEncoding: getTextureEncodingFromMap( renderer.getCurrentRenderTarget(), renderer.gammaOutput ),
map: !! material.map,
mapEncoding: getTextureEncodingFromMap( material.map, renderer.gammaInput ),
envMap: !! material.envMap,
envMapMode: material.envMap && material.envMap.mapping,
envMapEncoding: getTextureEncodingFromMap( material.envMap, renderer.gammaInput ),
envMapCubeUV: ( !! material.envMap ) && ( ( material.envMap.mapping === THREE.CubeUVReflectionMapping ) || ( material.envMap.mapping === THREE.CubeUVRefractionMapping ) ),
lightMap: !! material.lightMap,
aoMap: !! material.aoMap,
emissiveMap: !! material.emissiveMap,
emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap, renderer.gammaInput ),
bumpMap: !! material.bumpMap,
normalMap: !! material.normalMap,
displacementMap: !! material.displacementMap,
roughnessMap: !! material.roughnessMap,
metalnessMap: !! material.metalnessMap,
specularMap: !! material.specularMap,
alphaMap: !! material.alphaMap,
combine: material.combine,
vertexColors: material.vertexColors,
fog: fog,
useFog: material.fog,
fogExp: fog instanceof THREE.FogExp2,
flatShading: material.shading === THREE.FlatShading,
sizeAttenuation: material.sizeAttenuation,
logarithmicDepthBuffer: capabilities.logarithmicDepthBuffer,
skinning: material.skinning,
maxBones: maxBones,
useVertexTexture: capabilities.floatVertexTextures && object && object.skeleton && object.skeleton.useVertexTexture,
morphTargets: material.morphTargets,
morphNormals: material.morphNormals,
maxMorphTargets: renderer.maxMorphTargets,
maxMorphNormals: renderer.maxMorphNormals,
numDirLights: lights.directional.length,
numPointLights: lights.point.length,
numSpotLights: lights.spot.length,
numHemiLights: lights.hemi.length,
numClippingPlanes: nClipPlanes,
shadowMapEnabled: renderer.shadowMap.enabled && object.receiveShadow && lights.shadows.length > 0,
shadowMapType: renderer.shadowMap.type,
toneMapping: renderer.toneMapping,
physicallyCorrectLights: renderer.physicallyCorrectLights,
premultipliedAlpha: material.premultipliedAlpha,
alphaTest: material.alphaTest,
doubleSided: material.side === THREE.DoubleSide,
flipSided: material.side === THREE.BackSide,
depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false
};
return parameters;
};
this.getProgramCode = function ( material, parameters ) {
var array = [];
if ( parameters.shaderID ) {
array.push( parameters.shaderID );
} else {
array.push( material.fragmentShader );
array.push( material.vertexShader );
}
if ( material.defines !== undefined ) {
for ( var name in material.defines ) {
array.push( name );
array.push( material.defines[ name ] );
}
}
for ( var i = 0; i < parameterNames.length; i ++ ) {
array.push( parameters[ parameterNames[ i ] ] );
}
return array.join();
};
this.acquireProgram = function ( material, parameters, code ) {
var program;
// Check if code has been already compiled
for ( var p = 0, pl = programs.length; p < pl; p ++ ) {
var programInfo = programs[ p ];
if ( programInfo.code === code ) {
program = programInfo;
++ program.usedTimes;
break;
}
}
if ( program === undefined ) {
program = new THREE.WebGLProgram( renderer, code, material, parameters );
programs.push( program );
}
return program;
};
this.releaseProgram = function( program ) {
if ( -- program.usedTimes === 0 ) {
// Remove from unordered set
var i = programs.indexOf( program );
programs[ i ] = programs[ programs.length - 1 ];
programs.pop();
// Free WebGL resources
program.destroy();
}
};
// Exposed for resource monitoring & error feedback via renderer.info:
this.programs = programs;
};
// File:src/renderers/webgl/WebGLProperties.js
/**
* @author fordacious / fordacious.github.io
*/
THREE.WebGLProperties = function () {
var properties = {};
this.get = function ( object ) {
var uuid = object.uuid;
var map = properties[ uuid ];
if ( map === undefined ) {
map = {};
properties[ uuid ] = map;
}
return map;
};
this.delete = function ( object ) {
delete properties[ object.uuid ];
};
this.clear = function () {
properties = {};
};
};
// File:src/renderers/webgl/WebGLShader.js
THREE.WebGLShader = ( function () {
function addLineNumbers( string ) {
var lines = string.split( '\n' );
for ( var i = 0; i < lines.length; i ++ ) {
lines[ i ] = ( i + 1 ) + ': ' + lines[ i ];
}
return lines.join( '\n' );
}
return function WebGLShader( gl, type, string ) {
var shader = gl.createShader( type );
gl.shaderSource( shader, string );
gl.compileShader( shader );
if ( gl.getShaderParameter( shader, gl.COMPILE_STATUS ) === false ) {
console.error( 'THREE.WebGLShader: Shader couldn\'t compile.' );
}
if ( gl.getShaderInfoLog( shader ) !== '' ) {
console.warn( 'THREE.WebGLShader: gl.getShaderInfoLog()', type === gl.VERTEX_SHADER ? 'vertex' : 'fragment', gl.getShaderInfoLog( shader ), addLineNumbers( string ) );
}
// --enable-privileged-webgl-extension
// console.log( type, gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );
return shader;
};
} )();
// File:src/renderers/webgl/WebGLShadowMap.js
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLShadowMap = function ( _renderer, _lights, _objects ) {
var _gl = _renderer.context,
_state = _renderer.state,
_frustum = new THREE.Frustum(),
_projScreenMatrix = new THREE.Matrix4(),
_lightShadows = _lights.shadows,
_shadowMapSize = new THREE.Vector2(),
_lookTarget = new THREE.Vector3(),
_lightPositionWorld = new THREE.Vector3(),
_renderList = [],
_MorphingFlag = 1,
_SkinningFlag = 2,
_NumberOfMaterialVariants = ( _MorphingFlag | _SkinningFlag ) + 1,
_depthMaterials = new Array( _NumberOfMaterialVariants ),
_distanceMaterials = new Array( _NumberOfMaterialVariants ),
_materialCache = {};
var cubeDirections = [
new THREE.Vector3( 1, 0, 0 ), new THREE.Vector3( - 1, 0, 0 ), new THREE.Vector3( 0, 0, 1 ),
new THREE.Vector3( 0, 0, - 1 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, - 1, 0 )
];
var cubeUps = [
new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 1, 0 ),
new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 0, 1 ), new THREE.Vector3( 0, 0, - 1 )
];
var cube2DViewPorts = [
new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4(),
new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4()
];
// init
var depthMaterialTemplate = new THREE.MeshDepthMaterial();
depthMaterialTemplate.depthPacking = THREE.RGBADepthPacking;
depthMaterialTemplate.clipping = true;
var distanceShader = THREE.ShaderLib[ "distanceRGBA" ];
var distanceUniforms = THREE.UniformsUtils.clone( distanceShader.uniforms );
for ( var i = 0; i !== _NumberOfMaterialVariants; ++ i ) {
var useMorphing = ( i & _MorphingFlag ) !== 0;
var useSkinning = ( i & _SkinningFlag ) !== 0;
var depthMaterial = depthMaterialTemplate.clone();
depthMaterial.morphTargets = useMorphing;
depthMaterial.skinning = useSkinning;
_depthMaterials[ i ] = depthMaterial;
var distanceMaterial = new THREE.ShaderMaterial( {
defines: {
'USE_SHADOWMAP': ''
},
uniforms: distanceUniforms,
vertexShader: distanceShader.vertexShader,
fragmentShader: distanceShader.fragmentShader,
morphTargets: useMorphing,
skinning: useSkinning,
clipping: true
} );
_distanceMaterials[ i ] = distanceMaterial;
}
//
var scope = this;
this.enabled = false;
this.autoUpdate = true;
this.needsUpdate = false;
this.type = THREE.PCFShadowMap;
this.cullFace = THREE.CullFaceFront;
this.render = function ( scene, camera ) {
if ( scope.enabled === false ) return;
if ( scope.autoUpdate === false && scope.needsUpdate === false ) return;
if ( _lightShadows.length === 0 ) return;
// Set GL state for depth map.
_state.clearColor( 1, 1, 1, 1 );
_state.disable( _gl.BLEND );
_state.enable( _gl.CULL_FACE );
_gl.frontFace( _gl.CCW );
_gl.cullFace( scope.cullFace === THREE.CullFaceFront ? _gl.FRONT : _gl.BACK );
_state.setDepthTest( true );
_state.setScissorTest( false );
// render depth map
var faceCount, isPointLight;
for ( var i = 0, il = _lightShadows.length; i < il; i ++ ) {
var light = _lightShadows[ i ];
var shadow = light.shadow;
var shadowCamera = shadow.camera;
_shadowMapSize.copy( shadow.mapSize );
if ( light instanceof THREE.PointLight ) {
faceCount = 6;
isPointLight = true;
var vpWidth = _shadowMapSize.x;
var vpHeight = _shadowMapSize.y;
// These viewports map a cube-map onto a 2D texture with the
// following orientation:
//
// xzXZ
// y Y
//
// X - Positive x direction
// x - Negative x direction
// Y - Positive y direction
// y - Negative y direction
// Z - Positive z direction
// z - Negative z direction
// positive X
cube2DViewPorts[ 0 ].set( vpWidth * 2, vpHeight, vpWidth, vpHeight );
// negative X
cube2DViewPorts[ 1 ].set( 0, vpHeight, vpWidth, vpHeight );
// positive Z
cube2DViewPorts[ 2 ].set( vpWidth * 3, vpHeight, vpWidth, vpHeight );
// negative Z
cube2DViewPorts[ 3 ].set( vpWidth, vpHeight, vpWidth, vpHeight );
// positive Y
cube2DViewPorts[ 4 ].set( vpWidth * 3, 0, vpWidth, vpHeight );
// negative Y
cube2DViewPorts[ 5 ].set( vpWidth, 0, vpWidth, vpHeight );
_shadowMapSize.x *= 4.0;
_shadowMapSize.y *= 2.0;
} else {
faceCount = 1;
isPointLight = false;
}
if ( shadow.map === null ) {
var pars = { minFilter: THREE.NearestFilter, magFilter: THREE.NearestFilter, format: THREE.RGBAFormat };
shadow.map = new THREE.WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
shadowCamera.updateProjectionMatrix();
}
if ( shadow instanceof THREE.SpotLightShadow ) {
shadow.update( light );
}
var shadowMap = shadow.map;
var shadowMatrix = shadow.matrix;
_lightPositionWorld.setFromMatrixPosition( light.matrixWorld );
shadowCamera.position.copy( _lightPositionWorld );
_renderer.setRenderTarget( shadowMap );
_renderer.clear();
// render shadow map for each cube face (if omni-directional) or
// run a single pass if not
for ( var face = 0; face < faceCount; face ++ ) {
if ( isPointLight ) {
_lookTarget.copy( shadowCamera.position );
_lookTarget.add( cubeDirections[ face ] );
shadowCamera.up.copy( cubeUps[ face ] );
shadowCamera.lookAt( _lookTarget );
var vpDimensions = cube2DViewPorts[ face ];
_state.viewport( vpDimensions );
} else {
_lookTarget.setFromMatrixPosition( light.target.matrixWorld );
shadowCamera.lookAt( _lookTarget );
}
shadowCamera.updateMatrixWorld();
shadowCamera.matrixWorldInverse.getInverse( shadowCamera.matrixWorld );
// compute shadow matrix
shadowMatrix.set(
0.5, 0.0, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0
);
shadowMatrix.multiply( shadowCamera.projectionMatrix );
shadowMatrix.multiply( shadowCamera.matrixWorldInverse );
// update camera matrices and frustum
_projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse );
_frustum.setFromMatrix( _projScreenMatrix );
// set object matrices & frustum culling
_renderList.length = 0;
projectObject( scene, camera, shadowCamera );
// render shadow map
// render regular objects
for ( var j = 0, jl = _renderList.length; j < jl; j ++ ) {
var object = _renderList[ j ];
var geometry = _objects.update( object );
var material = object.material;
if ( material instanceof THREE.MultiMaterial ) {
var groups = geometry.groups;
var materials = material.materials;
for ( var k = 0, kl = groups.length; k < kl; k ++ ) {
var group = groups[ k ];
var groupMaterial = materials[ group.materialIndex ];
if ( groupMaterial.visible === true ) {
var depthMaterial = getDepthMaterial( object, groupMaterial, isPointLight, _lightPositionWorld );
_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group );
}
}
} else {
var depthMaterial = getDepthMaterial( object, material, isPointLight, _lightPositionWorld );
_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null );
}
}
}
}
// Restore GL state.
var clearColor = _renderer.getClearColor(),
clearAlpha = _renderer.getClearAlpha();
_renderer.setClearColor( clearColor, clearAlpha );
_state.enable( _gl.BLEND );
if ( scope.cullFace === THREE.CullFaceFront ) {
_gl.cullFace( _gl.BACK );
}
scope.needsUpdate = false;
};
function getDepthMaterial( object, material, isPointLight, lightPositionWorld ) {
var geometry = object.geometry;
var result = null;
var materialVariants = _depthMaterials;
var customMaterial = object.customDepthMaterial;
if ( isPointLight ) {
materialVariants = _distanceMaterials;
customMaterial = object.customDistanceMaterial;
}
if ( ! customMaterial ) {
var useMorphing = geometry.morphTargets !== undefined &&
geometry.morphTargets.length > 0 && material.morphTargets;
var useSkinning = object instanceof THREE.SkinnedMesh && material.skinning;
var variantIndex = 0;
if ( useMorphing ) variantIndex |= _MorphingFlag;
if ( useSkinning ) variantIndex |= _SkinningFlag;
result = materialVariants[ variantIndex ];
} else {
result = customMaterial;
}
if ( _renderer.localClippingEnabled &&
material.clipShadows === true &&
material.clippingPlanes.length !== 0 ) {
// in this case we need a unique material instance reflecting the
// appropriate state
var keyA = result.uuid, keyB = material.uuid;
var materialsForVariant = _materialCache[ keyA ];
if ( materialsForVariant === undefined ) {
materialsForVariant = {};
_materialCache[ keyA ] = materialsForVariant;
}
var cachedMaterial = materialsForVariant[ keyB ];
if ( cachedMaterial === undefined ) {
cachedMaterial = result.clone();
materialsForVariant[ keyB ] = cachedMaterial;
}
result = cachedMaterial;
}
result.visible = material.visible;
result.wireframe = material.wireframe;
result.side = material.side;
result.clipShadows = material.clipShadows;
result.clippingPlanes = material.clippingPlanes;
result.wireframeLinewidth = material.wireframeLinewidth;
result.linewidth = material.linewidth;
if ( isPointLight && result.uniforms.lightPos !== undefined ) {
result.uniforms.lightPos.value.copy( lightPositionWorld );
}
return result;
}
function projectObject( object, camera, shadowCamera ) {
if ( object.visible === false ) return;
if ( object.layers.test( camera.layers ) && ( object instanceof THREE.Mesh || object instanceof THREE.Line || object instanceof THREE.Points ) ) {
if ( object.castShadow && ( object.frustumCulled === false || _frustum.intersectsObject( object ) === true ) ) {
var material = object.material;
if ( material.visible === true ) {
object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld );
_renderList.push( object );
}
}
}
var children = object.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
projectObject( children[ i ], camera, shadowCamera );
}
}
};
// File:src/renderers/webgl/WebGLState.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WebGLState = function ( gl, extensions, paramThreeToGL ) {
var _this = this;
var color = new THREE.Vector4();
var maxVertexAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS );
var newAttributes = new Uint8Array( maxVertexAttributes );
var enabledAttributes = new Uint8Array( maxVertexAttributes );
var attributeDivisors = new Uint8Array( maxVertexAttributes );
var capabilities = {};
var compressedTextureFormats = null;
var currentBlending = null;
var currentBlendEquation = null;
var currentBlendSrc = null;
var currentBlendDst = null;
var currentBlendEquationAlpha = null;
var currentBlendSrcAlpha = null;
var currentBlendDstAlpha = null;
var currentPremultipledAlpha = false;
var currentDepthFunc = null;
var currentDepthWrite = null;
var currentColorWrite = null;
var currentStencilWrite = null;
var currentStencilFunc = null;
var currentStencilRef = null;
var currentStencilMask = null;
var currentStencilFail = null;
var currentStencilZFail = null;
var currentStencilZPass = null;
var currentFlipSided = null;
var currentLineWidth = null;
var currentPolygonOffsetFactor = null;
var currentPolygonOffsetUnits = null;
var currentScissorTest = null;
var maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS );
var currentTextureSlot = undefined;
var currentBoundTextures = {};
var currentClearColor = new THREE.Vector4();
var currentClearDepth = null;
var currentClearStencil = null;
var currentScissor = new THREE.Vector4();
var currentViewport = new THREE.Vector4();
this.init = function () {
this.clearColor( 0, 0, 0, 1 );
this.clearDepth( 1 );
this.clearStencil( 0 );
this.enable( gl.DEPTH_TEST );
gl.depthFunc( gl.LEQUAL );
gl.frontFace( gl.CCW );
gl.cullFace( gl.BACK );
this.enable( gl.CULL_FACE );
this.enable( gl.BLEND );
gl.blendEquation( gl.FUNC_ADD );
gl.blendFunc( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA );
};
this.initAttributes = function () {
for ( var i = 0, l = newAttributes.length; i < l; i ++ ) {
newAttributes[ i ] = 0;
}
};
this.enableAttribute = function ( attribute ) {
newAttributes[ attribute ] = 1;
if ( enabledAttributes[ attribute ] === 0 ) {
gl.enableVertexAttribArray( attribute );
enabledAttributes[ attribute ] = 1;
}
if ( attributeDivisors[ attribute ] !== 0 ) {
var extension = extensions.get( 'ANGLE_instanced_arrays' );
extension.vertexAttribDivisorANGLE( attribute, 0 );
attributeDivisors[ attribute ] = 0;
}
};
this.enableAttributeAndDivisor = function ( attribute, meshPerAttribute, extension ) {
newAttributes[ attribute ] = 1;
if ( enabledAttributes[ attribute ] === 0 ) {
gl.enableVertexAttribArray( attribute );
enabledAttributes[ attribute ] = 1;
}
if ( attributeDivisors[ attribute ] !== meshPerAttribute ) {
extension.vertexAttribDivisorANGLE( attribute, meshPerAttribute );
attributeDivisors[ attribute ] = meshPerAttribute;
}
};
this.disableUnusedAttributes = function () {
for ( var i = 0, l = enabledAttributes.length; i < l; i ++ ) {
if ( enabledAttributes[ i ] !== newAttributes[ i ] ) {
gl.disableVertexAttribArray( i );
enabledAttributes[ i ] = 0;
}
}
};
this.enable = function ( id ) {
if ( capabilities[ id ] !== true ) {
gl.enable( id );
capabilities[ id ] = true;
}
};
this.disable = function ( id ) {
if ( capabilities[ id ] !== false ) {
gl.disable( id );
capabilities[ id ] = false;
}
};
this.getCompressedTextureFormats = function () {
if ( compressedTextureFormats === null ) {
compressedTextureFormats = [];
if ( extensions.get( 'WEBGL_compressed_texture_pvrtc' ) ||
extensions.get( 'WEBGL_compressed_texture_s3tc' ) ||
extensions.get( 'WEBGL_compressed_texture_etc1' ) ) {
var formats = gl.getParameter( gl.COMPRESSED_TEXTURE_FORMATS );
for ( var i = 0; i < formats.length; i ++ ) {
compressedTextureFormats.push( formats[ i ] );
}
}
}
return compressedTextureFormats;
};
this.setBlending = function ( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) {
if ( blending === THREE.NoBlending ) {
this.disable( gl.BLEND );
} else {
this.enable( gl.BLEND );
}
if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) {
if ( blending === THREE.AdditiveBlending ) {
if ( premultipliedAlpha ) {
gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
gl.blendFuncSeparate( gl.ONE, gl.ONE, gl.ONE, gl.ONE );
} else {
gl.blendEquation( gl.FUNC_ADD );
gl.blendFunc( gl.SRC_ALPHA, gl.ONE );
}
} else if ( blending === THREE.SubtractiveBlending ) {
if ( premultipliedAlpha ) {
gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
gl.blendFuncSeparate( gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA );
} else {
gl.blendEquation( gl.FUNC_ADD );
gl.blendFunc( gl.ZERO, gl.ONE_MINUS_SRC_COLOR );
}
} else if ( blending === THREE.MultiplyBlending ) {
if ( premultipliedAlpha ) {
gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
gl.blendFuncSeparate( gl.ZERO, gl.ZERO, gl.SRC_COLOR, gl.SRC_ALPHA );
} else {
gl.blendEquation( gl.FUNC_ADD );
gl.blendFunc( gl.ZERO, gl.SRC_COLOR );
}
} else {
if ( premultipliedAlpha ) {
gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA );
} else {
gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA );
}
}
currentBlending = blending;
currentPremultipledAlpha = premultipliedAlpha;
}
if ( blending === THREE.CustomBlending ) {
blendEquationAlpha = blendEquationAlpha || blendEquation;
blendSrcAlpha = blendSrcAlpha || blendSrc;
blendDstAlpha = blendDstAlpha || blendDst;
if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) {
gl.blendEquationSeparate( paramThreeToGL( blendEquation ), paramThreeToGL( blendEquationAlpha ) );
currentBlendEquation = blendEquation;
currentBlendEquationAlpha = blendEquationAlpha;
}
if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) {
gl.blendFuncSeparate( paramThreeToGL( blendSrc ), paramThreeToGL( blendDst ), paramThreeToGL( blendSrcAlpha ), paramThreeToGL( blendDstAlpha ) );
currentBlendSrc = blendSrc;
currentBlendDst = blendDst;
currentBlendSrcAlpha = blendSrcAlpha;
currentBlendDstAlpha = blendDstAlpha;
}
} else {
currentBlendEquation = null;
currentBlendSrc = null;
currentBlendDst = null;
currentBlendEquationAlpha = null;
currentBlendSrcAlpha = null;
currentBlendDstAlpha = null;
}
};
this.setDepthFunc = function ( depthFunc ) {
if ( currentDepthFunc !== depthFunc ) {
if ( depthFunc ) {
switch ( depthFunc ) {
case THREE.NeverDepth:
gl.depthFunc( gl.NEVER );
break;
case THREE.AlwaysDepth:
gl.depthFunc( gl.ALWAYS );
break;
case THREE.LessDepth:
gl.depthFunc( gl.LESS );
break;
case THREE.LessEqualDepth:
gl.depthFunc( gl.LEQUAL );
break;
case THREE.EqualDepth:
gl.depthFunc( gl.EQUAL );
break;
case THREE.GreaterEqualDepth:
gl.depthFunc( gl.GEQUAL );
break;
case THREE.GreaterDepth:
gl.depthFunc( gl.GREATER );
break;
case THREE.NotEqualDepth:
gl.depthFunc( gl.NOTEQUAL );
break;
default:
gl.depthFunc( gl.LEQUAL );
}
} else {
gl.depthFunc( gl.LEQUAL );
}
currentDepthFunc = depthFunc;
}
};
this.setDepthTest = function ( depthTest ) {
if ( depthTest ) {
this.enable( gl.DEPTH_TEST );
} else {
this.disable( gl.DEPTH_TEST );
}
};
this.setDepthWrite = function ( depthWrite ) {
// TODO: Rename to setDepthMask
if ( currentDepthWrite !== depthWrite ) {
gl.depthMask( depthWrite );
currentDepthWrite = depthWrite;
}
};
this.setColorWrite = function ( colorWrite ) {
// TODO: Rename to setColorMask
if ( currentColorWrite !== colorWrite ) {
gl.colorMask( colorWrite, colorWrite, colorWrite, colorWrite );
currentColorWrite = colorWrite;
}
};
this.setStencilFunc = function ( stencilFunc, stencilRef, stencilMask ) {
if ( currentStencilFunc !== stencilFunc ||
currentStencilRef !== stencilRef ||
currentStencilMask !== stencilMask ) {
gl.stencilFunc( stencilFunc, stencilRef, stencilMask );
currentStencilFunc = stencilFunc;
currentStencilRef = stencilRef;
currentStencilMask = stencilMask;
}
};
this.setStencilOp = function ( stencilFail, stencilZFail, stencilZPass ) {
if ( currentStencilFail !== stencilFail ||
currentStencilZFail !== stencilZFail ||
currentStencilZPass !== stencilZPass ) {
gl.stencilOp( stencilFail, stencilZFail, stencilZPass );
currentStencilFail = stencilFail;
currentStencilZFail = stencilZFail;
currentStencilZPass = stencilZPass;
}
};
this.setStencilTest = function ( stencilTest ) {
if ( stencilTest ) {
this.enable( gl.STENCIL_TEST );
} else {
this.disable( gl.STENCIL_TEST );
}
};
this.setStencilWrite = function ( stencilWrite ) {
// TODO: Rename to setStencilMask
if ( currentStencilWrite !== stencilWrite ) {
gl.stencilMask( stencilWrite );
currentStencilWrite = stencilWrite;
}
};
this.setFlipSided = function ( flipSided ) {
if ( currentFlipSided !== flipSided ) {
if ( flipSided ) {
gl.frontFace( gl.CW );
} else {
gl.frontFace( gl.CCW );
}
currentFlipSided = flipSided;
}
};
this.setLineWidth = function ( width ) {
if ( width !== currentLineWidth ) {
gl.lineWidth( width );
currentLineWidth = width;
}
};
this.setPolygonOffset = function ( polygonOffset, factor, units ) {
if ( polygonOffset ) {
this.enable( gl.POLYGON_OFFSET_FILL );
} else {
this.disable( gl.POLYGON_OFFSET_FILL );
}
if ( polygonOffset && ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) ) {
gl.polygonOffset( factor, units );
currentPolygonOffsetFactor = factor;
currentPolygonOffsetUnits = units;
}
};
this.getScissorTest = function () {
return currentScissorTest;
};
this.setScissorTest = function ( scissorTest ) {
currentScissorTest = scissorTest;
if ( scissorTest ) {
this.enable( gl.SCISSOR_TEST );
} else {
this.disable( gl.SCISSOR_TEST );
}
};
// texture
this.activeTexture = function ( webglSlot ) {
if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1;
if ( currentTextureSlot !== webglSlot ) {
gl.activeTexture( webglSlot );
currentTextureSlot = webglSlot;
}
};
this.bindTexture = function ( webglType, webglTexture ) {
if ( currentTextureSlot === undefined ) {
_this.activeTexture();
}
var boundTexture = currentBoundTextures[ currentTextureSlot ];
if ( boundTexture === undefined ) {
boundTexture = { type: undefined, texture: undefined };
currentBoundTextures[ currentTextureSlot ] = boundTexture;
}
if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) {
gl.bindTexture( webglType, webglTexture );
boundTexture.type = webglType;
boundTexture.texture = webglTexture;
}
};
this.compressedTexImage2D = function () {
try {
gl.compressedTexImage2D.apply( gl, arguments );
} catch ( error ) {
console.error( error );
}
};
this.texImage2D = function () {
try {
gl.texImage2D.apply( gl, arguments );
} catch ( error ) {
console.error( error );
}
};
// clear values
this.clearColor = function ( r, g, b, a ) {
color.set( r, g, b, a );
if ( currentClearColor.equals( color ) === false ) {
gl.clearColor( r, g, b, a );
currentClearColor.copy( color );
}
};
this.clearDepth = function ( depth ) {
if ( currentClearDepth !== depth ) {
gl.clearDepth( depth );
currentClearDepth = depth;
}
};
this.clearStencil = function ( stencil ) {
if ( currentClearStencil !== stencil ) {
gl.clearStencil( stencil );
currentClearStencil = stencil;
}
};
//
this.scissor = function ( scissor ) {
if ( currentScissor.equals( scissor ) === false ) {
gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w );
currentScissor.copy( scissor );
}
};
this.viewport = function ( viewport ) {
if ( currentViewport.equals( viewport ) === false ) {
gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w );
currentViewport.copy( viewport );
}
};
//
this.reset = function () {
for ( var i = 0; i < enabledAttributes.length; i ++ ) {
if ( enabledAttributes[ i ] === 1 ) {
gl.disableVertexAttribArray( i );
enabledAttributes[ i ] = 0;
}
}
capabilities = {};
compressedTextureFormats = null;
currentTextureSlot = undefined;
currentBoundTextures = {};
currentBlending = null;
currentColorWrite = null;
currentDepthWrite = null;
currentStencilWrite = null;
currentFlipSided = null;
};
};
// File:src/renderers/webgl/WebGLUniforms.js
/**
*
* Uniforms of a program.
* Those form a tree structure with a special top-level container for the root,
* which you get by calling 'new WebGLUniforms( gl, program, renderer )'.
*
*
* Properties of inner nodes including the top-level container:
*
* .seq - array of nested uniforms
* .map - nested uniforms by name
*
*
* Methods of all nodes except the top-level container:
*
* .setValue( gl, value, [renderer] )
*
* uploads a uniform value(s)
* the 'renderer' parameter is needed for sampler uniforms
*
*
* Static methods of the top-level container (renderer factorizations):
*
* .upload( gl, seq, values, renderer )
*
* sets uniforms in 'seq' to 'values[id].value'
*
* .seqWithValue( seq, values ) : filteredSeq
*
* filters 'seq' entries with corresponding entry in values
*
* .splitDynamic( seq, values ) : filteredSeq
*
* filters 'seq' entries with dynamic entry and removes them from 'seq'
*
*
* Methods of the top-level container (renderer factorizations):
*
* .setValue( gl, name, value )
*
* sets uniform with name 'name' to 'value'
*
* .set( gl, obj, prop )
*
* sets uniform from object and property with same name than uniform
*
* .setOptional( gl, obj, prop )
*
* like .set for an optional property of the object
*
*
* @author tschw
*
*/
THREE.WebGLUniforms = ( function() { // scope
// --- Base for inner nodes (including the root) ---
var UniformContainer = function() {
this.seq = [];
this.map = {};
},
// --- Utilities ---
// Array Caches (provide typed arrays for temporary by size)
arrayCacheF32 = [],
arrayCacheI32 = [],
uncacheTemporaryArrays = function() {
arrayCacheF32.length = 0;
arrayCacheI32.length = 0;
},
// Flattening for arrays of vectors and matrices
flatten = function( array, nBlocks, blockSize ) {
var firstElem = array[ 0 ];
if ( firstElem <= 0 || firstElem > 0 ) return array;
// unoptimized: ! isNaN( firstElem )
// see http://jacksondunstan.com/articles/983
var n = nBlocks * blockSize,
r = arrayCacheF32[ n ];
if ( r === undefined ) {
r = new Float32Array( n );
arrayCacheF32[ n ] = r;
}
if ( nBlocks !== 0 ) {
firstElem.toArray( r, 0 );
for ( var i = 1, offset = 0; i !== nBlocks; ++ i ) {
offset += blockSize;
array[ i ].toArray( r, offset );
}
}
return r;
},
// Texture unit allocation
allocTexUnits = function( renderer, n ) {
var r = arrayCacheI32[ n ];
if ( r === undefined ) {
r = new Int32Array( n );
arrayCacheI32[ n ] = r;
}
for ( var i = 0; i !== n; ++ i )
r[ i ] = renderer.allocTextureUnit();
return r;
},
// --- Setters ---
// Note: Defining these methods externally, because they come in a bunch
// and this way their names minify.
// Single scalar
setValue1f = function( gl, v ) { gl.uniform1f( this.addr, v ); },
setValue1i = function( gl, v ) { gl.uniform1i( this.addr, v ); },
// Single float vector (from flat array or THREE.VectorN)
setValue2fv = function( gl, v ) {
if ( v.x === undefined ) gl.uniform2fv( this.addr, v );
else gl.uniform2f( this.addr, v.x, v.y );
},
setValue3fv = function( gl, v ) {
if ( v.x !== undefined )
gl.uniform3f( this.addr, v.x, v.y, v.z );
else if ( v.r !== undefined )
gl.uniform3f( this.addr, v.r, v.g, v.b );
else
gl.uniform3fv( this.addr, v );
},
setValue4fv = function( gl, v ) {
if ( v.x === undefined ) gl.uniform4fv( this.addr, v );
else gl.uniform4f( this.addr, v.x, v.y, v.z, v.w );
},
// Single matrix (from flat array or MatrixN)
setValue2fm = function( gl, v ) {
gl.uniformMatrix2fv( this.addr, false, v.elements || v );
},
setValue3fm = function( gl, v ) {
gl.uniformMatrix3fv( this.addr, false, v.elements || v );
},
setValue4fm = function( gl, v ) {
gl.uniformMatrix4fv( this.addr, false, v.elements || v );
},
// Single texture (2D / Cube)
setValueT1 = function( gl, v, renderer ) {
var unit = renderer.allocTextureUnit();
gl.uniform1i( this.addr, unit );
if ( v ) renderer.setTexture2D( v, unit );
},
setValueT6 = function( gl, v, renderer ) {
var unit = renderer.allocTextureUnit();
gl.uniform1i( this.addr, unit );
if ( v ) renderer.setTextureCube( v, unit );
},
// Integer / Boolean vectors or arrays thereof (always flat arrays)
setValue2iv = function( gl, v ) { gl.uniform2iv( this.addr, v ); },
setValue3iv = function( gl, v ) { gl.uniform3iv( this.addr, v ); },
setValue4iv = function( gl, v ) { gl.uniform4iv( this.addr, v ); },
// Helper to pick the right setter for the singular case
getSingularSetter = function( type ) {
switch ( type ) {
case 0x1406: return setValue1f; // FLOAT
case 0x8b50: return setValue2fv; // _VEC2
case 0x8b51: return setValue3fv; // _VEC3
case 0x8b52: return setValue4fv; // _VEC4
case 0x8b5a: return setValue2fm; // _MAT2
case 0x8b5b: return setValue3fm; // _MAT3
case 0x8b5c: return setValue4fm; // _MAT4
case 0x8b5e: return setValueT1; // SAMPLER_2D
case 0x8b60: return setValueT6; // SAMPLER_CUBE
case 0x1404: case 0x8b56: return setValue1i; // INT, BOOL
case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2
case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3
case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4
}
},
// Array of scalars
setValue1fv = function( gl, v ) { gl.uniform1fv( this.addr, v ); },
setValue1iv = function( gl, v ) { gl.uniform1iv( this.addr, v ); },
// Array of vectors (flat or from THREE classes)
setValueV2a = function( gl, v ) {
gl.uniform2fv( this.addr, flatten( v, this.size, 2 ) );
},
setValueV3a = function( gl, v ) {
gl.uniform3fv( this.addr, flatten( v, this.size, 3 ) );
},
setValueV4a = function( gl, v ) {
gl.uniform4fv( this.addr, flatten( v, this.size, 4 ) );
},
// Array of matrices (flat or from THREE clases)
setValueM2a = function( gl, v ) {
gl.uniformMatrix2fv( this.addr, false, flatten( v, this.size, 4 ) );
},
setValueM3a = function( gl, v ) {
gl.uniformMatrix3fv( this.addr, false, flatten( v, this.size, 9 ) );
},
setValueM4a = function( gl, v ) {
gl.uniformMatrix4fv( this.addr, false, flatten( v, this.size, 16 ) );
},
// Array of textures (2D / Cube)
setValueT1a = function( gl, v, renderer ) {
var n = v.length,
units = allocTexUnits( renderer, n );
gl.uniform1iv( this.addr, units );
for ( var i = 0; i !== n; ++ i ) {
var tex = v[ i ];
if ( tex ) renderer.setTexture2D( tex, units[ i ] );
}
},
setValueT6a = function( gl, v, renderer ) {
var n = v.length,
units = allocTexUnits( renderer, n );
gl.uniform1iv( this.addr, units );
for ( var i = 0; i !== n; ++ i ) {
var tex = v[ i ];
if ( tex ) renderer.setTextureCube( tex, units[ i ] );
}
},
// Helper to pick the right setter for a pure (bottom-level) array
getPureArraySetter = function( type ) {
switch ( type ) {
case 0x1406: return setValue1fv; // FLOAT
case 0x8b50: return setValueV2a; // _VEC2
case 0x8b51: return setValueV3a; // _VEC3
case 0x8b52: return setValueV4a; // _VEC4
case 0x8b5a: return setValueM2a; // _MAT2
case 0x8b5b: return setValueM3a; // _MAT3
case 0x8b5c: return setValueM4a; // _MAT4
case 0x8b5e: return setValueT1a; // SAMPLER_2D
case 0x8b60: return setValueT6a; // SAMPLER_CUBE
case 0x1404: case 0x8b56: return setValue1iv; // INT, BOOL
case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2
case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3
case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4
}
},
// --- Uniform Classes ---
SingleUniform = function SingleUniform( id, activeInfo, addr ) {
this.id = id;
this.addr = addr;
this.setValue = getSingularSetter( activeInfo.type );
// this.path = activeInfo.name; // DEBUG
},
PureArrayUniform = function( id, activeInfo, addr ) {
this.id = id;
this.addr = addr;
this.size = activeInfo.size;
this.setValue = getPureArraySetter( activeInfo.type );
// this.path = activeInfo.name; // DEBUG
},
StructuredUniform = function( id ) {
this.id = id;
UniformContainer.call( this ); // mix-in
};
StructuredUniform.prototype.setValue = function( gl, value ) {
// Note: Don't need an extra 'renderer' parameter, since samplers
// are not allowed in structured uniforms.
var seq = this.seq;
for ( var i = 0, n = seq.length; i !== n; ++ i ) {
var u = seq[ i ];
u.setValue( gl, value[ u.id ] );
}
};
// --- Top-level ---
// Parser - builds up the property tree from the path strings
var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g,
// extracts
// - the identifier (member name or array index)
// - followed by an optional right bracket (found when array index)
// - followed by an optional left bracket or dot (type of subscript)
//
// Note: These portions can be read in a non-overlapping fashion and
// allow straightforward parsing of the hierarchy that WebGL encodes
// in the uniform names.
addUniform = function( container, uniformObject ) {
container.seq.push( uniformObject );
container.map[ uniformObject.id ] = uniformObject;
},
parseUniform = function( activeInfo, addr, container ) {
var path = activeInfo.name,
pathLength = path.length;
// reset RegExp object, because of the early exit of a previous run
RePathPart.lastIndex = 0;
for (; ;) {
var match = RePathPart.exec( path ),
matchEnd = RePathPart.lastIndex,
id = match[ 1 ],
idIsIndex = match[ 2 ] === ']',
subscript = match[ 3 ];
if ( idIsIndex ) id = id | 0; // convert to integer
if ( subscript === undefined ||
subscript === '[' && matchEnd + 2 === pathLength ) {
// bare name or "pure" bottom-level array "[0]" suffix
addUniform( container, subscript === undefined ?
new SingleUniform( id, activeInfo, addr ) :
new PureArrayUniform( id, activeInfo, addr ) );
break;
} else {
// step into inner node / create it in case it doesn't exist
var map = container.map,
next = map[ id ];
if ( next === undefined ) {
next = new StructuredUniform( id );
addUniform( container, next );
}
container = next;
}
}
},
// Root Container
WebGLUniforms = function WebGLUniforms( gl, program, renderer ) {
UniformContainer.call( this );
this.renderer = renderer;
var n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS );
for ( var i = 0; i !== n; ++ i ) {
var info = gl.getActiveUniform( program, i ),
path = info.name,
addr = gl.getUniformLocation( program, path );
parseUniform( info, addr, this );
}
};
WebGLUniforms.prototype.setValue = function( gl, name, value ) {
var u = this.map[ name ];
if ( u !== undefined ) u.setValue( gl, value, this.renderer );
};
WebGLUniforms.prototype.set = function( gl, object, name ) {
var u = this.map[ name ];
if ( u !== undefined ) u.setValue( gl, object[ name ], this.renderer );
};
WebGLUniforms.prototype.setOptional = function( gl, object, name ) {
var v = object[ name ];
if ( v !== undefined ) this.setValue( gl, name, v );
};
// Static interface
WebGLUniforms.upload = function( gl, seq, values, renderer ) {
for ( var i = 0, n = seq.length; i !== n; ++ i ) {
var u = seq[ i ],
v = values[ u.id ];
if ( v.needsUpdate !== false ) {
// note: always updating when .needsUpdate is undefined
u.setValue( gl, v.value, renderer );
}
}
};
WebGLUniforms.seqWithValue = function( seq, values ) {
var r = [];
for ( var i = 0, n = seq.length; i !== n; ++ i ) {
var u = seq[ i ];
if ( u.id in values ) r.push( u );
}
return r;
};
WebGLUniforms.splitDynamic = function( seq, values ) {
var r = null,
n = seq.length,
w = 0;
for ( var i = 0; i !== n; ++ i ) {
var u = seq[ i ],
v = values[ u.id ];
if ( v && v.dynamic === true ) {
if ( r === null ) r = [];
r.push( u );
} else {
// in-place compact 'seq', removing the matches
if ( w < i ) seq[ w ] = u;
++ w;
}
}
if ( w < n ) seq.length = w;
return r;
};
WebGLUniforms.evalDynamic = function( seq, values, object, camera ) {
for ( var i = 0, n = seq.length; i !== n; ++ i ) {
var v = values[ seq[ i ].id ],
f = v.onUpdateCallback;
if ( f !== undefined ) f.call( v, object, camera );
}
};
return WebGLUniforms;
} )();
// File:src/renderers/webgl/plugins/LensFlarePlugin.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.LensFlarePlugin = function ( renderer, flares ) {
var gl = renderer.context;
var state = renderer.state;
var vertexBuffer, elementBuffer;
var shader, program, attributes, uniforms;
var tempTexture, occlusionTexture;
function init() {
var vertices = new Float32Array( [
- 1, - 1, 0, 0,
1, - 1, 1, 0,
1, 1, 1, 1,
- 1, 1, 0, 1
] );
var faces = new Uint16Array( [
0, 1, 2,
0, 2, 3
] );
// buffers
vertexBuffer = gl.createBuffer();
elementBuffer = gl.createBuffer();
gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW );
// textures
tempTexture = gl.createTexture();
occlusionTexture = gl.createTexture();
state.bindTexture( gl.TEXTURE_2D, tempTexture );
gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGB, 16, 16, 0, gl.RGB, gl.UNSIGNED_BYTE, null );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST );
state.bindTexture( gl.TEXTURE_2D, occlusionTexture );
gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGBA, 16, 16, 0, gl.RGBA, gl.UNSIGNED_BYTE, null );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST );
shader = {
vertexShader: [
"uniform lowp int renderType;",
"uniform vec3 screenPosition;",
"uniform vec2 scale;",
"uniform float rotation;",
"uniform sampler2D occlusionMap;",
"attribute vec2 position;",
"attribute vec2 uv;",
"varying vec2 vUV;",
"varying float vVisibility;",
"void main() {",
"vUV = uv;",
"vec2 pos = position;",
"if ( renderType == 2 ) {",
"vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.5, 0.1 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.9, 0.1 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.9, 0.9 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.1, 0.9 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) );",
"visibility += texture2D( occlusionMap, vec2( 0.5, 0.5 ) );",
"vVisibility = visibility.r / 9.0;",
"vVisibility *= 1.0 - visibility.g / 9.0;",
"vVisibility *= visibility.b / 9.0;",
"vVisibility *= 1.0 - visibility.a / 9.0;",
"pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;",
"pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;",
"}",
"gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );",
"}"
].join( "\n" ),
fragmentShader: [
"uniform lowp int renderType;",
"uniform sampler2D map;",
"uniform float opacity;",
"uniform vec3 color;",
"varying vec2 vUV;",
"varying float vVisibility;",
"void main() {",
// pink square
"if ( renderType == 0 ) {",
"gl_FragColor = vec4( 1.0, 0.0, 1.0, 0.0 );",
// restore
"} else if ( renderType == 1 ) {",
"gl_FragColor = texture2D( map, vUV );",
// flare
"} else {",
"vec4 texture = texture2D( map, vUV );",
"texture.a *= opacity * vVisibility;",
"gl_FragColor = texture;",
"gl_FragColor.rgb *= color;",
"}",
"}"
].join( "\n" )
};
program = createProgram( shader );
attributes = {
vertex: gl.getAttribLocation ( program, "position" ),
uv: gl.getAttribLocation ( program, "uv" )
};
uniforms = {
renderType: gl.getUniformLocation( program, "renderType" ),
map: gl.getUniformLocation( program, "map" ),
occlusionMap: gl.getUniformLocation( program, "occlusionMap" ),
opacity: gl.getUniformLocation( program, "opacity" ),
color: gl.getUniformLocation( program, "color" ),
scale: gl.getUniformLocation( program, "scale" ),
rotation: gl.getUniformLocation( program, "rotation" ),
screenPosition: gl.getUniformLocation( program, "screenPosition" )
};
}
/*
* Render lens flares
* Method: renders 16x16 0xff00ff-colored points scattered over the light source area,
* reads these back and calculates occlusion.
*/
this.render = function ( scene, camera, viewport ) {
if ( flares.length === 0 ) return;
var tempPosition = new THREE.Vector3();
var invAspect = viewport.w / viewport.z,
halfViewportWidth = viewport.z * 0.5,
halfViewportHeight = viewport.w * 0.5;
var size = 16 / viewport.w,
scale = new THREE.Vector2( size * invAspect, size );
var screenPosition = new THREE.Vector3( 1, 1, 0 ),
screenPositionPixels = new THREE.Vector2( 1, 1 );
var validArea = new THREE.Box2();
validArea.min.set( 0, 0 );
validArea.max.set( viewport.z - 16, viewport.w - 16 );
if ( program === undefined ) {
init();
}
gl.useProgram( program );
state.initAttributes();
state.enableAttribute( attributes.vertex );
state.enableAttribute( attributes.uv );
state.disableUnusedAttributes();
// loop through all lens flares to update their occlusion and positions
// setup gl and common used attribs/uniforms
gl.uniform1i( uniforms.occlusionMap, 0 );
gl.uniform1i( uniforms.map, 1 );
gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
gl.vertexAttribPointer( attributes.vertex, 2, gl.FLOAT, false, 2 * 8, 0 );
gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
state.disable( gl.CULL_FACE );
state.setDepthWrite( false );
for ( var i = 0, l = flares.length; i < l; i ++ ) {
size = 16 / viewport.w;
scale.set( size * invAspect, size );
// calc object screen position
var flare = flares[ i ];
tempPosition.set( flare.matrixWorld.elements[ 12 ], flare.matrixWorld.elements[ 13 ], flare.matrixWorld.elements[ 14 ] );
tempPosition.applyMatrix4( camera.matrixWorldInverse );
tempPosition.applyProjection( camera.projectionMatrix );
// setup arrays for gl programs
screenPosition.copy( tempPosition );
// horizontal and vertical coordinate of the lower left corner of the pixels to copy
screenPositionPixels.x = viewport.x + ( screenPosition.x * halfViewportWidth ) + halfViewportWidth - 8;
screenPositionPixels.y = viewport.y + ( screenPosition.y * halfViewportHeight ) + halfViewportHeight - 8;
// screen cull
if ( validArea.containsPoint( screenPositionPixels ) === true ) {
// save current RGB to temp texture
state.activeTexture( gl.TEXTURE0 );
state.bindTexture( gl.TEXTURE_2D, null );
state.activeTexture( gl.TEXTURE1 );
state.bindTexture( gl.TEXTURE_2D, tempTexture );
gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGB, screenPositionPixels.x, screenPositionPixels.y, 16, 16, 0 );
// render pink quad
gl.uniform1i( uniforms.renderType, 0 );
gl.uniform2f( uniforms.scale, scale.x, scale.y );
gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z );
state.disable( gl.BLEND );
state.enable( gl.DEPTH_TEST );
gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );
// copy result to occlusionMap
state.activeTexture( gl.TEXTURE0 );
state.bindTexture( gl.TEXTURE_2D, occlusionTexture );
gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGBA, screenPositionPixels.x, screenPositionPixels.y, 16, 16, 0 );
// restore graphics
gl.uniform1i( uniforms.renderType, 1 );
state.disable( gl.DEPTH_TEST );
state.activeTexture( gl.TEXTURE1 );
state.bindTexture( gl.TEXTURE_2D, tempTexture );
gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );
// update object positions
flare.positionScreen.copy( screenPosition );
if ( flare.customUpdateCallback ) {
flare.customUpdateCallback( flare );
} else {
flare.updateLensFlares();
}
// render flares
gl.uniform1i( uniforms.renderType, 2 );
state.enable( gl.BLEND );
for ( var j = 0, jl = flare.lensFlares.length; j < jl; j ++ ) {
var sprite = flare.lensFlares[ j ];
if ( sprite.opacity > 0.001 && sprite.scale > 0.001 ) {
screenPosition.x = sprite.x;
screenPosition.y = sprite.y;
screenPosition.z = sprite.z;
size = sprite.size * sprite.scale / viewport.w;
scale.x = size * invAspect;
scale.y = size;
gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z );
gl.uniform2f( uniforms.scale, scale.x, scale.y );
gl.uniform1f( uniforms.rotation, sprite.rotation );
gl.uniform1f( uniforms.opacity, sprite.opacity );
gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b );
state.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst );
renderer.setTexture2D( sprite.texture, 1 );
gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );
}
}
}
}
// restore gl
state.enable( gl.CULL_FACE );
state.enable( gl.DEPTH_TEST );
state.setDepthWrite( true );
renderer.resetGLState();
};
function createProgram ( shader ) {
var program = gl.createProgram();
var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER );
var vertexShader = gl.createShader( gl.VERTEX_SHADER );
var prefix = "precision " + renderer.getPrecision() + " float;\n";
gl.shaderSource( fragmentShader, prefix + shader.fragmentShader );
gl.shaderSource( vertexShader, prefix + shader.vertexShader );
gl.compileShader( fragmentShader );
gl.compileShader( vertexShader );
gl.attachShader( program, fragmentShader );
gl.attachShader( program, vertexShader );
gl.linkProgram( program );
return program;
}
};
// File:src/renderers/webgl/plugins/SpritePlugin.js
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.SpritePlugin = function ( renderer, sprites ) {
var gl = renderer.context;
var state = renderer.state;
var vertexBuffer, elementBuffer;
var program, attributes, uniforms;
var texture;
// decompose matrixWorld
var spritePosition = new THREE.Vector3();
var spriteRotation = new THREE.Quaternion();
var spriteScale = new THREE.Vector3();
function init() {
var vertices = new Float32Array( [
- 0.5, - 0.5, 0, 0,
0.5, - 0.5, 1, 0,
0.5, 0.5, 1, 1,
- 0.5, 0.5, 0, 1
] );
var faces = new Uint16Array( [
0, 1, 2,
0, 2, 3
] );
vertexBuffer = gl.createBuffer();
elementBuffer = gl.createBuffer();
gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW );
program = createProgram();
attributes = {
position: gl.getAttribLocation ( program, 'position' ),
uv: gl.getAttribLocation ( program, 'uv' )
};
uniforms = {
uvOffset: gl.getUniformLocation( program, 'uvOffset' ),
uvScale: gl.getUniformLocation( program, 'uvScale' ),
rotation: gl.getUniformLocation( program, 'rotation' ),
scale: gl.getUniformLocation( program, 'scale' ),
color: gl.getUniformLocation( program, 'color' ),
map: gl.getUniformLocation( program, 'map' ),
opacity: gl.getUniformLocation( program, 'opacity' ),
modelViewMatrix: gl.getUniformLocation( program, 'modelViewMatrix' ),
projectionMatrix: gl.getUniformLocation( program, 'projectionMatrix' ),
fogType: gl.getUniformLocation( program, 'fogType' ),
fogDensity: gl.getUniformLocation( program, 'fogDensity' ),
fogNear: gl.getUniformLocation( program, 'fogNear' ),
fogFar: gl.getUniformLocation( program, 'fogFar' ),
fogColor: gl.getUniformLocation( program, 'fogColor' ),
alphaTest: gl.getUniformLocation( program, 'alphaTest' )
};
var canvas = document.createElement( 'canvas' );
canvas.width = 8;
canvas.height = 8;
var context = canvas.getContext( '2d' );
context.fillStyle = 'white';
context.fillRect( 0, 0, 8, 8 );
texture = new THREE.Texture( canvas );
texture.needsUpdate = true;
}
this.render = function ( scene, camera ) {
if ( sprites.length === 0 ) return;
// setup gl
if ( program === undefined ) {
init();
}
gl.useProgram( program );
state.initAttributes();
state.enableAttribute( attributes.position );
state.enableAttribute( attributes.uv );
state.disableUnusedAttributes();
state.disable( gl.CULL_FACE );
state.enable( gl.BLEND );
gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
gl.vertexAttribPointer( attributes.position, 2, gl.FLOAT, false, 2 * 8, 0 );
gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
gl.uniformMatrix4fv( uniforms.projectionMatrix, false, camera.projectionMatrix.elements );
state.activeTexture( gl.TEXTURE0 );
gl.uniform1i( uniforms.map, 0 );
var oldFogType = 0;
var sceneFogType = 0;
var fog = scene.fog;
if ( fog ) {
gl.uniform3f( uniforms.fogColor, fog.color.r, fog.color.g, fog.color.b );
if ( fog instanceof THREE.Fog ) {
gl.uniform1f( uniforms.fogNear, fog.near );
gl.uniform1f( uniforms.fogFar, fog.far );
gl.uniform1i( uniforms.fogType, 1 );
oldFogType = 1;
sceneFogType = 1;
} else if ( fog instanceof THREE.FogExp2 ) {
gl.uniform1f( uniforms.fogDensity, fog.density );
gl.uniform1i( uniforms.fogType, 2 );
oldFogType = 2;
sceneFogType = 2;
}
} else {
gl.uniform1i( uniforms.fogType, 0 );
oldFogType = 0;
sceneFogType = 0;
}
// update positions and sort
for ( var i = 0, l = sprites.length; i < l; i ++ ) {
var sprite = sprites[ i ];
sprite.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, sprite.matrixWorld );
sprite.z = - sprite.modelViewMatrix.elements[ 14 ];
}
sprites.sort( painterSortStable );
// render all sprites
var scale = [];
for ( var i = 0, l = sprites.length; i < l; i ++ ) {
var sprite = sprites[ i ];
var material = sprite.material;
gl.uniform1f( uniforms.alphaTest, material.alphaTest );
gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, sprite.modelViewMatrix.elements );
sprite.matrixWorld.decompose( spritePosition, spriteRotation, spriteScale );
scale[ 0 ] = spriteScale.x;
scale[ 1 ] = spriteScale.y;
var fogType = 0;
if ( scene.fog && material.fog ) {
fogType = sceneFogType;
}
if ( oldFogType !== fogType ) {
gl.uniform1i( uniforms.fogType, fogType );
oldFogType = fogType;
}
if ( material.map !== null ) {
gl.uniform2f( uniforms.uvOffset, material.map.offset.x, material.map.offset.y );
gl.uniform2f( uniforms.uvScale, material.map.repeat.x, material.map.repeat.y );
} else {
gl.uniform2f( uniforms.uvOffset, 0, 0 );
gl.uniform2f( uniforms.uvScale, 1, 1 );
}
gl.uniform1f( uniforms.opacity, material.opacity );
gl.uniform3f( uniforms.color, material.color.r, material.color.g, material.color.b );
gl.uniform1f( uniforms.rotation, material.rotation );
gl.uniform2fv( uniforms.scale, scale );
state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst );
state.setDepthTest( material.depthTest );
state.setDepthWrite( material.depthWrite );
if ( material.map ) {
renderer.setTexture2D( material.map, 0 );
} else {
renderer.setTexture2D( texture, 0 );
}
gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );
}
// restore gl
state.enable( gl.CULL_FACE );
renderer.resetGLState();
};
function createProgram () {
var program = gl.createProgram();
var vertexShader = gl.createShader( gl.VERTEX_SHADER );
var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER );
gl.shaderSource( vertexShader, [
'precision ' + renderer.getPrecision() + ' float;',
'uniform mat4 modelViewMatrix;',
'uniform mat4 projectionMatrix;',
'uniform float rotation;',
'uniform vec2 scale;',
'uniform vec2 uvOffset;',
'uniform vec2 uvScale;',
'attribute vec2 position;',
'attribute vec2 uv;',
'varying vec2 vUV;',
'void main() {',
'vUV = uvOffset + uv * uvScale;',
'vec2 alignedPosition = position * scale;',
'vec2 rotatedPosition;',
'rotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;',
'rotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;',
'vec4 finalPosition;',
'finalPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );',
'finalPosition.xy += rotatedPosition;',
'finalPosition = projectionMatrix * finalPosition;',
'gl_Position = finalPosition;',
'}'
].join( '\n' ) );
gl.shaderSource( fragmentShader, [
'precision ' + renderer.getPrecision() + ' float;',
'uniform vec3 color;',
'uniform sampler2D map;',
'uniform float opacity;',
'uniform int fogType;',
'uniform vec3 fogColor;',
'uniform float fogDensity;',
'uniform float fogNear;',
'uniform float fogFar;',
'uniform float alphaTest;',
'varying vec2 vUV;',
'void main() {',
'vec4 texture = texture2D( map, vUV );',
'if ( texture.a < alphaTest ) discard;',
'gl_FragColor = vec4( color * texture.xyz, texture.a * opacity );',
'if ( fogType > 0 ) {',
'float depth = gl_FragCoord.z / gl_FragCoord.w;',
'float fogFactor = 0.0;',
'if ( fogType == 1 ) {',
'fogFactor = smoothstep( fogNear, fogFar, depth );',
'} else {',
'const float LOG2 = 1.442695;',
'fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );',
'fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );',
'}',
'gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );',
'}',
'}'
].join( '\n' ) );
gl.compileShader( vertexShader );
gl.compileShader( fragmentShader );
gl.attachShader( program, vertexShader );
gl.attachShader( program, fragmentShader );
gl.linkProgram( program );
return program;
}
function painterSortStable ( a, b ) {
if ( a.renderOrder !== b.renderOrder ) {
return a.renderOrder - b.renderOrder;
} else if ( a.z !== b.z ) {
return b.z - a.z;
} else {
return b.id - a.id;
}
}
};
// File:src/Three.Legacy.js
/**
* @author mrdoob / http://mrdoob.com/
*/
Object.defineProperties( THREE.Box2.prototype, {
empty: {
value: function () {
console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' );
return this.isEmpty();
}
},
isIntersectionBox: {
value: function ( box ) {
console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' );
return this.intersectsBox( box );
}
}
} );
Object.defineProperties( THREE.Box3.prototype, {
empty: {
value: function () {
console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' );
return this.isEmpty();
}
},
isIntersectionBox: {
value: function ( box ) {
console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' );
return this.intersectsBox( box );
}
},
isIntersectionSphere: {
value: function ( sphere ) {
console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
return this.intersectsSphere( sphere );
}
}
} );
Object.defineProperties( THREE.Matrix3.prototype, {
multiplyVector3: {
value: function ( vector ) {
console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' );
return vector.applyMatrix3( this );
}
},
multiplyVector3Array: {
value: function ( a ) {
console.warn( 'THREE.Matrix3: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' );
return this.applyToVector3Array( a );
}
}
} );
Object.defineProperties( THREE.Matrix4.prototype, {
extractPosition: {
value: function ( m ) {
console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' );
return this.copyPosition( m );
}
},
setRotationFromQuaternion: {
value: function ( q ) {
console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' );
return this.makeRotationFromQuaternion( q );
}
},
multiplyVector3: {
value: function ( vector ) {
console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) or vector.applyProjection( matrix ) instead.' );
return vector.applyProjection( this );
}
},
multiplyVector4: {
value: function ( vector ) {
console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
return vector.applyMatrix4( this );
}
},
multiplyVector3Array: {
value: function ( a ) {
console.warn( 'THREE.Matrix4: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' );
return this.applyToVector3Array( a );
}
},
rotateAxis: {
value: function ( v ) {
console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' );
v.transformDirection( this );
}
},
crossVector: {
value: function ( vector ) {
console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
return vector.applyMatrix4( this );
}
},
translate: {
value: function ( v ) {
console.error( 'THREE.Matrix4: .translate() has been removed.' );
}
},
rotateX: {
value: function ( angle ) {
console.error( 'THREE.Matrix4: .rotateX() has been removed.' );
}
},
rotateY: {
value: function ( angle ) {
console.error( 'THREE.Matrix4: .rotateY() has been removed.' );
}
},
rotateZ: {
value: function ( angle ) {
console.error( 'THREE.Matrix4: .rotateZ() has been removed.' );
}
},
rotateByAxis: {
value: function ( axis, angle ) {
console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' );
}
}
} );
Object.defineProperties( THREE.Plane.prototype, {
isIntersectionLine: {
value: function ( line ) {
console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' );
return this.intersectsLine( line );
}
}
} );
Object.defineProperties( THREE.Quaternion.prototype, {
multiplyVector3: {
value: function ( vector ) {
console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' );
return vector.applyQuaternion( this );
}
}
} );
Object.defineProperties( THREE.Ray.prototype, {
isIntersectionBox: {
value: function ( box ) {
console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' );
return this.intersectsBox( box );
}
},
isIntersectionPlane: {
value: function ( plane ) {
console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' );
return this.intersectsPlane( plane );
}
},
isIntersectionSphere: {
value: function ( sphere ) {
console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
return this.intersectsSphere( sphere );
}
}
} );
Object.defineProperties( THREE.Vector3.prototype, {
setEulerFromRotationMatrix: {
value: function () {
console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' );
}
},
setEulerFromQuaternion: {
value: function () {
console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' );
}
},
getPositionFromMatrix: {
value: function ( m ) {
console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' );
return this.setFromMatrixPosition( m );
}
},
getScaleFromMatrix: {
value: function ( m ) {
console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' );
return this.setFromMatrixScale( m );
}
},
getColumnFromMatrix: {
value: function ( index, matrix ) {
console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' );
return this.setFromMatrixColumn( index, matrix );
}
}
} );
//
THREE.Face4 = function ( a, b, c, d, normal, color, materialIndex ) {
console.warn( 'THREE.Face4 has been removed. A THREE.Face3 will be created instead.' );
return new THREE.Face3( a, b, c, normal, color, materialIndex );
};
THREE.Vertex = function ( x, y, z ) {
console.warn( 'THREE.Vertex has been removed. Use THREE.Vector3 instead.' );
return new THREE.Vector3( x, y, z );
};
//
Object.defineProperties( THREE.Object3D.prototype, {
eulerOrder: {
get: function () {
console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
return this.rotation.order;
},
set: function ( value ) {
console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
this.rotation.order = value;
}
},
getChildByName: {
value: function ( name ) {
console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' );
return this.getObjectByName( name );
}
},
renderDepth: {
set: function ( value ) {
console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' );
}
},
translate: {
value: function ( distance, axis ) {
console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' );
return this.translateOnAxis( axis, distance );
}
},
useQuaternion: {
get: function () {
console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );
},
set: function ( value ) {
console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );
}
}
} );
//
Object.defineProperties( THREE, {
PointCloud: {
value: function ( geometry, material ) {
console.warn( 'THREE.PointCloud has been renamed to THREE.Points.' );
return new THREE.Points( geometry, material );
}
},
ParticleSystem: {
value: function ( geometry, material ) {
console.warn( 'THREE.ParticleSystem has been renamed to THREE.Points.' );
return new THREE.Points( geometry, material );
}
}
} );
//
Object.defineProperties( THREE.Light.prototype, {
onlyShadow: {
set: function ( value ) {
console.warn( 'THREE.Light: .onlyShadow has been removed.' );
}
},
shadowCameraFov: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' );
this.shadow.camera.fov = value;
}
},
shadowCameraLeft: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' );
this.shadow.camera.left = value;
}
},
shadowCameraRight: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' );
this.shadow.camera.right = value;
}
},
shadowCameraTop: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' );
this.shadow.camera.top = value;
}
},
shadowCameraBottom: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' );
this.shadow.camera.bottom = value;
}
},
shadowCameraNear: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' );
this.shadow.camera.near = value;
}
},
shadowCameraFar: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' );
this.shadow.camera.far = value;
}
},
shadowCameraVisible: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' );
}
},
shadowBias: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' );
this.shadow.bias = value;
}
},
shadowDarkness: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowDarkness has been removed.' );
}
},
shadowMapWidth: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' );
this.shadow.mapSize.width = value;
}
},
shadowMapHeight: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' );
this.shadow.mapSize.height = value;
}
}
} );
//
Object.defineProperties( THREE.BufferAttribute.prototype, {
length: {
get: function () {
console.warn( 'THREE.BufferAttribute: .length has been deprecated. Please use .count.' );
return this.array.length;
}
}
} );
Object.defineProperties( THREE.BufferGeometry.prototype, {
drawcalls: {
get: function () {
console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' );
return this.groups;
}
},
offsets: {
get: function () {
console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' );
return this.groups;
}
},
addIndex: {
value: function ( index ) {
console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' );
this.setIndex( index );
}
},
addDrawCall: {
value: function ( start, count, indexOffset ) {
if ( indexOffset !== undefined ) {
console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' );
}
console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' );
this.addGroup( start, count );
}
},
clearDrawCalls: {
value: function () {
console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' );
this.clearGroups();
}
},
computeTangents: {
value: function () {
console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' );
}
},
computeOffsets: {
value: function () {
console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' );
}
}
} );
//
Object.defineProperties( THREE.Material.prototype, {
wrapAround: {
get: function () {
console.warn( 'THREE.' + this.type + ': .wrapAround has been removed.' );
},
set: function ( value ) {
console.warn( 'THREE.' + this.type + ': .wrapAround has been removed.' );
}
},
wrapRGB: {
get: function () {
console.warn( 'THREE.' + this.type + ': .wrapRGB has been removed.' );
return new THREE.Color();
}
}
} );
Object.defineProperties( THREE, {
PointCloudMaterial: {
value: function ( parameters ) {
console.warn( 'THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.' );
return new THREE.PointsMaterial( parameters );
}
},
ParticleBasicMaterial: {
value: function ( parameters ) {
console.warn( 'THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.' );
return new THREE.PointsMaterial( parameters );
}
},
ParticleSystemMaterial:{
value: function ( parameters ) {
console.warn( 'THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.' );
return new THREE.PointsMaterial( parameters );
}
}
} );
Object.defineProperties( THREE.MeshPhongMaterial.prototype, {
metal: {
get: function () {
console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' );
return false;
},
set: function ( value ) {
console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' );
}
}
} );
Object.defineProperties( THREE.ShaderMaterial.prototype, {
derivatives: {
get: function () {
console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
return this.extensions.derivatives;
},
set: function ( value ) {
console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
this.extensions.derivatives = value;
}
}
} );
//
Object.defineProperties( THREE.WebGLRenderer.prototype, {
supportsFloatTextures: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' );
return this.extensions.get( 'OES_texture_float' );
}
},
supportsHalfFloatTextures: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' );
return this.extensions.get( 'OES_texture_half_float' );
}
},
supportsStandardDerivatives: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' );
return this.extensions.get( 'OES_standard_derivatives' );
}
},
supportsCompressedTextureS3TC: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' );
return this.extensions.get( 'WEBGL_compressed_texture_s3tc' );
}
},
supportsCompressedTexturePVRTC: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' );
return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' );
}
},
supportsBlendMinMax: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' );
return this.extensions.get( 'EXT_blend_minmax' );
}
},
supportsVertexTextures: {
value: function () {
return this.capabilities.vertexTextures;
}
},
supportsInstancedArrays: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' );
return this.extensions.get( 'ANGLE_instanced_arrays' );
}
},
enableScissorTest: {
value: function ( boolean ) {
console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' );
this.setScissorTest( boolean );
}
},
initMaterial: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' );
}
},
addPrePlugin: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' );
}
},
addPostPlugin: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' );
}
},
updateShadowMap: {
value: function () {
console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' );
}
},
shadowMapEnabled: {
get: function () {
return this.shadowMap.enabled;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' );
this.shadowMap.enabled = value;
}
},
shadowMapType: {
get: function () {
return this.shadowMap.type;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' );
this.shadowMap.type = value;
}
},
shadowMapCullFace: {
get: function () {
return this.shadowMap.cullFace;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace is now .shadowMap.cullFace.' );
this.shadowMap.cullFace = value;
}
}
} );
//
Object.defineProperties( THREE.WebGLRenderTarget.prototype, {
wrapS: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
return this.texture.wrapS;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
this.texture.wrapS = value;
}
},
wrapT: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
return this.texture.wrapT;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
this.texture.wrapT = value;
}
},
magFilter: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
return this.texture.magFilter;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
this.texture.magFilter = value;
}
},
minFilter: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
return this.texture.minFilter;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
this.texture.minFilter = value;
}
},
anisotropy: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
return this.texture.anisotropy;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
this.texture.anisotropy = value;
}
},
offset: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
return this.texture.offset;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
this.texture.offset = value;
}
},
repeat: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
return this.texture.repeat;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
this.texture.repeat = value;
}
},
format: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
return this.texture.format;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
this.texture.format = value;
}
},
type: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
return this.texture.type;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
this.texture.type = value;
}
},
generateMipmaps: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
return this.texture.generateMipmaps;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
this.texture.generateMipmaps = value;
}
}
} );
//
Object.defineProperties( THREE.Audio.prototype, {
load: {
value: function ( file ) {
console.warn( 'THREE.Audio: .load has been deprecated. Please use THREE.AudioLoader.' );
var scope = this;
var audioLoader = new THREE.AudioLoader();
audioLoader.load( file, function ( buffer ) {
scope.setBuffer( buffer );
} );
return this;
}
}
} );
//
THREE.GeometryUtils = {
merge: function ( geometry1, geometry2, materialIndexOffset ) {
console.warn( 'THREE.GeometryUtils: .merge() has been moved to Geometry. Use geometry.merge( geometry2, matrix, materialIndexOffset ) instead.' );
var matrix;
if ( geometry2 instanceof THREE.Mesh ) {
geometry2.matrixAutoUpdate && geometry2.updateMatrix();
matrix = geometry2.matrix;
geometry2 = geometry2.geometry;
}
geometry1.merge( geometry2, matrix, materialIndexOffset );
},
center: function ( geometry ) {
console.warn( 'THREE.GeometryUtils: .center() has been moved to Geometry. Use geometry.center() instead.' );
return geometry.center();
}
};
THREE.ImageUtils = {
crossOrigin: undefined,
loadTexture: function ( url, mapping, onLoad, onError ) {
console.warn( 'THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.' );
var loader = new THREE.TextureLoader();
loader.setCrossOrigin( this.crossOrigin );
var texture = loader.load( url, onLoad, undefined, onError );
if ( mapping ) texture.mapping = mapping;
return texture;
},
loadTextureCube: function ( urls, mapping, onLoad, onError ) {
console.warn( 'THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.' );
var loader = new THREE.CubeTextureLoader();
loader.setCrossOrigin( this.crossOrigin );
var texture = loader.load( urls, onLoad, undefined, onError );
if ( mapping ) texture.mapping = mapping;
return texture;
},
loadCompressedTexture: function () {
console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' );
},
loadCompressedTextureCube: function () {
console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' );
}
};
//
THREE.Projector = function () {
console.error( 'THREE.Projector has been moved to /examples/js/renderers/Projector.js.' );
this.projectVector = function ( vector, camera ) {
console.warn( 'THREE.Projector: .projectVector() is now vector.project().' );
vector.project( camera );
};
this.unprojectVector = function ( vector, camera ) {
console.warn( 'THREE.Projector: .unprojectVector() is now vector.unproject().' );
vector.unproject( camera );
};
this.pickingRay = function ( vector, camera ) {
console.error( 'THREE.Projector: .pickingRay() is now raycaster.setFromCamera().' );
};
};
//
THREE.CanvasRenderer = function () {
console.error( 'THREE.CanvasRenderer has been moved to /examples/js/renderers/CanvasRenderer.js' );
this.domElement = document.createElement( 'canvas' );
this.clear = function () {};
this.render = function () {};
this.setClearColor = function () {};
this.setSize = function () {};
};
//
THREE.MeshFaceMaterial = THREE.MultiMaterial;
//
Object.defineProperties( THREE.LOD.prototype, {
objects: {
get: function () {
console.warn( 'THREE.LOD: .objects has been renamed to .levels.' );
return this.levels;
}
}
} );
// File:src/extras/CurveUtils.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*/
THREE.CurveUtils = {
tangentQuadraticBezier: function ( t, p0, p1, p2 ) {
return 2 * ( 1 - t ) * ( p1 - p0 ) + 2 * t * ( p2 - p1 );
},
// Puay Bing, thanks for helping with this derivative!
tangentCubicBezier: function ( t, p0, p1, p2, p3 ) {
return - 3 * p0 * ( 1 - t ) * ( 1 - t ) +
3 * p1 * ( 1 - t ) * ( 1 - t ) - 6 * t * p1 * ( 1 - t ) +
6 * t * p2 * ( 1 - t ) - 3 * t * t * p2 +
3 * t * t * p3;
},
tangentSpline: function ( t, p0, p1, p2, p3 ) {
// To check if my formulas are correct
var h00 = 6 * t * t - 6 * t; // derived from 2t^3 3t^2 + 1
var h10 = 3 * t * t - 4 * t + 1; // t^3 2t^2 + t
var h01 = - 6 * t * t + 6 * t; // 2t3 + 3t2
var h11 = 3 * t * t - 2 * t; // t3 t2
return h00 + h10 + h01 + h11;
},
// Catmull-Rom
interpolate: function( p0, p1, p2, p3, t ) {
var v0 = ( p2 - p0 ) * 0.5;
var v1 = ( p3 - p1 ) * 0.5;
var t2 = t * t;
var t3 = t * t2;
return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1;
}
};
// File:src/extras/SceneUtils.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.SceneUtils = {
createMultiMaterialObject: function ( geometry, materials ) {
var group = new THREE.Group();
for ( var i = 0, l = materials.length; i < l; i ++ ) {
group.add( new THREE.Mesh( geometry, materials[ i ] ) );
}
return group;
},
detach: function ( child, parent, scene ) {
child.applyMatrix( parent.matrixWorld );
parent.remove( child );
scene.add( child );
},
attach: function ( child, scene, parent ) {
var matrixWorldInverse = new THREE.Matrix4();
matrixWorldInverse.getInverse( parent.matrixWorld );
child.applyMatrix( matrixWorldInverse );
scene.remove( child );
parent.add( child );
}
};
// File:src/extras/ShapeUtils.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*/
THREE.ShapeUtils = {
// calculate area of the contour polygon
area: function ( contour ) {
var n = contour.length;
var a = 0.0;
for ( var p = n - 1, q = 0; q < n; p = q ++ ) {
a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y;
}
return a * 0.5;
},
triangulate: ( function () {
/**
* This code is a quick port of code written in C++ which was submitted to
* flipcode.com by John W. Ratcliff // July 22, 2000
* See original code and more information here:
* http://www.flipcode.com/archives/Efficient_Polygon_Triangulation.shtml
*
* ported to actionscript by Zevan Rosser
* www.actionsnippet.com
*
* ported to javascript by Joshua Koo
* http://www.lab4games.net/zz85/blog
*
*/
function snip( contour, u, v, w, n, verts ) {
var p;
var ax, ay, bx, by;
var cx, cy, px, py;
ax = contour[ verts[ u ] ].x;
ay = contour[ verts[ u ] ].y;
bx = contour[ verts[ v ] ].x;
by = contour[ verts[ v ] ].y;
cx = contour[ verts[ w ] ].x;
cy = contour[ verts[ w ] ].y;
if ( Number.EPSILON > ( ( ( bx - ax ) * ( cy - ay ) ) - ( ( by - ay ) * ( cx - ax ) ) ) ) return false;
var aX, aY, bX, bY, cX, cY;
var apx, apy, bpx, bpy, cpx, cpy;
var cCROSSap, bCROSScp, aCROSSbp;
aX = cx - bx; aY = cy - by;
bX = ax - cx; bY = ay - cy;
cX = bx - ax; cY = by - ay;
for ( p = 0; p < n; p ++ ) {
px = contour[ verts[ p ] ].x;
py = contour[ verts[ p ] ].y;
if ( ( ( px === ax ) && ( py === ay ) ) ||
( ( px === bx ) && ( py === by ) ) ||
( ( px === cx ) && ( py === cy ) ) ) continue;
apx = px - ax; apy = py - ay;
bpx = px - bx; bpy = py - by;
cpx = px - cx; cpy = py - cy;
// see if p is inside triangle abc
aCROSSbp = aX * bpy - aY * bpx;
cCROSSap = cX * apy - cY * apx;
bCROSScp = bX * cpy - bY * cpx;
if ( ( aCROSSbp >= - Number.EPSILON ) && ( bCROSScp >= - Number.EPSILON ) && ( cCROSSap >= - Number.EPSILON ) ) return false;
}
return true;
}
// takes in an contour array and returns
return function ( contour, indices ) {
var n = contour.length;
if ( n < 3 ) return null;
var result = [],
verts = [],
vertIndices = [];
/* we want a counter-clockwise polygon in verts */
var u, v, w;
if ( THREE.ShapeUtils.area( contour ) > 0.0 ) {
for ( v = 0; v < n; v ++ ) verts[ v ] = v;
} else {
for ( v = 0; v < n; v ++ ) verts[ v ] = ( n - 1 ) - v;
}
var nv = n;
/* remove nv - 2 vertices, creating 1 triangle every time */
var count = 2 * nv; /* error detection */
for ( v = nv - 1; nv > 2; ) {
/* if we loop, it is probably a non-simple polygon */
if ( ( count -- ) <= 0 ) {
//** Triangulate: ERROR - probable bad polygon!
//throw ( "Warning, unable to triangulate polygon!" );
//return null;
// Sometimes warning is fine, especially polygons are triangulated in reverse.
console.warn( 'THREE.ShapeUtils: Unable to triangulate polygon! in triangulate()' );
if ( indices ) return vertIndices;
return result;
}
/* three consecutive vertices in current polygon, <u,v,w> */
u = v; if ( nv <= u ) u = 0; /* previous */
v = u + 1; if ( nv <= v ) v = 0; /* new v */
w = v + 1; if ( nv <= w ) w = 0; /* next */
if ( snip( contour, u, v, w, nv, verts ) ) {
var a, b, c, s, t;
/* true names of the vertices */
a = verts[ u ];
b = verts[ v ];
c = verts[ w ];
/* output Triangle */
result.push( [ contour[ a ],
contour[ b ],
contour[ c ] ] );
vertIndices.push( [ verts[ u ], verts[ v ], verts[ w ] ] );
/* remove v from the remaining polygon */
for ( s = v, t = v + 1; t < nv; s ++, t ++ ) {
verts[ s ] = verts[ t ];
}
nv --;
/* reset error detection counter */
count = 2 * nv;
}
}
if ( indices ) return vertIndices;
return result;
}
} )(),
triangulateShape: function ( contour, holes ) {
function point_in_segment_2D_colin( inSegPt1, inSegPt2, inOtherPt ) {
// inOtherPt needs to be collinear to the inSegment
if ( inSegPt1.x !== inSegPt2.x ) {
if ( inSegPt1.x < inSegPt2.x ) {
return ( ( inSegPt1.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt2.x ) );
} else {
return ( ( inSegPt2.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt1.x ) );
}
} else {
if ( inSegPt1.y < inSegPt2.y ) {
return ( ( inSegPt1.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt2.y ) );
} else {
return ( ( inSegPt2.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt1.y ) );
}
}
}
function intersect_segments_2D( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1, inSeg2Pt2, inExcludeAdjacentSegs ) {
var seg1dx = inSeg1Pt2.x - inSeg1Pt1.x, seg1dy = inSeg1Pt2.y - inSeg1Pt1.y;
var seg2dx = inSeg2Pt2.x - inSeg2Pt1.x, seg2dy = inSeg2Pt2.y - inSeg2Pt1.y;
var seg1seg2dx = inSeg1Pt1.x - inSeg2Pt1.x;
var seg1seg2dy = inSeg1Pt1.y - inSeg2Pt1.y;
var limit = seg1dy * seg2dx - seg1dx * seg2dy;
var perpSeg1 = seg1dy * seg1seg2dx - seg1dx * seg1seg2dy;
if ( Math.abs( limit ) > Number.EPSILON ) {
// not parallel
var perpSeg2;
if ( limit > 0 ) {
if ( ( perpSeg1 < 0 ) || ( perpSeg1 > limit ) ) return [];
perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
if ( ( perpSeg2 < 0 ) || ( perpSeg2 > limit ) ) return [];
} else {
if ( ( perpSeg1 > 0 ) || ( perpSeg1 < limit ) ) return [];
perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
if ( ( perpSeg2 > 0 ) || ( perpSeg2 < limit ) ) return [];
}
// i.e. to reduce rounding errors
// intersection at endpoint of segment#1?
if ( perpSeg2 === 0 ) {
if ( ( inExcludeAdjacentSegs ) &&
( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return [];
return [ inSeg1Pt1 ];
}
if ( perpSeg2 === limit ) {
if ( ( inExcludeAdjacentSegs ) &&
( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return [];
return [ inSeg1Pt2 ];
}
// intersection at endpoint of segment#2?
if ( perpSeg1 === 0 ) return [ inSeg2Pt1 ];
if ( perpSeg1 === limit ) return [ inSeg2Pt2 ];
// return real intersection point
var factorSeg1 = perpSeg2 / limit;
return [ { x: inSeg1Pt1.x + factorSeg1 * seg1dx,
y: inSeg1Pt1.y + factorSeg1 * seg1dy } ];
} else {
// parallel or collinear
if ( ( perpSeg1 !== 0 ) ||
( seg2dy * seg1seg2dx !== seg2dx * seg1seg2dy ) ) return [];
// they are collinear or degenerate
var seg1Pt = ( ( seg1dx === 0 ) && ( seg1dy === 0 ) ); // segment1 is just a point?
var seg2Pt = ( ( seg2dx === 0 ) && ( seg2dy === 0 ) ); // segment2 is just a point?
// both segments are points
if ( seg1Pt && seg2Pt ) {
if ( ( inSeg1Pt1.x !== inSeg2Pt1.x ) ||
( inSeg1Pt1.y !== inSeg2Pt1.y ) ) return []; // they are distinct points
return [ inSeg1Pt1 ]; // they are the same point
}
// segment#1 is a single point
if ( seg1Pt ) {
if ( ! point_in_segment_2D_colin( inSeg2Pt1, inSeg2Pt2, inSeg1Pt1 ) ) return []; // but not in segment#2
return [ inSeg1Pt1 ];
}
// segment#2 is a single point
if ( seg2Pt ) {
if ( ! point_in_segment_2D_colin( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1 ) ) return []; // but not in segment#1
return [ inSeg2Pt1 ];
}
// they are collinear segments, which might overlap
var seg1min, seg1max, seg1minVal, seg1maxVal;
var seg2min, seg2max, seg2minVal, seg2maxVal;
if ( seg1dx !== 0 ) {
// the segments are NOT on a vertical line
if ( inSeg1Pt1.x < inSeg1Pt2.x ) {
seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.x;
seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.x;
} else {
seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.x;
seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.x;
}
if ( inSeg2Pt1.x < inSeg2Pt2.x ) {
seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.x;
seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.x;
} else {
seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.x;
seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.x;
}
} else {
// the segments are on a vertical line
if ( inSeg1Pt1.y < inSeg1Pt2.y ) {
seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.y;
seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.y;
} else {
seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.y;
seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.y;
}
if ( inSeg2Pt1.y < inSeg2Pt2.y ) {
seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.y;
seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.y;
} else {
seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.y;
seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.y;
}
}
if ( seg1minVal <= seg2minVal ) {
if ( seg1maxVal < seg2minVal ) return [];
if ( seg1maxVal === seg2minVal ) {
if ( inExcludeAdjacentSegs ) return [];
return [ seg2min ];
}
if ( seg1maxVal <= seg2maxVal ) return [ seg2min, seg1max ];
return [ seg2min, seg2max ];
} else {
if ( seg1minVal > seg2maxVal ) return [];
if ( seg1minVal === seg2maxVal ) {
if ( inExcludeAdjacentSegs ) return [];
return [ seg1min ];
}
if ( seg1maxVal <= seg2maxVal ) return [ seg1min, seg1max ];
return [ seg1min, seg2max ];
}
}
}
function isPointInsideAngle( inVertex, inLegFromPt, inLegToPt, inOtherPt ) {
// The order of legs is important
// translation of all points, so that Vertex is at (0,0)
var legFromPtX = inLegFromPt.x - inVertex.x, legFromPtY = inLegFromPt.y - inVertex.y;
var legToPtX = inLegToPt.x - inVertex.x, legToPtY = inLegToPt.y - inVertex.y;
var otherPtX = inOtherPt.x - inVertex.x, otherPtY = inOtherPt.y - inVertex.y;
// main angle >0: < 180 deg.; 0: 180 deg.; <0: > 180 deg.
var from2toAngle = legFromPtX * legToPtY - legFromPtY * legToPtX;
var from2otherAngle = legFromPtX * otherPtY - legFromPtY * otherPtX;
if ( Math.abs( from2toAngle ) > Number.EPSILON ) {
// angle != 180 deg.
var other2toAngle = otherPtX * legToPtY - otherPtY * legToPtX;
// console.log( "from2to: " + from2toAngle + ", from2other: " + from2otherAngle + ", other2to: " + other2toAngle );
if ( from2toAngle > 0 ) {
// main angle < 180 deg.
return ( ( from2otherAngle >= 0 ) && ( other2toAngle >= 0 ) );
} else {
// main angle > 180 deg.
return ( ( from2otherAngle >= 0 ) || ( other2toAngle >= 0 ) );
}
} else {
// angle == 180 deg.
// console.log( "from2to: 180 deg., from2other: " + from2otherAngle );
return ( from2otherAngle > 0 );
}
}
function removeHoles( contour, holes ) {
var shape = contour.concat(); // work on this shape
var hole;
function isCutLineInsideAngles( inShapeIdx, inHoleIdx ) {
// Check if hole point lies within angle around shape point
var lastShapeIdx = shape.length - 1;
var prevShapeIdx = inShapeIdx - 1;
if ( prevShapeIdx < 0 ) prevShapeIdx = lastShapeIdx;
var nextShapeIdx = inShapeIdx + 1;
if ( nextShapeIdx > lastShapeIdx ) nextShapeIdx = 0;
var insideAngle = isPointInsideAngle( shape[ inShapeIdx ], shape[ prevShapeIdx ], shape[ nextShapeIdx ], hole[ inHoleIdx ] );
if ( ! insideAngle ) {
// console.log( "Vertex (Shape): " + inShapeIdx + ", Point: " + hole[inHoleIdx].x + "/" + hole[inHoleIdx].y );
return false;
}
// Check if shape point lies within angle around hole point
var lastHoleIdx = hole.length - 1;
var prevHoleIdx = inHoleIdx - 1;
if ( prevHoleIdx < 0 ) prevHoleIdx = lastHoleIdx;
var nextHoleIdx = inHoleIdx + 1;
if ( nextHoleIdx > lastHoleIdx ) nextHoleIdx = 0;
insideAngle = isPointInsideAngle( hole[ inHoleIdx ], hole[ prevHoleIdx ], hole[ nextHoleIdx ], shape[ inShapeIdx ] );
if ( ! insideAngle ) {
// console.log( "Vertex (Hole): " + inHoleIdx + ", Point: " + shape[inShapeIdx].x + "/" + shape[inShapeIdx].y );
return false;
}
return true;
}
function intersectsShapeEdge( inShapePt, inHolePt ) {
// checks for intersections with shape edges
var sIdx, nextIdx, intersection;
for ( sIdx = 0; sIdx < shape.length; sIdx ++ ) {
nextIdx = sIdx + 1; nextIdx %= shape.length;
intersection = intersect_segments_2D( inShapePt, inHolePt, shape[ sIdx ], shape[ nextIdx ], true );
if ( intersection.length > 0 ) return true;
}
return false;
}
var indepHoles = [];
function intersectsHoleEdge( inShapePt, inHolePt ) {
// checks for intersections with hole edges
var ihIdx, chkHole,
hIdx, nextIdx, intersection;
for ( ihIdx = 0; ihIdx < indepHoles.length; ihIdx ++ ) {
chkHole = holes[ indepHoles[ ihIdx ]];
for ( hIdx = 0; hIdx < chkHole.length; hIdx ++ ) {
nextIdx = hIdx + 1; nextIdx %= chkHole.length;
intersection = intersect_segments_2D( inShapePt, inHolePt, chkHole[ hIdx ], chkHole[ nextIdx ], true );
if ( intersection.length > 0 ) return true;
}
}
return false;
}
var holeIndex, shapeIndex,
shapePt, holePt,
holeIdx, cutKey, failedCuts = [],
tmpShape1, tmpShape2,
tmpHole1, tmpHole2;
for ( var h = 0, hl = holes.length; h < hl; h ++ ) {
indepHoles.push( h );
}
var minShapeIndex = 0;
var counter = indepHoles.length * 2;
while ( indepHoles.length > 0 ) {
counter --;
if ( counter < 0 ) {
console.log( "Infinite Loop! Holes left:" + indepHoles.length + ", Probably Hole outside Shape!" );
break;
}
// search for shape-vertex and hole-vertex,
// which can be connected without intersections
for ( shapeIndex = minShapeIndex; shapeIndex < shape.length; shapeIndex ++ ) {
shapePt = shape[ shapeIndex ];
holeIndex = - 1;
// search for hole which can be reached without intersections
for ( var h = 0; h < indepHoles.length; h ++ ) {
holeIdx = indepHoles[ h ];
// prevent multiple checks
cutKey = shapePt.x + ":" + shapePt.y + ":" + holeIdx;
if ( failedCuts[ cutKey ] !== undefined ) continue;
hole = holes[ holeIdx ];
for ( var h2 = 0; h2 < hole.length; h2 ++ ) {
holePt = hole[ h2 ];
if ( ! isCutLineInsideAngles( shapeIndex, h2 ) ) continue;
if ( intersectsShapeEdge( shapePt, holePt ) ) continue;
if ( intersectsHoleEdge( shapePt, holePt ) ) continue;
holeIndex = h2;
indepHoles.splice( h, 1 );
tmpShape1 = shape.slice( 0, shapeIndex + 1 );
tmpShape2 = shape.slice( shapeIndex );
tmpHole1 = hole.slice( holeIndex );
tmpHole2 = hole.slice( 0, holeIndex + 1 );
shape = tmpShape1.concat( tmpHole1 ).concat( tmpHole2 ).concat( tmpShape2 );
minShapeIndex = shapeIndex;
// Debug only, to show the selected cuts
// glob_CutLines.push( [ shapePt, holePt ] );
break;
}
if ( holeIndex >= 0 ) break; // hole-vertex found
failedCuts[ cutKey ] = true; // remember failure
}
if ( holeIndex >= 0 ) break; // hole-vertex found
}
}
return shape; /* shape with no holes */
}
var i, il, f, face,
key, index,
allPointsMap = {};
// To maintain reference to old shape, one must match coordinates, or offset the indices from original arrays. It's probably easier to do the first.
var allpoints = contour.concat();
for ( var h = 0, hl = holes.length; h < hl; h ++ ) {
Array.prototype.push.apply( allpoints, holes[ h ] );
}
//console.log( "allpoints",allpoints, allpoints.length );
// prepare all points map
for ( i = 0, il = allpoints.length; i < il; i ++ ) {
key = allpoints[ i ].x + ":" + allpoints[ i ].y;
if ( allPointsMap[ key ] !== undefined ) {
console.warn( "THREE.Shape: Duplicate point", key );
}
allPointsMap[ key ] = i;
}
// remove holes by cutting paths to holes and adding them to the shape
var shapeWithoutHoles = removeHoles( contour, holes );
var triangles = THREE.ShapeUtils.triangulate( shapeWithoutHoles, false ); // True returns indices for points of spooled shape
//console.log( "triangles",triangles, triangles.length );
// check all face vertices against all points map
for ( i = 0, il = triangles.length; i < il; i ++ ) {
face = triangles[ i ];
for ( f = 0; f < 3; f ++ ) {
key = face[ f ].x + ":" + face[ f ].y;
index = allPointsMap[ key ];
if ( index !== undefined ) {
face[ f ] = index;
}
}
}
return triangles.concat();
},
isClockWise: function ( pts ) {
return THREE.ShapeUtils.area( pts ) < 0;
},
// Bezier Curves formulas obtained from
// http://en.wikipedia.org/wiki/B%C3%A9zier_curve
// Quad Bezier Functions
b2: ( function () {
function b2p0( t, p ) {
var k = 1 - t;
return k * k * p;
}
function b2p1( t, p ) {
return 2 * ( 1 - t ) * t * p;
}
function b2p2( t, p ) {
return t * t * p;
}
return function ( t, p0, p1, p2 ) {
return b2p0( t, p0 ) + b2p1( t, p1 ) + b2p2( t, p2 );
};
} )(),
// Cubic Bezier Functions
b3: ( function () {
function b3p0( t, p ) {
var k = 1 - t;
return k * k * k * p;
}
function b3p1( t, p ) {
var k = 1 - t;
return 3 * k * k * t * p;
}
function b3p2( t, p ) {
var k = 1 - t;
return 3 * k * t * t * p;
}
function b3p3( t, p ) {
return t * t * t * p;
}
return function ( t, p0, p1, p2, p3 ) {
return b3p0( t, p0 ) + b3p1( t, p1 ) + b3p2( t, p2 ) + b3p3( t, p3 );
};
} )()
};
// File:src/extras/core/Curve.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Extensible curve object
*
* Some common of Curve methods
* .getPoint(t), getTangent(t)
* .getPointAt(u), getTagentAt(u)
* .getPoints(), .getSpacedPoints()
* .getLength()
* .updateArcLengths()
*
* This following classes subclasses THREE.Curve:
*
* -- 2d classes --
* THREE.LineCurve
* THREE.QuadraticBezierCurve
* THREE.CubicBezierCurve
* THREE.SplineCurve
* THREE.ArcCurve
* THREE.EllipseCurve
*
* -- 3d classes --
* THREE.LineCurve3
* THREE.QuadraticBezierCurve3
* THREE.CubicBezierCurve3
* THREE.SplineCurve3
*
* A series of curves can be represented as a THREE.CurvePath
*
**/
/**************************************************************
* Abstract Curve base class
**************************************************************/
THREE.Curve = function () {
};
THREE.Curve.prototype = {
constructor: THREE.Curve,
// Virtual base class method to overwrite and implement in subclasses
// - t [0 .. 1]
getPoint: function ( t ) {
console.warn( "THREE.Curve: Warning, getPoint() not implemented!" );
return null;
},
// Get point at relative position in curve according to arc length
// - u [0 .. 1]
getPointAt: function ( u ) {
var t = this.getUtoTmapping( u );
return this.getPoint( t );
},
// Get sequence of points using getPoint( t )
getPoints: function ( divisions ) {
if ( ! divisions ) divisions = 5;
var d, pts = [];
for ( d = 0; d <= divisions; d ++ ) {
pts.push( this.getPoint( d / divisions ) );
}
return pts;
},
// Get sequence of points using getPointAt( u )
getSpacedPoints: function ( divisions ) {
if ( ! divisions ) divisions = 5;
var d, pts = [];
for ( d = 0; d <= divisions; d ++ ) {
pts.push( this.getPointAt( d / divisions ) );
}
return pts;
},
// Get total curve arc length
getLength: function () {
var lengths = this.getLengths();
return lengths[ lengths.length - 1 ];
},
// Get list of cumulative segment lengths
getLengths: function ( divisions ) {
if ( ! divisions ) divisions = ( this.__arcLengthDivisions ) ? ( this.__arcLengthDivisions ) : 200;
if ( this.cacheArcLengths
&& ( this.cacheArcLengths.length === divisions + 1 )
&& ! this.needsUpdate ) {
//console.log( "cached", this.cacheArcLengths );
return this.cacheArcLengths;
}
this.needsUpdate = false;
var cache = [];
var current, last = this.getPoint( 0 );
var p, sum = 0;
cache.push( 0 );
for ( p = 1; p <= divisions; p ++ ) {
current = this.getPoint ( p / divisions );
sum += current.distanceTo( last );
cache.push( sum );
last = current;
}
this.cacheArcLengths = cache;
return cache; // { sums: cache, sum:sum }; Sum is in the last element.
},
updateArcLengths: function() {
this.needsUpdate = true;
this.getLengths();
},
// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
getUtoTmapping: function ( u, distance ) {
var arcLengths = this.getLengths();
var i = 0, il = arcLengths.length;
var targetArcLength; // The targeted u distance value to get
if ( distance ) {
targetArcLength = distance;
} else {
targetArcLength = u * arcLengths[ il - 1 ];
}
//var time = Date.now();
// binary search for the index with largest value smaller than target u distance
var low = 0, high = il - 1, comparison;
while ( low <= high ) {
i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
comparison = arcLengths[ i ] - targetArcLength;
if ( comparison < 0 ) {
low = i + 1;
} else if ( comparison > 0 ) {
high = i - 1;
} else {
high = i;
break;
// DONE
}
}
i = high;
//console.log('b' , i, low, high, Date.now()- time);
if ( arcLengths[ i ] === targetArcLength ) {
var t = i / ( il - 1 );
return t;
}
// we could get finer grain at lengths, or use simple interpolation between two points
var lengthBefore = arcLengths[ i ];
var lengthAfter = arcLengths[ i + 1 ];
var segmentLength = lengthAfter - lengthBefore;
// determine where we are between the 'before' and 'after' points
var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;
// add that fractional amount to t
var t = ( i + segmentFraction ) / ( il - 1 );
return t;
},
// Returns a unit vector tangent at t
// In case any sub curve does not implement its tangent derivation,
// 2 points a small delta apart will be used to find its gradient
// which seems to give a reasonable approximation
getTangent: function( t ) {
var delta = 0.0001;
var t1 = t - delta;
var t2 = t + delta;
// Capping in case of danger
if ( t1 < 0 ) t1 = 0;
if ( t2 > 1 ) t2 = 1;
var pt1 = this.getPoint( t1 );
var pt2 = this.getPoint( t2 );
var vec = pt2.clone().sub( pt1 );
return vec.normalize();
},
getTangentAt: function ( u ) {
var t = this.getUtoTmapping( u );
return this.getTangent( t );
}
};
// TODO: Transformation for Curves?
/**************************************************************
* 3D Curves
**************************************************************/
// A Factory method for creating new curve subclasses
THREE.Curve.create = function ( constructor, getPointFunc ) {
constructor.prototype = Object.create( THREE.Curve.prototype );
constructor.prototype.constructor = constructor;
constructor.prototype.getPoint = getPointFunc;
return constructor;
};
// File:src/extras/core/CurvePath.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*
**/
/**************************************************************
* Curved Path - a curve path is simply a array of connected
* curves, but retains the api of a curve
**************************************************************/
THREE.CurvePath = function () {
this.curves = [];
this.autoClose = false; // Automatically closes the path
};
THREE.CurvePath.prototype = Object.create( THREE.Curve.prototype );
THREE.CurvePath.prototype.constructor = THREE.CurvePath;
THREE.CurvePath.prototype.add = function ( curve ) {
this.curves.push( curve );
};
/*
THREE.CurvePath.prototype.checkConnection = function() {
// TODO
// If the ending of curve is not connected to the starting
// or the next curve, then, this is not a real path
};
*/
THREE.CurvePath.prototype.closePath = function() {
// TODO Test
// and verify for vector3 (needs to implement equals)
// Add a line curve if start and end of lines are not connected
var startPoint = this.curves[ 0 ].getPoint( 0 );
var endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 );
if ( ! startPoint.equals( endPoint ) ) {
this.curves.push( new THREE.LineCurve( endPoint, startPoint ) );
}
};
// To get accurate point with reference to
// entire path distance at time t,
// following has to be done:
// 1. Length of each sub path have to be known
// 2. Locate and identify type of curve
// 3. Get t for the curve
// 4. Return curve.getPointAt(t')
THREE.CurvePath.prototype.getPoint = function( t ) {
var d = t * this.getLength();
var curveLengths = this.getCurveLengths();
var i = 0;
// To think about boundaries points.
while ( i < curveLengths.length ) {
if ( curveLengths[ i ] >= d ) {
var diff = curveLengths[ i ] - d;
var curve = this.curves[ i ];
var u = 1 - diff / curve.getLength();
return curve.getPointAt( u );
}
i ++;
}
return null;
// loop where sum != 0, sum > d , sum+1 <d
};
/*
THREE.CurvePath.prototype.getTangent = function( t ) {
};
*/
// We cannot use the default THREE.Curve getPoint() with getLength() because in
// THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
// getPoint() depends on getLength
THREE.CurvePath.prototype.getLength = function() {
var lens = this.getCurveLengths();
return lens[ lens.length - 1 ];
};
// Compute lengths and cache them
// We cannot overwrite getLengths() because UtoT mapping uses it.
THREE.CurvePath.prototype.getCurveLengths = function() {
// We use cache values if curves and cache array are same length
if ( this.cacheLengths && this.cacheLengths.length === this.curves.length ) {
return this.cacheLengths;
}
// Get length of sub-curve
// Push sums into cached array
var lengths = [], sums = 0;
for ( var i = 0, l = this.curves.length; i < l; i ++ ) {
sums += this.curves[ i ].getLength();
lengths.push( sums );
}
this.cacheLengths = lengths;
return lengths;
};
/**************************************************************
* Create Geometries Helpers
**************************************************************/
/// Generate geometry from path points (for Line or Points objects)
THREE.CurvePath.prototype.createPointsGeometry = function( divisions ) {
var pts = this.getPoints( divisions );
return this.createGeometry( pts );
};
// Generate geometry from equidistant sampling along the path
THREE.CurvePath.prototype.createSpacedPointsGeometry = function( divisions ) {
var pts = this.getSpacedPoints( divisions );
return this.createGeometry( pts );
};
THREE.CurvePath.prototype.createGeometry = function( points ) {
var geometry = new THREE.Geometry();
for ( var i = 0, l = points.length; i < l; i ++ ) {
var point = points[ i ];
geometry.vertices.push( new THREE.Vector3( point.x, point.y, point.z || 0 ) );
}
return geometry;
};
// File:src/extras/core/Font.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author mrdoob / http://mrdoob.com/
*/
THREE.Font = function ( data ) {
this.data = data;
};
THREE.Font.prototype = {
constructor: THREE.Font,
generateShapes: function ( text, size, divisions ) {
function createPaths( text ) {
var chars = String( text ).split( '' );
var scale = size / data.resolution;
var offset = 0;
var paths = [];
for ( var i = 0; i < chars.length; i ++ ) {
var ret = createPath( chars[ i ], scale, offset );
offset += ret.offset;
paths.push( ret.path );
}
return paths;
}
function createPath( c, scale, offset ) {
var glyph = data.glyphs[ c ] || data.glyphs[ '?' ];
if ( ! glyph ) return;
var path = new THREE.Path();
var pts = [], b2 = THREE.ShapeUtils.b2, b3 = THREE.ShapeUtils.b3;
var x, y, cpx, cpy, cpx0, cpy0, cpx1, cpy1, cpx2, cpy2, laste;
if ( glyph.o ) {
var outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) );
for ( var i = 0, l = outline.length; i < l; ) {
var action = outline[ i ++ ];
switch ( action ) {
case 'm': // moveTo
x = outline[ i ++ ] * scale + offset;
y = outline[ i ++ ] * scale;
path.moveTo( x, y );
break;
case 'l': // lineTo
x = outline[ i ++ ] * scale + offset;
y = outline[ i ++ ] * scale;
path.lineTo( x, y );
break;
case 'q': // quadraticCurveTo
cpx = outline[ i ++ ] * scale + offset;
cpy = outline[ i ++ ] * scale;
cpx1 = outline[ i ++ ] * scale + offset;
cpy1 = outline[ i ++ ] * scale;
path.quadraticCurveTo( cpx1, cpy1, cpx, cpy );
laste = pts[ pts.length - 1 ];
if ( laste ) {
cpx0 = laste.x;
cpy0 = laste.y;
for ( var i2 = 1; i2 <= divisions; i2 ++ ) {
var t = i2 / divisions;
b2( t, cpx0, cpx1, cpx );
b2( t, cpy0, cpy1, cpy );
}
}
break;
case 'b': // bezierCurveTo
cpx = outline[ i ++ ] * scale + offset;
cpy = outline[ i ++ ] * scale;
cpx1 = outline[ i ++ ] * scale + offset;
cpy1 = outline[ i ++ ] * scale;
cpx2 = outline[ i ++ ] * scale + offset;
cpy2 = outline[ i ++ ] * scale;
path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy );
laste = pts[ pts.length - 1 ];
if ( laste ) {
cpx0 = laste.x;
cpy0 = laste.y;
for ( var i2 = 1; i2 <= divisions; i2 ++ ) {
var t = i2 / divisions;
b3( t, cpx0, cpx1, cpx2, cpx );
b3( t, cpy0, cpy1, cpy2, cpy );
}
}
break;
}
}
}
return { offset: glyph.ha * scale, path: path };
}
//
if ( size === undefined ) size = 100;
if ( divisions === undefined ) divisions = 4;
var data = this.data;
var paths = createPaths( text );
var shapes = [];
for ( var p = 0, pl = paths.length; p < pl; p ++ ) {
Array.prototype.push.apply( shapes, paths[ p ].toShapes() );
}
return shapes;
}
};
// File:src/extras/core/Path.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Creates free form 2d path using series of points, lines or curves.
*
**/
THREE.Path = function ( points ) {
THREE.CurvePath.call( this );
this.actions = [];
if ( points ) {
this.fromPoints( points );
}
};
THREE.Path.prototype = Object.create( THREE.CurvePath.prototype );
THREE.Path.prototype.constructor = THREE.Path;
// TODO Clean up PATH API
// Create path using straight lines to connect all points
// - vectors: array of Vector2
THREE.Path.prototype.fromPoints = function ( vectors ) {
this.moveTo( vectors[ 0 ].x, vectors[ 0 ].y );
for ( var i = 1, l = vectors.length; i < l; i ++ ) {
this.lineTo( vectors[ i ].x, vectors[ i ].y );
}
};
// startPath() endPath()?
THREE.Path.prototype.moveTo = function ( x, y ) {
this.actions.push( { action: 'moveTo', args: [ x, y ] } );
};
THREE.Path.prototype.lineTo = function ( x, y ) {
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
var curve = new THREE.LineCurve( new THREE.Vector2( x0, y0 ), new THREE.Vector2( x, y ) );
this.curves.push( curve );
this.actions.push( { action: 'lineTo', args: [ x, y ] } );
};
THREE.Path.prototype.quadraticCurveTo = function( aCPx, aCPy, aX, aY ) {
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
var curve = new THREE.QuadraticBezierCurve(
new THREE.Vector2( x0, y0 ),
new THREE.Vector2( aCPx, aCPy ),
new THREE.Vector2( aX, aY )
);
this.curves.push( curve );
this.actions.push( { action: 'quadraticCurveTo', args: [ aCPx, aCPy, aX, aY ] } );
};
THREE.Path.prototype.bezierCurveTo = function( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
var curve = new THREE.CubicBezierCurve(
new THREE.Vector2( x0, y0 ),
new THREE.Vector2( aCP1x, aCP1y ),
new THREE.Vector2( aCP2x, aCP2y ),
new THREE.Vector2( aX, aY )
);
this.curves.push( curve );
this.actions.push( { action: 'bezierCurveTo', args: [ aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ] } );
};
THREE.Path.prototype.splineThru = function( pts /*Array of Vector*/ ) {
var args = Array.prototype.slice.call( arguments );
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
var npts = [ new THREE.Vector2( x0, y0 ) ];
Array.prototype.push.apply( npts, pts );
var curve = new THREE.SplineCurve( npts );
this.curves.push( curve );
this.actions.push( { action: 'splineThru', args: args } );
};
// FUTURE: Change the API or follow canvas API?
THREE.Path.prototype.arc = function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
this.absarc( aX + x0, aY + y0, aRadius,
aStartAngle, aEndAngle, aClockwise );
};
THREE.Path.prototype.absarc = function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );
};
THREE.Path.prototype.ellipse = function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );
};
THREE.Path.prototype.absellipse = function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
var args = [
aX, aY,
xRadius, yRadius,
aStartAngle, aEndAngle,
aClockwise,
aRotation || 0 // aRotation is optional.
];
var curve = new THREE.EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );
this.curves.push( curve );
var lastPoint = curve.getPoint( 1 );
args.push( lastPoint.x );
args.push( lastPoint.y );
this.actions.push( { action: 'ellipse', args: args } );
};
THREE.Path.prototype.getSpacedPoints = function ( divisions ) {
if ( ! divisions ) divisions = 40;
var points = [];
for ( var i = 0; i < divisions; i ++ ) {
points.push( this.getPoint( i / divisions ) );
//if ( !this.getPoint( i / divisions ) ) throw "DIE";
}
if ( this.autoClose ) {
points.push( points[ 0 ] );
}
return points;
};
/* Return an array of vectors based on contour of the path */
THREE.Path.prototype.getPoints = function( divisions ) {
divisions = divisions || 12;
var b2 = THREE.ShapeUtils.b2;
var b3 = THREE.ShapeUtils.b3;
var points = [];
var cpx, cpy, cpx2, cpy2, cpx1, cpy1, cpx0, cpy0,
laste, tx, ty;
for ( var i = 0, l = this.actions.length; i < l; i ++ ) {
var item = this.actions[ i ];
var action = item.action;
var args = item.args;
switch ( action ) {
case 'moveTo':
points.push( new THREE.Vector2( args[ 0 ], args[ 1 ] ) );
break;
case 'lineTo':
points.push( new THREE.Vector2( args[ 0 ], args[ 1 ] ) );
break;
case 'quadraticCurveTo':
cpx = args[ 2 ];
cpy = args[ 3 ];
cpx1 = args[ 0 ];
cpy1 = args[ 1 ];
if ( points.length > 0 ) {
laste = points[ points.length - 1 ];
cpx0 = laste.x;
cpy0 = laste.y;
} else {
laste = this.actions[ i - 1 ].args;
cpx0 = laste[ laste.length - 2 ];
cpy0 = laste[ laste.length - 1 ];
}
for ( var j = 1; j <= divisions; j ++ ) {
var t = j / divisions;
tx = b2( t, cpx0, cpx1, cpx );
ty = b2( t, cpy0, cpy1, cpy );
points.push( new THREE.Vector2( tx, ty ) );
}
break;
case 'bezierCurveTo':
cpx = args[ 4 ];
cpy = args[ 5 ];
cpx1 = args[ 0 ];
cpy1 = args[ 1 ];
cpx2 = args[ 2 ];
cpy2 = args[ 3 ];
if ( points.length > 0 ) {
laste = points[ points.length - 1 ];
cpx0 = laste.x;
cpy0 = laste.y;
} else {
laste = this.actions[ i - 1 ].args;
cpx0 = laste[ laste.length - 2 ];
cpy0 = laste[ laste.length - 1 ];
}
for ( var j = 1; j <= divisions; j ++ ) {
var t = j / divisions;
tx = b3( t, cpx0, cpx1, cpx2, cpx );
ty = b3( t, cpy0, cpy1, cpy2, cpy );
points.push( new THREE.Vector2( tx, ty ) );
}
break;
case 'splineThru':
laste = this.actions[ i - 1 ].args;
var last = new THREE.Vector2( laste[ laste.length - 2 ], laste[ laste.length - 1 ] );
var spts = [ last ];
var n = divisions * args[ 0 ].length;
spts = spts.concat( args[ 0 ] );
var spline = new THREE.SplineCurve( spts );
for ( var j = 1; j <= n; j ++ ) {
points.push( spline.getPointAt( j / n ) );
}
break;
case 'arc':
var aX = args[ 0 ], aY = args[ 1 ],
aRadius = args[ 2 ],
aStartAngle = args[ 3 ], aEndAngle = args[ 4 ],
aClockwise = !! args[ 5 ];
var deltaAngle = aEndAngle - aStartAngle;
var angle;
var tdivisions = divisions * 2;
for ( var j = 1; j <= tdivisions; j ++ ) {
var t = j / tdivisions;
if ( ! aClockwise ) {
t = 1 - t;
}
angle = aStartAngle + t * deltaAngle;
tx = aX + aRadius * Math.cos( angle );
ty = aY + aRadius * Math.sin( angle );
//console.log('t', t, 'angle', angle, 'tx', tx, 'ty', ty);
points.push( new THREE.Vector2( tx, ty ) );
}
//console.log(points);
break;
case 'ellipse':
var aX = args[ 0 ], aY = args[ 1 ],
xRadius = args[ 2 ],
yRadius = args[ 3 ],
aStartAngle = args[ 4 ], aEndAngle = args[ 5 ],
aClockwise = !! args[ 6 ],
aRotation = args[ 7 ];
var deltaAngle = aEndAngle - aStartAngle;
var angle;
var tdivisions = divisions * 2;
var cos, sin;
if ( aRotation !== 0 ) {
cos = Math.cos( aRotation );
sin = Math.sin( aRotation );
}
for ( var j = 1; j <= tdivisions; j ++ ) {
var t = j / tdivisions;
if ( ! aClockwise ) {
t = 1 - t;
}
angle = aStartAngle + t * deltaAngle;
tx = aX + xRadius * Math.cos( angle );
ty = aY + yRadius * Math.sin( angle );
if ( aRotation !== 0 ) {
var x = tx, y = ty;
// Rotate the point about the center of the ellipse.
tx = ( x - aX ) * cos - ( y - aY ) * sin + aX;
ty = ( x - aX ) * sin + ( y - aY ) * cos + aY;
}
//console.log('t', t, 'angle', angle, 'tx', tx, 'ty', ty);
points.push( new THREE.Vector2( tx, ty ) );
}
//console.log(points);
break;
} // end switch
}
// Normalize to remove the closing point by default.
var lastPoint = points[ points.length - 1 ];
if ( Math.abs( lastPoint.x - points[ 0 ].x ) < Number.EPSILON &&
Math.abs( lastPoint.y - points[ 0 ].y ) < Number.EPSILON )
points.splice( points.length - 1, 1 );
if ( this.autoClose ) {
points.push( points[ 0 ] );
}
return points;
};
//
// Breaks path into shapes
//
// Assumptions (if parameter isCCW==true the opposite holds):
// - solid shapes are defined clockwise (CW)
// - holes are defined counterclockwise (CCW)
//
// If parameter noHoles==true:
// - all subPaths are regarded as solid shapes
// - definition order CW/CCW has no relevance
//
THREE.Path.prototype.toShapes = function( isCCW, noHoles ) {
function extractSubpaths( inActions ) {
var subPaths = [], lastPath = new THREE.Path();
for ( var i = 0, l = inActions.length; i < l; i ++ ) {
var item = inActions[ i ];
var args = item.args;
var action = item.action;
if ( action === 'moveTo' ) {
if ( lastPath.actions.length !== 0 ) {
subPaths.push( lastPath );
lastPath = new THREE.Path();
}
}
lastPath[ action ].apply( lastPath, args );
}
if ( lastPath.actions.length !== 0 ) {
subPaths.push( lastPath );
}
// console.log(subPaths);
return subPaths;
}
function toShapesNoHoles( inSubpaths ) {
var shapes = [];
for ( var i = 0, l = inSubpaths.length; i < l; i ++ ) {
var tmpPath = inSubpaths[ i ];
var tmpShape = new THREE.Shape();
tmpShape.actions = tmpPath.actions;
tmpShape.curves = tmpPath.curves;
shapes.push( tmpShape );
}
//console.log("shape", shapes);
return shapes;
}
function isPointInsidePolygon( inPt, inPolygon ) {
var polyLen = inPolygon.length;
// inPt on polygon contour => immediate success or
// toggling of inside/outside at every single! intersection point of an edge
// with the horizontal line through inPt, left of inPt
// not counting lowerY endpoints of edges and whole edges on that line
var inside = false;
for ( var p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) {
var edgeLowPt = inPolygon[ p ];
var edgeHighPt = inPolygon[ q ];
var edgeDx = edgeHighPt.x - edgeLowPt.x;
var edgeDy = edgeHighPt.y - edgeLowPt.y;
if ( Math.abs( edgeDy ) > Number.EPSILON ) {
// not parallel
if ( edgeDy < 0 ) {
edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx;
edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy;
}
if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) continue;
if ( inPt.y === edgeLowPt.y ) {
if ( inPt.x === edgeLowPt.x ) return true; // inPt is on contour ?
// continue; // no intersection or edgeLowPt => doesn't count !!!
} else {
var perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y );
if ( perpEdge === 0 ) return true; // inPt is on contour ?
if ( perpEdge < 0 ) continue;
inside = ! inside; // true intersection left of inPt
}
} else {
// parallel or collinear
if ( inPt.y !== edgeLowPt.y ) continue; // parallel
// edge lies on the same horizontal line as inPt
if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) ||
( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) return true; // inPt: Point on contour !
// continue;
}
}
return inside;
}
var isClockWise = THREE.ShapeUtils.isClockWise;
var subPaths = extractSubpaths( this.actions );
if ( subPaths.length === 0 ) return [];
if ( noHoles === true ) return toShapesNoHoles( subPaths );
var solid, tmpPath, tmpShape, shapes = [];
if ( subPaths.length === 1 ) {
tmpPath = subPaths[ 0 ];
tmpShape = new THREE.Shape();
tmpShape.actions = tmpPath.actions;
tmpShape.curves = tmpPath.curves;
shapes.push( tmpShape );
return shapes;
}
var holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() );
holesFirst = isCCW ? ! holesFirst : holesFirst;
// console.log("Holes first", holesFirst);
var betterShapeHoles = [];
var newShapes = [];
var newShapeHoles = [];
var mainIdx = 0;
var tmpPoints;
newShapes[ mainIdx ] = undefined;
newShapeHoles[ mainIdx ] = [];
for ( var i = 0, l = subPaths.length; i < l; i ++ ) {
tmpPath = subPaths[ i ];
tmpPoints = tmpPath.getPoints();
solid = isClockWise( tmpPoints );
solid = isCCW ? ! solid : solid;
if ( solid ) {
if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) ) mainIdx ++;
newShapes[ mainIdx ] = { s: new THREE.Shape(), p: tmpPoints };
newShapes[ mainIdx ].s.actions = tmpPath.actions;
newShapes[ mainIdx ].s.curves = tmpPath.curves;
if ( holesFirst ) mainIdx ++;
newShapeHoles[ mainIdx ] = [];
//console.log('cw', i);
} else {
newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } );
//console.log('ccw', i);
}
}
// only Holes? -> probably all Shapes with wrong orientation
if ( ! newShapes[ 0 ] ) return toShapesNoHoles( subPaths );
if ( newShapes.length > 1 ) {
var ambiguous = false;
var toChange = [];
for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {
betterShapeHoles[ sIdx ] = [];
}
for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {
var sho = newShapeHoles[ sIdx ];
for ( var hIdx = 0; hIdx < sho.length; hIdx ++ ) {
var ho = sho[ hIdx ];
var hole_unassigned = true;
for ( var s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) {
if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) {
if ( sIdx !== s2Idx ) toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } );
if ( hole_unassigned ) {
hole_unassigned = false;
betterShapeHoles[ s2Idx ].push( ho );
} else {
ambiguous = true;
}
}
}
if ( hole_unassigned ) {
betterShapeHoles[ sIdx ].push( ho );
}
}
}
// console.log("ambiguous: ", ambiguous);
if ( toChange.length > 0 ) {
// console.log("to change: ", toChange);
if ( ! ambiguous ) newShapeHoles = betterShapeHoles;
}
}
var tmpHoles;
for ( var i = 0, il = newShapes.length; i < il; i ++ ) {
tmpShape = newShapes[ i ].s;
shapes.push( tmpShape );
tmpHoles = newShapeHoles[ i ];
for ( var j = 0, jl = tmpHoles.length; j < jl; j ++ ) {
tmpShape.holes.push( tmpHoles[ j ].h );
}
}
//console.log("shape", shapes);
return shapes;
};
// File:src/extras/core/Shape.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Defines a 2d shape plane using paths.
**/
// STEP 1 Create a path.
// STEP 2 Turn path into shape.
// STEP 3 ExtrudeGeometry takes in Shape/Shapes
// STEP 3a - Extract points from each shape, turn to vertices
// STEP 3b - Triangulate each shape, add faces.
THREE.Shape = function () {
THREE.Path.apply( this, arguments );
this.holes = [];
};
THREE.Shape.prototype = Object.create( THREE.Path.prototype );
THREE.Shape.prototype.constructor = THREE.Shape;
// Convenience method to return ExtrudeGeometry
THREE.Shape.prototype.extrude = function ( options ) {
return new THREE.ExtrudeGeometry( this, options );
};
// Convenience method to return ShapeGeometry
THREE.Shape.prototype.makeGeometry = function ( options ) {
return new THREE.ShapeGeometry( this, options );
};
// Get points of holes
THREE.Shape.prototype.getPointsHoles = function ( divisions ) {
var holesPts = [];
for ( var i = 0, l = this.holes.length; i < l; i ++ ) {
holesPts[ i ] = this.holes[ i ].getPoints( divisions );
}
return holesPts;
};
// Get points of shape and holes (keypoints based on segments parameter)
THREE.Shape.prototype.extractAllPoints = function ( divisions ) {
return {
shape: this.getPoints( divisions ),
holes: this.getPointsHoles( divisions )
};
};
THREE.Shape.prototype.extractPoints = function ( divisions ) {
return this.extractAllPoints( divisions );
};
// File:src/extras/curves/LineCurve.js
/**************************************************************
* Line
**************************************************************/
THREE.LineCurve = function ( v1, v2 ) {
this.v1 = v1;
this.v2 = v2;
};
THREE.LineCurve.prototype = Object.create( THREE.Curve.prototype );
THREE.LineCurve.prototype.constructor = THREE.LineCurve;
THREE.LineCurve.prototype.getPoint = function ( t ) {
var point = this.v2.clone().sub( this.v1 );
point.multiplyScalar( t ).add( this.v1 );
return point;
};
// Line curve is linear, so we can overwrite default getPointAt
THREE.LineCurve.prototype.getPointAt = function ( u ) {
return this.getPoint( u );
};
THREE.LineCurve.prototype.getTangent = function( t ) {
var tangent = this.v2.clone().sub( this.v1 );
return tangent.normalize();
};
// File:src/extras/curves/QuadraticBezierCurve.js
/**************************************************************
* Quadratic Bezier curve
**************************************************************/
THREE.QuadraticBezierCurve = function ( v0, v1, v2 ) {
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
};
THREE.QuadraticBezierCurve.prototype = Object.create( THREE.Curve.prototype );
THREE.QuadraticBezierCurve.prototype.constructor = THREE.QuadraticBezierCurve;
THREE.QuadraticBezierCurve.prototype.getPoint = function ( t ) {
var b2 = THREE.ShapeUtils.b2;
return new THREE.Vector2(
b2( t, this.v0.x, this.v1.x, this.v2.x ),
b2( t, this.v0.y, this.v1.y, this.v2.y )
);
};
THREE.QuadraticBezierCurve.prototype.getTangent = function( t ) {
var tangentQuadraticBezier = THREE.CurveUtils.tangentQuadraticBezier;
return new THREE.Vector2(
tangentQuadraticBezier( t, this.v0.x, this.v1.x, this.v2.x ),
tangentQuadraticBezier( t, this.v0.y, this.v1.y, this.v2.y )
).normalize();
};
// File:src/extras/curves/CubicBezierCurve.js
/**************************************************************
* Cubic Bezier curve
**************************************************************/
THREE.CubicBezierCurve = function ( v0, v1, v2, v3 ) {
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
};
THREE.CubicBezierCurve.prototype = Object.create( THREE.Curve.prototype );
THREE.CubicBezierCurve.prototype.constructor = THREE.CubicBezierCurve;
THREE.CubicBezierCurve.prototype.getPoint = function ( t ) {
var b3 = THREE.ShapeUtils.b3;
return new THREE.Vector2(
b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ),
b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y )
);
};
THREE.CubicBezierCurve.prototype.getTangent = function( t ) {
var tangentCubicBezier = THREE.CurveUtils.tangentCubicBezier;
return new THREE.Vector2(
tangentCubicBezier( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ),
tangentCubicBezier( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y )
).normalize();
};
// File:src/extras/curves/SplineCurve.js
/**************************************************************
* Spline curve
**************************************************************/
THREE.SplineCurve = function ( points /* array of Vector2 */ ) {
this.points = ( points == undefined ) ? [] : points;
};
THREE.SplineCurve.prototype = Object.create( THREE.Curve.prototype );
THREE.SplineCurve.prototype.constructor = THREE.SplineCurve;
THREE.SplineCurve.prototype.getPoint = function ( t ) {
var points = this.points;
var point = ( points.length - 1 ) * t;
var intPoint = Math.floor( point );
var weight = point - intPoint;
var point0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ];
var point1 = points[ intPoint ];
var point2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ];
var point3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ];
var interpolate = THREE.CurveUtils.interpolate;
return new THREE.Vector2(
interpolate( point0.x, point1.x, point2.x, point3.x, weight ),
interpolate( point0.y, point1.y, point2.y, point3.y, weight )
);
};
// File:src/extras/curves/EllipseCurve.js
/**************************************************************
* Ellipse curve
**************************************************************/
THREE.EllipseCurve = function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
this.aX = aX;
this.aY = aY;
this.xRadius = xRadius;
this.yRadius = yRadius;
this.aStartAngle = aStartAngle;
this.aEndAngle = aEndAngle;
this.aClockwise = aClockwise;
this.aRotation = aRotation || 0;
};
THREE.EllipseCurve.prototype = Object.create( THREE.Curve.prototype );
THREE.EllipseCurve.prototype.constructor = THREE.EllipseCurve;
THREE.EllipseCurve.prototype.getPoint = function ( t ) {
var deltaAngle = this.aEndAngle - this.aStartAngle;
if ( deltaAngle < 0 ) deltaAngle += Math.PI * 2;
if ( deltaAngle > Math.PI * 2 ) deltaAngle -= Math.PI * 2;
var angle;
if ( this.aClockwise === true ) {
angle = this.aEndAngle + ( 1 - t ) * ( Math.PI * 2 - deltaAngle );
} else {
angle = this.aStartAngle + t * deltaAngle;
}
var x = this.aX + this.xRadius * Math.cos( angle );
var y = this.aY + this.yRadius * Math.sin( angle );
if ( this.aRotation !== 0 ) {
var cos = Math.cos( this.aRotation );
var sin = Math.sin( this.aRotation );
var tx = x, ty = y;
// Rotate the point about the center of the ellipse.
x = ( tx - this.aX ) * cos - ( ty - this.aY ) * sin + this.aX;
y = ( tx - this.aX ) * sin + ( ty - this.aY ) * cos + this.aY;
}
return new THREE.Vector2( x, y );
};
// File:src/extras/curves/ArcCurve.js
/**************************************************************
* Arc curve
**************************************************************/
THREE.ArcCurve = function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
THREE.EllipseCurve.call( this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );
};
THREE.ArcCurve.prototype = Object.create( THREE.EllipseCurve.prototype );
THREE.ArcCurve.prototype.constructor = THREE.ArcCurve;
// File:src/extras/curves/LineCurve3.js
/**************************************************************
* Line3D
**************************************************************/
THREE.LineCurve3 = THREE.Curve.create(
function ( v1, v2 ) {
this.v1 = v1;
this.v2 = v2;
},
function ( t ) {
var vector = new THREE.Vector3();
vector.subVectors( this.v2, this.v1 ); // diff
vector.multiplyScalar( t );
vector.add( this.v1 );
return vector;
}
);
// File:src/extras/curves/QuadraticBezierCurve3.js
/**************************************************************
* Quadratic Bezier 3D curve
**************************************************************/
THREE.QuadraticBezierCurve3 = THREE.Curve.create(
function ( v0, v1, v2 ) {
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
},
function ( t ) {
var b2 = THREE.ShapeUtils.b2;
return new THREE.Vector3(
b2( t, this.v0.x, this.v1.x, this.v2.x ),
b2( t, this.v0.y, this.v1.y, this.v2.y ),
b2( t, this.v0.z, this.v1.z, this.v2.z )
);
}
);
// File:src/extras/curves/CubicBezierCurve3.js
/**************************************************************
* Cubic Bezier 3D curve
**************************************************************/
THREE.CubicBezierCurve3 = THREE.Curve.create(
function ( v0, v1, v2, v3 ) {
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
},
function ( t ) {
var b3 = THREE.ShapeUtils.b3;
return new THREE.Vector3(
b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ),
b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y ),
b3( t, this.v0.z, this.v1.z, this.v2.z, this.v3.z )
);
}
);
// File:src/extras/curves/SplineCurve3.js
/**************************************************************
* Spline 3D curve
**************************************************************/
THREE.SplineCurve3 = THREE.Curve.create(
function ( points /* array of Vector3 */ ) {
console.warn( 'THREE.SplineCurve3 will be deprecated. Please use THREE.CatmullRomCurve3' );
this.points = ( points == undefined ) ? [] : points;
},
function ( t ) {
var points = this.points;
var point = ( points.length - 1 ) * t;
var intPoint = Math.floor( point );
var weight = point - intPoint;
var point0 = points[ intPoint == 0 ? intPoint : intPoint - 1 ];
var point1 = points[ intPoint ];
var point2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ];
var point3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ];
var interpolate = THREE.CurveUtils.interpolate;
return new THREE.Vector3(
interpolate( point0.x, point1.x, point2.x, point3.x, weight ),
interpolate( point0.y, point1.y, point2.y, point3.y, weight ),
interpolate( point0.z, point1.z, point2.z, point3.z, weight )
);
}
);
// File:src/extras/curves/CatmullRomCurve3.js
/**
* @author zz85 https://github.com/zz85
*
* Centripetal CatmullRom Curve - which is useful for avoiding
* cusps and self-intersections in non-uniform catmull rom curves.
* http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
*
* curve.type accepts centripetal(default), chordal and catmullrom
* curve.tension is used for catmullrom which defaults to 0.5
*/
THREE.CatmullRomCurve3 = ( function() {
var
tmp = new THREE.Vector3(),
px = new CubicPoly(),
py = new CubicPoly(),
pz = new CubicPoly();
/*
Based on an optimized c++ solution in
- http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
- http://ideone.com/NoEbVM
This CubicPoly class could be used for reusing some variables and calculations,
but for three.js curve use, it could be possible inlined and flatten into a single function call
which can be placed in CurveUtils.
*/
function CubicPoly() {
}
/*
* Compute coefficients for a cubic polynomial
* p(s) = c0 + c1*s + c2*s^2 + c3*s^3
* such that
* p(0) = x0, p(1) = x1
* and
* p'(0) = t0, p'(1) = t1.
*/
CubicPoly.prototype.init = function( x0, x1, t0, t1 ) {
this.c0 = x0;
this.c1 = t0;
this.c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1;
this.c3 = 2 * x0 - 2 * x1 + t0 + t1;
};
CubicPoly.prototype.initNonuniformCatmullRom = function( x0, x1, x2, x3, dt0, dt1, dt2 ) {
// compute tangents when parameterized in [t1,t2]
var t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1;
var t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2;
// rescale tangents for parametrization in [0,1]
t1 *= dt1;
t2 *= dt1;
// initCubicPoly
this.init( x1, x2, t1, t2 );
};
// standard Catmull-Rom spline: interpolate between x1 and x2 with previous/following points x1/x4
CubicPoly.prototype.initCatmullRom = function( x0, x1, x2, x3, tension ) {
this.init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) );
};
CubicPoly.prototype.calc = function( t ) {
var t2 = t * t;
var t3 = t2 * t;
return this.c0 + this.c1 * t + this.c2 * t2 + this.c3 * t3;
};
// Subclass Three.js curve
return THREE.Curve.create(
function ( p /* array of Vector3 */ ) {
this.points = p || [];
this.closed = false;
},
function ( t ) {
var points = this.points,
point, intPoint, weight, l;
l = points.length;
if ( l < 2 ) console.log( 'duh, you need at least 2 points' );
point = ( l - ( this.closed ? 0 : 1 ) ) * t;
intPoint = Math.floor( point );
weight = point - intPoint;
if ( this.closed ) {
intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / points.length ) + 1 ) * points.length;
} else if ( weight === 0 && intPoint === l - 1 ) {
intPoint = l - 2;
weight = 1;
}
var p0, p1, p2, p3; // 4 points
if ( this.closed || intPoint > 0 ) {
p0 = points[ ( intPoint - 1 ) % l ];
} else {
// extrapolate first point
tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] );
p0 = tmp;
}
p1 = points[ intPoint % l ];
p2 = points[ ( intPoint + 1 ) % l ];
if ( this.closed || intPoint + 2 < l ) {
p3 = points[ ( intPoint + 2 ) % l ];
} else {
// extrapolate last point
tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] );
p3 = tmp;
}
if ( this.type === undefined || this.type === 'centripetal' || this.type === 'chordal' ) {
// init Centripetal / Chordal Catmull-Rom
var pow = this.type === 'chordal' ? 0.5 : 0.25;
var dt0 = Math.pow( p0.distanceToSquared( p1 ), pow );
var dt1 = Math.pow( p1.distanceToSquared( p2 ), pow );
var dt2 = Math.pow( p2.distanceToSquared( p3 ), pow );
// safety check for repeated points
if ( dt1 < 1e-4 ) dt1 = 1.0;
if ( dt0 < 1e-4 ) dt0 = dt1;
if ( dt2 < 1e-4 ) dt2 = dt1;
px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 );
py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 );
pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 );
} else if ( this.type === 'catmullrom' ) {
var tension = this.tension !== undefined ? this.tension : 0.5;
px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, tension );
py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, tension );
pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, tension );
}
var v = new THREE.Vector3(
px.calc( weight ),
py.calc( weight ),
pz.calc( weight )
);
return v;
}
);
} )();
// File:src/extras/curves/ClosedSplineCurve3.js
/**************************************************************
* Closed Spline 3D curve
**************************************************************/
THREE.ClosedSplineCurve3 = function ( points ) {
console.warn( 'THREE.ClosedSplineCurve3 has been deprecated. Please use THREE.CatmullRomCurve3.' );
THREE.CatmullRomCurve3.call( this, points );
this.type = 'catmullrom';
this.closed = true;
};
THREE.ClosedSplineCurve3.prototype = Object.create( THREE.CatmullRomCurve3.prototype );
// File:src/extras/geometries/BoxGeometry.js
/**
* @author mrdoob / http://mrdoob.com/
* based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Cube.as
*/
THREE.BoxGeometry = function ( width, height, depth, widthSegments, heightSegments, depthSegments ) {
THREE.Geometry.call( this );
this.type = 'BoxGeometry';
this.parameters = {
width: width,
height: height,
depth: depth,
widthSegments: widthSegments,
heightSegments: heightSegments,
depthSegments: depthSegments
};
this.fromBufferGeometry( new THREE.BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) );
this.mergeVertices();
};
THREE.BoxGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.BoxGeometry.prototype.constructor = THREE.BoxGeometry;
THREE.CubeGeometry = THREE.BoxGeometry;
// File:src/extras/geometries/BoxBufferGeometry.js
/**
* @author Mugen87 / https://github.com/Mugen87
*/
THREE.BoxBufferGeometry = function ( width, height, depth, widthSegments, heightSegments, depthSegments ) {
THREE.BufferGeometry.call( this );
this.type = 'BoxBufferGeometry';
this.parameters = {
width: width,
height: height,
depth: depth,
widthSegments: widthSegments,
heightSegments: heightSegments,
depthSegments: depthSegments
};
var scope = this;
// segments
widthSegments = Math.floor( widthSegments ) || 1;
heightSegments = Math.floor( heightSegments ) || 1;
depthSegments = Math.floor( depthSegments ) || 1;
// these are used to calculate buffer length
var vertexCount = calculateVertexCount( widthSegments, heightSegments, depthSegments );
var indexCount = ( vertexCount / 4 ) * 6;
// buffers
var indices = new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount );
var vertices = new Float32Array( vertexCount * 3 );
var normals = new Float32Array( vertexCount * 3 );
var uvs = new Float32Array( vertexCount * 2 );
// offset variables
var vertexBufferOffset = 0;
var uvBufferOffset = 0;
var indexBufferOffset = 0;
var numberOfVertices = 0;
// group variables
var groupStart = 0;
// build each side of the box geometry
buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px
buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx
buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py
buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny
buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz
buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz
// build geometry
this.setIndex( new THREE.BufferAttribute( indices, 1 ) );
this.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) );
this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) );
this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) );
// helper functions
function calculateVertexCount ( w, h, d ) {
var segments = 0;
// calculate the amount of segments for each side
segments += w * h * 2; // xy
segments += w * d * 2; // xz
segments += d * h * 2; // zy
return segments * 4; // four vertices per segments
}
function buildPlane ( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) {
var segmentWidth = width / gridX;
var segmentHeight = height / gridY;
var widthHalf = width / 2;
var heightHalf = height / 2;
var depthHalf = depth / 2;
var gridX1 = gridX + 1;
var gridY1 = gridY + 1;
var vertexCounter = 0;
var groupCount = 0;
var vector = new THREE.Vector3();
// generate vertices, normals and uvs
for ( var iy = 0; iy < gridY1; iy ++ ) {
var y = iy * segmentHeight - heightHalf;
for ( var ix = 0; ix < gridX1; ix ++ ) {
var x = ix * segmentWidth - widthHalf;
// set values to correct vector component
vector[ u ] = x * udir;
vector[ v ] = y * vdir;
vector[ w ] = depthHalf;
// now apply vector to vertex buffer
vertices[ vertexBufferOffset ] = vector.x;
vertices[ vertexBufferOffset + 1 ] = vector.y;
vertices[ vertexBufferOffset + 2 ] = vector.z;
// set values to correct vector component
vector[ u ] = 0;
vector[ v ] = 0;
vector[ w ] = depth > 0 ? 1 : - 1;
// now apply vector to normal buffer
normals[ vertexBufferOffset ] = vector.x;
normals[ vertexBufferOffset + 1 ] = vector.y;
normals[ vertexBufferOffset + 2 ] = vector.z;
// uvs
uvs[ uvBufferOffset ] = ix / gridX;
uvs[ uvBufferOffset + 1 ] = 1 - ( iy / gridY );
// update offsets and counters
vertexBufferOffset += 3;
uvBufferOffset += 2;
vertexCounter += 1;
}
}
// 1. you need three indices to draw a single face
// 2. a single segment consists of two faces
// 3. so we need to generate six (2*3) indices per segment
for ( iy = 0; iy < gridY; iy ++ ) {
for ( ix = 0; ix < gridX; ix ++ ) {
// indices
var a = numberOfVertices + ix + gridX1 * iy;
var b = numberOfVertices + ix + gridX1 * ( iy + 1 );
var c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 );
var d = numberOfVertices + ( ix + 1 ) + gridX1 * iy;
// face one
indices[ indexBufferOffset ] = a;
indices[ indexBufferOffset + 1 ] = b;
indices[ indexBufferOffset + 2 ] = d;
// face two
indices[ indexBufferOffset + 3 ] = b;
indices[ indexBufferOffset + 4 ] = c;
indices[ indexBufferOffset + 5 ] = d;
// update offsets and counters
indexBufferOffset += 6;
groupCount += 6;
}
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, materialIndex );
// calculate new start value for groups
groupStart += groupCount;
// update total number of vertices
numberOfVertices += vertexCounter;
}
};
THREE.BoxBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.BoxBufferGeometry.prototype.constructor = THREE.BoxBufferGeometry;
// File:src/extras/geometries/CircleGeometry.js
/**
* @author hughes
*/
THREE.CircleGeometry = function ( radius, segments, thetaStart, thetaLength ) {
THREE.Geometry.call( this );
this.type = 'CircleGeometry';
this.parameters = {
radius: radius,
segments: segments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
this.fromBufferGeometry( new THREE.CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) );
};
THREE.CircleGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.CircleGeometry.prototype.constructor = THREE.CircleGeometry;
// File:src/extras/geometries/CircleBufferGeometry.js
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
THREE.CircleBufferGeometry = function ( radius, segments, thetaStart, thetaLength ) {
THREE.BufferGeometry.call( this );
this.type = 'CircleBufferGeometry';
this.parameters = {
radius: radius,
segments: segments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
radius = radius || 50;
segments = segments !== undefined ? Math.max( 3, segments ) : 8;
thetaStart = thetaStart !== undefined ? thetaStart : 0;
thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;
var vertices = segments + 2;
var positions = new Float32Array( vertices * 3 );
var normals = new Float32Array( vertices * 3 );
var uvs = new Float32Array( vertices * 2 );
// center data is already zero, but need to set a few extras
normals[ 2 ] = 1.0;
uvs[ 0 ] = 0.5;
uvs[ 1 ] = 0.5;
for ( var s = 0, i = 3, ii = 2 ; s <= segments; s ++, i += 3, ii += 2 ) {
var segment = thetaStart + s / segments * thetaLength;
positions[ i ] = radius * Math.cos( segment );
positions[ i + 1 ] = radius * Math.sin( segment );
normals[ i + 2 ] = 1; // normal z
uvs[ ii ] = ( positions[ i ] / radius + 1 ) / 2;
uvs[ ii + 1 ] = ( positions[ i + 1 ] / radius + 1 ) / 2;
}
var indices = [];
for ( var i = 1; i <= segments; i ++ ) {
indices.push( i, i + 1, 0 );
}
this.setIndex( new THREE.BufferAttribute( new Uint16Array( indices ), 1 ) );
this.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) );
this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) );
this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) );
this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius );
};
THREE.CircleBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.CircleBufferGeometry.prototype.constructor = THREE.CircleBufferGeometry;
// File:src/extras/geometries/CylinderBufferGeometry.js
/**
* @author Mugen87 / https://github.com/Mugen87
*/
THREE.CylinderBufferGeometry = function( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
THREE.BufferGeometry.call( this );
this.type = 'CylinderBufferGeometry';
this.parameters = {
radiusTop: radiusTop,
radiusBottom: radiusBottom,
height: height,
radialSegments: radialSegments,
heightSegments: heightSegments,
openEnded: openEnded,
thetaStart: thetaStart,
thetaLength: thetaLength
};
var scope = this;
radiusTop = radiusTop !== undefined ? radiusTop : 20;
radiusBottom = radiusBottom !== undefined ? radiusBottom : 20;
height = height !== undefined ? height : 100;
radialSegments = Math.floor( radialSegments ) || 8;
heightSegments = Math.floor( heightSegments ) || 1;
openEnded = openEnded !== undefined ? openEnded : false;
thetaStart = thetaStart !== undefined ? thetaStart : 0;
thetaLength = thetaLength !== undefined ? thetaLength : 2 * Math.PI;
// used to calculate buffer length
var vertexCount = calculateVertexCount();
var indexCount = calculateIndexCount();
// buffers
var indices = new THREE.BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ), 1 );
var vertices = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 );
// helper variables
var index = 0, indexOffset = 0, indexArray = [], halfHeight = height / 2;
// group variables
var groupStart = 0;
// generate geometry
generateTorso();
if ( openEnded === false ) {
if ( radiusTop > 0 ) generateCap( true );
if ( radiusBottom > 0 ) generateCap( false );
}
// build geometry
this.setIndex( indices );
this.addAttribute( 'position', vertices );
this.addAttribute( 'normal', normals );
this.addAttribute( 'uv', uvs );
// helper functions
function calculateVertexCount() {
var count = ( radialSegments + 1 ) * ( heightSegments + 1 );
if ( openEnded === false ) {
count += ( ( radialSegments + 1 ) * 2 ) + ( radialSegments * 2 );
}
return count;
}
function calculateIndexCount() {
var count = radialSegments * heightSegments * 2 * 3;
if ( openEnded === false ) {
count += radialSegments * 2 * 3;
}
return count;
}
function generateTorso() {
var x, y;
var normal = new THREE.Vector3();
var vertex = new THREE.Vector3();
var groupCount = 0;
// this will be used to calculate the normal
var tanTheta = ( radiusBottom - radiusTop ) / height;
// generate vertices, normals and uvs
for ( y = 0; y <= heightSegments; y ++ ) {
var indexRow = [];
var v = y / heightSegments;
// calculate the radius of the current row
var radius = v * ( radiusBottom - radiusTop ) + radiusTop;
for ( x = 0; x <= radialSegments; x ++ ) {
var u = x / radialSegments;
// vertex
vertex.x = radius * Math.sin( u * thetaLength + thetaStart );
vertex.y = - v * height + halfHeight;
vertex.z = radius * Math.cos( u * thetaLength + thetaStart );
vertices.setXYZ( index, vertex.x, vertex.y, vertex.z );
// normal
normal.copy( vertex );
// handle special case if radiusTop/radiusBottom is zero
if ( ( radiusTop === 0 && y === 0 ) || ( radiusBottom === 0 && y === heightSegments ) ) {
normal.x = Math.sin( u * thetaLength + thetaStart );
normal.z = Math.cos( u * thetaLength + thetaStart );
}
normal.setY( Math.sqrt( normal.x * normal.x + normal.z * normal.z ) * tanTheta ).normalize();
normals.setXYZ( index, normal.x, normal.y, normal.z );
// uv
uvs.setXY( index, u, 1 - v );
// save index of vertex in respective row
indexRow.push( index );
// increase index
index ++;
}
// now save vertices of the row in our index array
indexArray.push( indexRow );
}
// generate indices
for ( x = 0; x < radialSegments; x ++ ) {
for ( y = 0; y < heightSegments; y ++ ) {
// we use the index array to access the correct indices
var i1 = indexArray[ y ][ x ];
var i2 = indexArray[ y + 1 ][ x ];
var i3 = indexArray[ y + 1 ][ x + 1 ];
var i4 = indexArray[ y ][ x + 1 ];
// face one
indices.setX( indexOffset, i1 ); indexOffset ++;
indices.setX( indexOffset, i2 ); indexOffset ++;
indices.setX( indexOffset, i4 ); indexOffset ++;
// face two
indices.setX( indexOffset, i2 ); indexOffset ++;
indices.setX( indexOffset, i3 ); indexOffset ++;
indices.setX( indexOffset, i4 ); indexOffset ++;
// update counters
groupCount += 6;
}
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, 0 );
// calculate new start value for groups
groupStart += groupCount;
}
function generateCap( top ) {
var x, centerIndexStart, centerIndexEnd;
var uv = new THREE.Vector2();
var vertex = new THREE.Vector3();
var groupCount = 0;
var radius = ( top === true ) ? radiusTop : radiusBottom;
var sign = ( top === true ) ? 1 : - 1;
// save the index of the first center vertex
centerIndexStart = index;
// first we generate the center vertex data of the cap.
// because the geometry needs one set of uvs per face,
// we must generate a center vertex per face/segment
for ( x = 1; x <= radialSegments; x ++ ) {
// vertex
vertices.setXYZ( index, 0, halfHeight * sign, 0 );
// normal
normals.setXYZ( index, 0, sign, 0 );
// uv
if ( top === true ) {
uv.x = x / radialSegments;
uv.y = 0;
} else {
uv.x = ( x - 1 ) / radialSegments;
uv.y = 1;
}
uvs.setXY( index, uv.x, uv.y );
// increase index
index ++;
}
// save the index of the last center vertex
centerIndexEnd = index;
// now we generate the surrounding vertices, normals and uvs
for ( x = 0; x <= radialSegments; x ++ ) {
var u = x / radialSegments;
// vertex
vertex.x = radius * Math.sin( u * thetaLength + thetaStart );
vertex.y = halfHeight * sign;
vertex.z = radius * Math.cos( u * thetaLength + thetaStart );
vertices.setXYZ( index, vertex.x, vertex.y, vertex.z );
// normal
normals.setXYZ( index, 0, sign, 0 );
// uv
uvs.setXY( index, u, ( top === true ) ? 1 : 0 );
// increase index
index ++;
}
// generate indices
for ( x = 0; x < radialSegments; x ++ ) {
var c = centerIndexStart + x;
var i = centerIndexEnd + x;
if ( top === true ) {
// face top
indices.setX( indexOffset, i ); indexOffset ++;
indices.setX( indexOffset, i + 1 ); indexOffset ++;
indices.setX( indexOffset, c ); indexOffset ++;
} else {
// face bottom
indices.setX( indexOffset, i + 1 ); indexOffset ++;
indices.setX( indexOffset, i ); indexOffset ++;
indices.setX( indexOffset, c ); indexOffset ++;
}
// update counters
groupCount += 3;
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 );
// calculate new start value for groups
groupStart += groupCount;
}
};
THREE.CylinderBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.CylinderBufferGeometry.prototype.constructor = THREE.CylinderBufferGeometry;
// File:src/extras/geometries/CylinderGeometry.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.CylinderGeometry = function ( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
THREE.Geometry.call( this );
this.type = 'CylinderGeometry';
this.parameters = {
radiusTop: radiusTop,
radiusBottom: radiusBottom,
height: height,
radialSegments: radialSegments,
heightSegments: heightSegments,
openEnded: openEnded,
thetaStart: thetaStart,
thetaLength: thetaLength
};
this.fromBufferGeometry( new THREE.CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) );
this.mergeVertices();
};
THREE.CylinderGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.CylinderGeometry.prototype.constructor = THREE.CylinderGeometry;
// File:src/extras/geometries/EdgesGeometry.js
/**
* @author WestLangley / http://github.com/WestLangley
*/
THREE.EdgesGeometry = function ( geometry, thresholdAngle ) {
THREE.BufferGeometry.call( this );
thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1;
var thresholdDot = Math.cos( THREE.Math.DEG2RAD * thresholdAngle );
var edge = [ 0, 0 ], hash = {};
function sortFunction( a, b ) {
return a - b;
}
var keys = [ 'a', 'b', 'c' ];
var geometry2;
if ( geometry instanceof THREE.BufferGeometry ) {
geometry2 = new THREE.Geometry();
geometry2.fromBufferGeometry( geometry );
} else {
geometry2 = geometry.clone();
}
geometry2.mergeVertices();
geometry2.computeFaceNormals();
var vertices = geometry2.vertices;
var faces = geometry2.faces;
for ( var i = 0, l = faces.length; i < l; i ++ ) {
var face = faces[ i ];
for ( var j = 0; j < 3; j ++ ) {
edge[ 0 ] = face[ keys[ j ] ];
edge[ 1 ] = face[ keys[ ( j + 1 ) % 3 ] ];
edge.sort( sortFunction );
var key = edge.toString();
if ( hash[ key ] === undefined ) {
hash[ key ] = { vert1: edge[ 0 ], vert2: edge[ 1 ], face1: i, face2: undefined };
} else {
hash[ key ].face2 = i;
}
}
}
var coords = [];
for ( var key in hash ) {
var h = hash[ key ];
if ( h.face2 === undefined || faces[ h.face1 ].normal.dot( faces[ h.face2 ].normal ) <= thresholdDot ) {
var vertex = vertices[ h.vert1 ];
coords.push( vertex.x );
coords.push( vertex.y );
coords.push( vertex.z );
vertex = vertices[ h.vert2 ];
coords.push( vertex.x );
coords.push( vertex.y );
coords.push( vertex.z );
}
}
this.addAttribute( 'position', new THREE.BufferAttribute( new Float32Array( coords ), 3 ) );
};
THREE.EdgesGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.EdgesGeometry.prototype.constructor = THREE.EdgesGeometry;
// File:src/extras/geometries/ExtrudeGeometry.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*
* Creates extruded geometry from a path shape.
*
* parameters = {
*
* curveSegments: <int>, // number of points on the curves
* steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
* amount: <int>, // Depth to extrude the shape
*
* bevelEnabled: <bool>, // turn on bevel
* bevelThickness: <float>, // how deep into the original shape bevel goes
* bevelSize: <float>, // how far from shape outline is bevel
* bevelSegments: <int>, // number of bevel layers
*
* extrudePath: <THREE.CurvePath> // 3d spline path to extrude shape along. (creates Frames if .frames aren't defined)
* frames: <THREE.TubeGeometry.FrenetFrames> // containing arrays of tangents, normals, binormals
*
* uvGenerator: <Object> // object that provides UV generator functions
*
* }
**/
THREE.ExtrudeGeometry = function ( shapes, options ) {
if ( typeof( shapes ) === "undefined" ) {
shapes = [];
return;
}
THREE.Geometry.call( this );
this.type = 'ExtrudeGeometry';
shapes = Array.isArray( shapes ) ? shapes : [ shapes ];
this.addShapeList( shapes, options );
this.computeFaceNormals();
// can't really use automatic vertex normals
// as then front and back sides get smoothed too
// should do separate smoothing just for sides
//this.computeVertexNormals();
//console.log( "took", ( Date.now() - startTime ) );
};
THREE.ExtrudeGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.ExtrudeGeometry.prototype.constructor = THREE.ExtrudeGeometry;
THREE.ExtrudeGeometry.prototype.addShapeList = function ( shapes, options ) {
var sl = shapes.length;
for ( var s = 0; s < sl; s ++ ) {
var shape = shapes[ s ];
this.addShape( shape, options );
}
};
THREE.ExtrudeGeometry.prototype.addShape = function ( shape, options ) {
var amount = options.amount !== undefined ? options.amount : 100;
var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; // 10
var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; // 8
var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;
var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; // false
var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
var steps = options.steps !== undefined ? options.steps : 1;
var extrudePath = options.extrudePath;
var extrudePts, extrudeByPath = false;
// Use default WorldUVGenerator if no UV generators are specified.
var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : THREE.ExtrudeGeometry.WorldUVGenerator;
var splineTube, binormal, normal, position2;
if ( extrudePath ) {
extrudePts = extrudePath.getSpacedPoints( steps );
extrudeByPath = true;
bevelEnabled = false; // bevels not supported for path extrusion
// SETUP TNB variables
// Reuse TNB from TubeGeomtry for now.
// TODO1 - have a .isClosed in spline?
splineTube = options.frames !== undefined ? options.frames : new THREE.TubeGeometry.FrenetFrames( extrudePath, steps, false );
// console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);
binormal = new THREE.Vector3();
normal = new THREE.Vector3();
position2 = new THREE.Vector3();
}
// Safeguards if bevels are not enabled
if ( ! bevelEnabled ) {
bevelSegments = 0;
bevelThickness = 0;
bevelSize = 0;
}
// Variables initialization
var ahole, h, hl; // looping of holes
var scope = this;
var shapesOffset = this.vertices.length;
var shapePoints = shape.extractPoints( curveSegments );
var vertices = shapePoints.shape;
var holes = shapePoints.holes;
var reverse = ! THREE.ShapeUtils.isClockWise( vertices );
if ( reverse ) {
vertices = vertices.reverse();
// Maybe we should also check if holes are in the opposite direction, just to be safe ...
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
if ( THREE.ShapeUtils.isClockWise( ahole ) ) {
holes[ h ] = ahole.reverse();
}
}
reverse = false; // If vertices are in order now, we shouldn't need to worry about them again (hopefully)!
}
var faces = THREE.ShapeUtils.triangulateShape( vertices, holes );
/* Vertices */
var contour = vertices; // vertices has all points but contour has only points of circumference
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
vertices = vertices.concat( ahole );
}
function scalePt2 ( pt, vec, size ) {
if ( ! vec ) console.error( "THREE.ExtrudeGeometry: vec does not exist" );
return vec.clone().multiplyScalar( size ).add( pt );
}
var b, bs, t, z,
vert, vlen = vertices.length,
face, flen = faces.length;
// Find directions for point movement
function getBevelVec( inPt, inPrev, inNext ) {
// computes for inPt the corresponding point inPt' on a new contour
// shifted by 1 unit (length of normalized vector) to the left
// if we walk along contour clockwise, this new contour is outside the old one
//
// inPt' is the intersection of the two lines parallel to the two
// adjacent edges of inPt at a distance of 1 unit on the left side.
var v_trans_x, v_trans_y, shrink_by = 1; // resulting translation vector for inPt
// good reading for geometry algorithms (here: line-line intersection)
// http://geomalgorithms.com/a05-_intersect-1.html
var v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y;
var v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y;
var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y );
// check for collinear edges
var collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x );
if ( Math.abs( collinear0 ) > Number.EPSILON ) {
// not collinear
// length of vectors for normalizing
var v_prev_len = Math.sqrt( v_prev_lensq );
var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y );
// shift adjacent points by unit vectors to the left
var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len );
var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len );
var ptNextShift_x = ( inNext.x - v_next_y / v_next_len );
var ptNextShift_y = ( inNext.y + v_next_x / v_next_len );
// scaling factor for v_prev to intersection point
var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y -
( ptNextShift_y - ptPrevShift_y ) * v_next_x ) /
( v_prev_x * v_next_y - v_prev_y * v_next_x );
// vector from inPt to intersection point
v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x );
v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y );
// Don't normalize!, otherwise sharp corners become ugly
// but prevent crazy spikes
var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y );
if ( v_trans_lensq <= 2 ) {
return new THREE.Vector2( v_trans_x, v_trans_y );
} else {
shrink_by = Math.sqrt( v_trans_lensq / 2 );
}
} else {
// handle special case of collinear edges
var direction_eq = false; // assumes: opposite
if ( v_prev_x > Number.EPSILON ) {
if ( v_next_x > Number.EPSILON ) {
direction_eq = true;
}
} else {
if ( v_prev_x < - Number.EPSILON ) {
if ( v_next_x < - Number.EPSILON ) {
direction_eq = true;
}
} else {
if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) {
direction_eq = true;
}
}
}
if ( direction_eq ) {
// console.log("Warning: lines are a straight sequence");
v_trans_x = - v_prev_y;
v_trans_y = v_prev_x;
shrink_by = Math.sqrt( v_prev_lensq );
} else {
// console.log("Warning: lines are a straight spike");
v_trans_x = v_prev_x;
v_trans_y = v_prev_y;
shrink_by = Math.sqrt( v_prev_lensq / 2 );
}
}
return new THREE.Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by );
}
var contourMovements = [];
for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
if ( j === il ) j = 0;
if ( k === il ) k = 0;
// (j)---(i)---(k)
// console.log('i,j,k', i, j , k)
contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] );
}
var holesMovements = [], oneHoleMovements, verticesMovements = contourMovements.concat();
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
oneHoleMovements = [];
for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
if ( j === il ) j = 0;
if ( k === il ) k = 0;
// (j)---(i)---(k)
oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] );
}
holesMovements.push( oneHoleMovements );
verticesMovements = verticesMovements.concat( oneHoleMovements );
}
// Loop bevelSegments, 1 for the front, 1 for the back
for ( b = 0; b < bevelSegments; b ++ ) {
//for ( b = bevelSegments; b > 0; b -- ) {
t = b / bevelSegments;
z = bevelThickness * ( 1 - t );
//z = bevelThickness * t;
bs = bevelSize * ( Math.sin ( t * Math.PI / 2 ) ); // curved
//bs = bevelSize * t; // linear
// contract shape
for ( i = 0, il = contour.length; i < il; i ++ ) {
vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
v( vert.x, vert.y, - z );
}
// expand holes
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
oneHoleMovements = holesMovements[ h ];
for ( i = 0, il = ahole.length; i < il; i ++ ) {
vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
v( vert.x, vert.y, - z );
}
}
}
bs = bevelSize;
// Back facing vertices
for ( i = 0; i < vlen; i ++ ) {
vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
if ( ! extrudeByPath ) {
v( vert.x, vert.y, 0 );
} else {
// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );
normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x );
binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y );
position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal );
v( position2.x, position2.y, position2.z );
}
}
// Add stepped vertices...
// Including front facing vertices
var s;
for ( s = 1; s <= steps; s ++ ) {
for ( i = 0; i < vlen; i ++ ) {
vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
if ( ! extrudeByPath ) {
v( vert.x, vert.y, amount / steps * s );
} else {
// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );
normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x );
binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y );
position2.copy( extrudePts[ s ] ).add( normal ).add( binormal );
v( position2.x, position2.y, position2.z );
}
}
}
// Add bevel segments planes
//for ( b = 1; b <= bevelSegments; b ++ ) {
for ( b = bevelSegments - 1; b >= 0; b -- ) {
t = b / bevelSegments;
z = bevelThickness * ( 1 - t );
//bs = bevelSize * ( 1-Math.sin ( ( 1 - t ) * Math.PI/2 ) );
bs = bevelSize * Math.sin ( t * Math.PI / 2 );
// contract shape
for ( i = 0, il = contour.length; i < il; i ++ ) {
vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
v( vert.x, vert.y, amount + z );
}
// expand holes
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
oneHoleMovements = holesMovements[ h ];
for ( i = 0, il = ahole.length; i < il; i ++ ) {
vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
if ( ! extrudeByPath ) {
v( vert.x, vert.y, amount + z );
} else {
v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z );
}
}
}
}
/* Faces */
// Top and bottom faces
buildLidFaces();
// Sides faces
buildSideFaces();
///// Internal functions
function buildLidFaces() {
if ( bevelEnabled ) {
var layer = 0; // steps + 1
var offset = vlen * layer;
// Bottom faces
for ( i = 0; i < flen; i ++ ) {
face = faces[ i ];
f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset );
}
layer = steps + bevelSegments * 2;
offset = vlen * layer;
// Top faces
for ( i = 0; i < flen; i ++ ) {
face = faces[ i ];
f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset );
}
} else {
// Bottom faces
for ( i = 0; i < flen; i ++ ) {
face = faces[ i ];
f3( face[ 2 ], face[ 1 ], face[ 0 ] );
}
// Top faces
for ( i = 0; i < flen; i ++ ) {
face = faces[ i ];
f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps );
}
}
}
// Create faces for the z-sides of the shape
function buildSideFaces() {
var layeroffset = 0;
sidewalls( contour, layeroffset );
layeroffset += contour.length;
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
sidewalls( ahole, layeroffset );
//, true
layeroffset += ahole.length;
}
}
function sidewalls( contour, layeroffset ) {
var j, k;
i = contour.length;
while ( -- i >= 0 ) {
j = i;
k = i - 1;
if ( k < 0 ) k = contour.length - 1;
//console.log('b', i,j, i-1, k,vertices.length);
var s = 0, sl = steps + bevelSegments * 2;
for ( s = 0; s < sl; s ++ ) {
var slen1 = vlen * s;
var slen2 = vlen * ( s + 1 );
var a = layeroffset + j + slen1,
b = layeroffset + k + slen1,
c = layeroffset + k + slen2,
d = layeroffset + j + slen2;
f4( a, b, c, d, contour, s, sl, j, k );
}
}
}
function v( x, y, z ) {
scope.vertices.push( new THREE.Vector3( x, y, z ) );
}
function f3( a, b, c ) {
a += shapesOffset;
b += shapesOffset;
c += shapesOffset;
scope.faces.push( new THREE.Face3( a, b, c, null, null, 0 ) );
var uvs = uvgen.generateTopUV( scope, a, b, c );
scope.faceVertexUvs[ 0 ].push( uvs );
}
function f4( a, b, c, d, wallContour, stepIndex, stepsLength, contourIndex1, contourIndex2 ) {
a += shapesOffset;
b += shapesOffset;
c += shapesOffset;
d += shapesOffset;
scope.faces.push( new THREE.Face3( a, b, d, null, null, 1 ) );
scope.faces.push( new THREE.Face3( b, c, d, null, null, 1 ) );
var uvs = uvgen.generateSideWallUV( scope, a, b, c, d );
scope.faceVertexUvs[ 0 ].push( [ uvs[ 0 ], uvs[ 1 ], uvs[ 3 ] ] );
scope.faceVertexUvs[ 0 ].push( [ uvs[ 1 ], uvs[ 2 ], uvs[ 3 ] ] );
}
};
THREE.ExtrudeGeometry.WorldUVGenerator = {
generateTopUV: function ( geometry, indexA, indexB, indexC ) {
var vertices = geometry.vertices;
var a = vertices[ indexA ];
var b = vertices[ indexB ];
var c = vertices[ indexC ];
return [
new THREE.Vector2( a.x, a.y ),
new THREE.Vector2( b.x, b.y ),
new THREE.Vector2( c.x, c.y )
];
},
generateSideWallUV: function ( geometry, indexA, indexB, indexC, indexD ) {
var vertices = geometry.vertices;
var a = vertices[ indexA ];
var b = vertices[ indexB ];
var c = vertices[ indexC ];
var d = vertices[ indexD ];
if ( Math.abs( a.y - b.y ) < 0.01 ) {
return [
new THREE.Vector2( a.x, 1 - a.z ),
new THREE.Vector2( b.x, 1 - b.z ),
new THREE.Vector2( c.x, 1 - c.z ),
new THREE.Vector2( d.x, 1 - d.z )
];
} else {
return [
new THREE.Vector2( a.y, 1 - a.z ),
new THREE.Vector2( b.y, 1 - b.z ),
new THREE.Vector2( c.y, 1 - c.z ),
new THREE.Vector2( d.y, 1 - d.z )
];
}
}
};
// File:src/extras/geometries/ShapeGeometry.js
/**
* @author jonobr1 / http://jonobr1.com
*
* Creates a one-sided polygonal geometry from a path shape. Similar to
* ExtrudeGeometry.
*
* parameters = {
*
* curveSegments: <int>, // number of points on the curves. NOT USED AT THE MOMENT.
*
* material: <int> // material index for front and back faces
* uvGenerator: <Object> // object that provides UV generator functions
*
* }
**/
THREE.ShapeGeometry = function ( shapes, options ) {
THREE.Geometry.call( this );
this.type = 'ShapeGeometry';
if ( Array.isArray( shapes ) === false ) shapes = [ shapes ];
this.addShapeList( shapes, options );
this.computeFaceNormals();
};
THREE.ShapeGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.ShapeGeometry.prototype.constructor = THREE.ShapeGeometry;
/**
* Add an array of shapes to THREE.ShapeGeometry.
*/
THREE.ShapeGeometry.prototype.addShapeList = function ( shapes, options ) {
for ( var i = 0, l = shapes.length; i < l; i ++ ) {
this.addShape( shapes[ i ], options );
}
return this;
};
/**
* Adds a shape to THREE.ShapeGeometry, based on THREE.ExtrudeGeometry.
*/
THREE.ShapeGeometry.prototype.addShape = function ( shape, options ) {
if ( options === undefined ) options = {};
var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
var material = options.material;
var uvgen = options.UVGenerator === undefined ? THREE.ExtrudeGeometry.WorldUVGenerator : options.UVGenerator;
//
var i, l, hole;
var shapesOffset = this.vertices.length;
var shapePoints = shape.extractPoints( curveSegments );
var vertices = shapePoints.shape;
var holes = shapePoints.holes;
var reverse = ! THREE.ShapeUtils.isClockWise( vertices );
if ( reverse ) {
vertices = vertices.reverse();
// Maybe we should also check if holes are in the opposite direction, just to be safe...
for ( i = 0, l = holes.length; i < l; i ++ ) {
hole = holes[ i ];
if ( THREE.ShapeUtils.isClockWise( hole ) ) {
holes[ i ] = hole.reverse();
}
}
reverse = false;
}
var faces = THREE.ShapeUtils.triangulateShape( vertices, holes );
// Vertices
for ( i = 0, l = holes.length; i < l; i ++ ) {
hole = holes[ i ];
vertices = vertices.concat( hole );
}
//
var vert, vlen = vertices.length;
var face, flen = faces.length;
for ( i = 0; i < vlen; i ++ ) {
vert = vertices[ i ];
this.vertices.push( new THREE.Vector3( vert.x, vert.y, 0 ) );
}
for ( i = 0; i < flen; i ++ ) {
face = faces[ i ];
var a = face[ 0 ] + shapesOffset;
var b = face[ 1 ] + shapesOffset;
var c = face[ 2 ] + shapesOffset;
this.faces.push( new THREE.Face3( a, b, c, null, null, material ) );
this.faceVertexUvs[ 0 ].push( uvgen.generateTopUV( this, a, b, c ) );
}
};
// File:src/extras/geometries/LatheBufferGeometry.js
/**
* @author Mugen87 / https://github.com/Mugen87
*/
// points - to create a closed torus, one must use a set of points
// like so: [ a, b, c, d, a ], see first is the same as last.
// segments - the number of circumference segments to create
// phiStart - the starting radian
// phiLength - the radian (0 to 2PI) range of the lathed section
// 2PI is a closed lathe, less than 2PI is a portion.
THREE.LatheBufferGeometry = function ( points, segments, phiStart, phiLength ) {
THREE.BufferGeometry.call( this );
this.type = 'LatheBufferGeometry';
this.parameters = {
points: points,
segments: segments,
phiStart: phiStart,
phiLength: phiLength
};
segments = Math.floor( segments ) || 12;
phiStart = phiStart || 0;
phiLength = phiLength || Math.PI * 2;
// clamp phiLength so it's in range of [ 0, 2PI ]
phiLength = THREE.Math.clamp( phiLength, 0, Math.PI * 2 );
// these are used to calculate buffer length
var vertexCount = ( segments + 1 ) * points.length;
var indexCount = segments * points.length * 2 * 3;
// buffers
var indices = new THREE.BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 );
var vertices = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 );
// helper variables
var index = 0, indexOffset = 0, base;
var inversePointLength = 1.0 / ( points.length - 1 );
var inverseSegments = 1.0 / segments;
var vertex = new THREE.Vector3();
var uv = new THREE.Vector2();
var i, j;
// generate vertices and uvs
for ( i = 0; i <= segments; i ++ ) {
var phi = phiStart + i * inverseSegments * phiLength;
var sin = Math.sin( phi );
var cos = Math.cos( phi );
for ( j = 0; j <= ( points.length - 1 ); j ++ ) {
// vertex
vertex.x = points[ j ].x * sin;
vertex.y = points[ j ].y;
vertex.z = points[ j ].x * cos;
vertices.setXYZ( index, vertex.x, vertex.y, vertex.z );
// uv
uv.x = i / segments;
uv.y = j / ( points.length - 1 );
uvs.setXY( index, uv.x, uv.y );
// increase index
index ++;
}
}
// generate indices
for ( i = 0; i < segments; i ++ ) {
for ( j = 0; j < ( points.length - 1 ); j ++ ) {
base = j + i * points.length;
// indices
var a = base;
var b = base + points.length;
var c = base + points.length + 1;
var d = base + 1;
// face one
indices.setX( indexOffset, a ); indexOffset++;
indices.setX( indexOffset, b ); indexOffset++;
indices.setX( indexOffset, d ); indexOffset++;
// face two
indices.setX( indexOffset, b ); indexOffset++;
indices.setX( indexOffset, c ); indexOffset++;
indices.setX( indexOffset, d ); indexOffset++;
}
}
// build geometry
this.setIndex( indices );
this.addAttribute( 'position', vertices );
this.addAttribute( 'uv', uvs );
// generate normals
this.computeVertexNormals();
// if the geometry is closed, we need to average the normals along the seam.
// because the corresponding vertices are identical (but still have different UVs).
if( phiLength === Math.PI * 2 ) {
var normals = this.attributes.normal.array;
var n1 = new THREE.Vector3();
var n2 = new THREE.Vector3();
var n = new THREE.Vector3();
// this is the buffer offset for the last line of vertices
base = segments * points.length * 3;
for( i = 0, j = 0; i < points.length; i ++, j += 3 ) {
// select the normal of the vertex in the first line
n1.x = normals[ j + 0 ];
n1.y = normals[ j + 1 ];
n1.z = normals[ j + 2 ];
// select the normal of the vertex in the last line
n2.x = normals[ base + j + 0 ];
n2.y = normals[ base + j + 1 ];
n2.z = normals[ base + j + 2 ];
// average normals
n.addVectors( n1, n2 ).normalize();
// assign the new values to both normals
normals[ j + 0 ] = normals[ base + j + 0 ] = n.x;
normals[ j + 1 ] = normals[ base + j + 1 ] = n.y;
normals[ j + 2 ] = normals[ base + j + 2 ] = n.z;
} // next row
}
};
THREE.LatheBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.LatheBufferGeometry.prototype.constructor = THREE.LatheBufferGeometry;
// File:src/extras/geometries/LatheGeometry.js
/**
* @author astrodud / http://astrodud.isgreat.org/
* @author zz85 / https://github.com/zz85
* @author bhouston / http://clara.io
*/
// points - to create a closed torus, one must use a set of points
// like so: [ a, b, c, d, a ], see first is the same as last.
// segments - the number of circumference segments to create
// phiStart - the starting radian
// phiLength - the radian (0 to 2PI) range of the lathed section
// 2PI is a closed lathe, less than 2PI is a portion.
THREE.LatheGeometry = function ( points, segments, phiStart, phiLength ) {
THREE.Geometry.call( this );
this.type = 'LatheGeometry';
this.parameters = {
points: points,
segments: segments,
phiStart: phiStart,
phiLength: phiLength
};
this.fromBufferGeometry( new THREE.LatheBufferGeometry( points, segments, phiStart, phiLength ) );
this.mergeVertices();
};
THREE.LatheGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.LatheGeometry.prototype.constructor = THREE.LatheGeometry;
// File:src/extras/geometries/PlaneGeometry.js
/**
* @author mrdoob / http://mrdoob.com/
* based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Plane.as
*/
THREE.PlaneGeometry = function ( width, height, widthSegments, heightSegments ) {
THREE.Geometry.call( this );
this.type = 'PlaneGeometry';
this.parameters = {
width: width,
height: height,
widthSegments: widthSegments,
heightSegments: heightSegments
};
this.fromBufferGeometry( new THREE.PlaneBufferGeometry( width, height, widthSegments, heightSegments ) );
};
THREE.PlaneGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.PlaneGeometry.prototype.constructor = THREE.PlaneGeometry;
// File:src/extras/geometries/PlaneBufferGeometry.js
/**
* @author mrdoob / http://mrdoob.com/
* based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Plane.as
*/
THREE.PlaneBufferGeometry = function ( width, height, widthSegments, heightSegments ) {
THREE.BufferGeometry.call( this );
this.type = 'PlaneBufferGeometry';
this.parameters = {
width: width,
height: height,
widthSegments: widthSegments,
heightSegments: heightSegments
};
var width_half = width / 2;
var height_half = height / 2;
var gridX = Math.floor( widthSegments ) || 1;
var gridY = Math.floor( heightSegments ) || 1;
var gridX1 = gridX + 1;
var gridY1 = gridY + 1;
var segment_width = width / gridX;
var segment_height = height / gridY;
var vertices = new Float32Array( gridX1 * gridY1 * 3 );
var normals = new Float32Array( gridX1 * gridY1 * 3 );
var uvs = new Float32Array( gridX1 * gridY1 * 2 );
var offset = 0;
var offset2 = 0;
for ( var iy = 0; iy < gridY1; iy ++ ) {
var y = iy * segment_height - height_half;
for ( var ix = 0; ix < gridX1; ix ++ ) {
var x = ix * segment_width - width_half;
vertices[ offset ] = x;
vertices[ offset + 1 ] = - y;
normals[ offset + 2 ] = 1;
uvs[ offset2 ] = ix / gridX;
uvs[ offset2 + 1 ] = 1 - ( iy / gridY );
offset += 3;
offset2 += 2;
}
}
offset = 0;
var indices = new ( ( vertices.length / 3 ) > 65535 ? Uint32Array : Uint16Array )( gridX * gridY * 6 );
for ( var iy = 0; iy < gridY; iy ++ ) {
for ( var ix = 0; ix < gridX; ix ++ ) {
var a = ix + gridX1 * iy;
var b = ix + gridX1 * ( iy + 1 );
var c = ( ix + 1 ) + gridX1 * ( iy + 1 );
var d = ( ix + 1 ) + gridX1 * iy;
indices[ offset ] = a;
indices[ offset + 1 ] = b;
indices[ offset + 2 ] = d;
indices[ offset + 3 ] = b;
indices[ offset + 4 ] = c;
indices[ offset + 5 ] = d;
offset += 6;
}
}
this.setIndex( new THREE.BufferAttribute( indices, 1 ) );
this.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) );
this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) );
this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) );
};
THREE.PlaneBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.PlaneBufferGeometry.prototype.constructor = THREE.PlaneBufferGeometry;
// File:src/extras/geometries/RingBufferGeometry.js
/**
* @author Mugen87 / https://github.com/Mugen87
*/
THREE.RingBufferGeometry = function ( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {
THREE.BufferGeometry.call( this );
this.type = 'RingBufferGeometry';
this.parameters = {
innerRadius: innerRadius,
outerRadius: outerRadius,
thetaSegments: thetaSegments,
phiSegments: phiSegments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
innerRadius = innerRadius || 20;
outerRadius = outerRadius || 50;
thetaStart = thetaStart !== undefined ? thetaStart : 0;
thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;
thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8;
phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1;
// these are used to calculate buffer length
var vertexCount = ( thetaSegments + 1 ) * ( phiSegments + 1 );
var indexCount = thetaSegments * phiSegments * 2 * 3;
// buffers
var indices = new THREE.BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 );
var vertices = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 );
// some helper variables
var index = 0, indexOffset = 0, segment;
var radius = innerRadius;
var radiusStep = ( ( outerRadius - innerRadius ) / phiSegments );
var vertex = new THREE.Vector3();
var uv = new THREE.Vector2();
var j, i;
// generate vertices, normals and uvs
// values are generate from the inside of the ring to the outside
for ( j = 0; j <= phiSegments; j ++ ) {
for ( i = 0; i <= thetaSegments; i ++ ) {
segment = thetaStart + i / thetaSegments * thetaLength;
// vertex
vertex.x = radius * Math.cos( segment );
vertex.y = radius * Math.sin( segment );
vertices.setXYZ( index, vertex.x, vertex.y, vertex.z );
// normal
normals.setXYZ( index, 0, 0, 1 );
// uv
uv.x = ( vertex.x / outerRadius + 1 ) / 2;
uv.y = ( vertex.y / outerRadius + 1 ) / 2;
uvs.setXY( index, uv.x, uv.y );
// increase index
index++;
}
// increase the radius for next row of vertices
radius += radiusStep;
}
// generate indices
for ( j = 0; j < phiSegments; j ++ ) {
var thetaSegmentLevel = j * ( thetaSegments + 1 );
for ( i = 0; i < thetaSegments; i ++ ) {
segment = i + thetaSegmentLevel;
// indices
var a = segment;
var b = segment + thetaSegments + 1;
var c = segment + thetaSegments + 2;
var d = segment + 1;
// face one
indices.setX( indexOffset, a ); indexOffset++;
indices.setX( indexOffset, b ); indexOffset++;
indices.setX( indexOffset, c ); indexOffset++;
// face two
indices.setX( indexOffset, a ); indexOffset++;
indices.setX( indexOffset, c ); indexOffset++;
indices.setX( indexOffset, d ); indexOffset++;
}
}
// build geometry
this.setIndex( indices );
this.addAttribute( 'position', vertices );
this.addAttribute( 'normal', normals );
this.addAttribute( 'uv', uvs );
};
THREE.RingBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.RingBufferGeometry.prototype.constructor = THREE.RingBufferGeometry;
// File:src/extras/geometries/RingGeometry.js
/**
* @author Kaleb Murphy
*/
THREE.RingGeometry = function ( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {
THREE.Geometry.call( this );
this.type = 'RingGeometry';
this.parameters = {
innerRadius: innerRadius,
outerRadius: outerRadius,
thetaSegments: thetaSegments,
phiSegments: phiSegments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
this.fromBufferGeometry( new THREE.RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) );
};
THREE.RingGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.RingGeometry.prototype.constructor = THREE.RingGeometry;
// File:src/extras/geometries/SphereGeometry.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.SphereGeometry = function ( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {
THREE.Geometry.call( this );
this.type = 'SphereGeometry';
this.parameters = {
radius: radius,
widthSegments: widthSegments,
heightSegments: heightSegments,
phiStart: phiStart,
phiLength: phiLength,
thetaStart: thetaStart,
thetaLength: thetaLength
};
this.fromBufferGeometry( new THREE.SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) );
};
THREE.SphereGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.SphereGeometry.prototype.constructor = THREE.SphereGeometry;
// File:src/extras/geometries/SphereBufferGeometry.js
/**
* @author benaadams / https://twitter.com/ben_a_adams
* based on THREE.SphereGeometry
*/
THREE.SphereBufferGeometry = function ( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {
THREE.BufferGeometry.call( this );
this.type = 'SphereBufferGeometry';
this.parameters = {
radius: radius,
widthSegments: widthSegments,
heightSegments: heightSegments,
phiStart: phiStart,
phiLength: phiLength,
thetaStart: thetaStart,
thetaLength: thetaLength
};
radius = radius || 50;
widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 );
heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 );
phiStart = phiStart !== undefined ? phiStart : 0;
phiLength = phiLength !== undefined ? phiLength : Math.PI * 2;
thetaStart = thetaStart !== undefined ? thetaStart : 0;
thetaLength = thetaLength !== undefined ? thetaLength : Math.PI;
var thetaEnd = thetaStart + thetaLength;
var vertexCount = ( ( widthSegments + 1 ) * ( heightSegments + 1 ) );
var positions = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 );
var index = 0, vertices = [], normal = new THREE.Vector3();
for ( var y = 0; y <= heightSegments; y ++ ) {
var verticesRow = [];
var v = y / heightSegments;
for ( var x = 0; x <= widthSegments; x ++ ) {
var u = x / widthSegments;
var px = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
var py = radius * Math.cos( thetaStart + v * thetaLength );
var pz = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
normal.set( px, py, pz ).normalize();
positions.setXYZ( index, px, py, pz );
normals.setXYZ( index, normal.x, normal.y, normal.z );
uvs.setXY( index, u, 1 - v );
verticesRow.push( index );
index ++;
}
vertices.push( verticesRow );
}
var indices = [];
for ( var y = 0; y < heightSegments; y ++ ) {
for ( var x = 0; x < widthSegments; x ++ ) {
var v1 = vertices[ y ][ x + 1 ];
var v2 = vertices[ y ][ x ];
var v3 = vertices[ y + 1 ][ x ];
var v4 = vertices[ y + 1 ][ x + 1 ];
if ( y !== 0 || thetaStart > 0 ) indices.push( v1, v2, v4 );
if ( y !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( v2, v3, v4 );
}
}
this.setIndex( new ( positions.count > 65535 ? THREE.Uint32Attribute : THREE.Uint16Attribute )( indices, 1 ) );
this.addAttribute( 'position', positions );
this.addAttribute( 'normal', normals );
this.addAttribute( 'uv', uvs );
this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius );
};
THREE.SphereBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.SphereBufferGeometry.prototype.constructor = THREE.SphereBufferGeometry;
// File:src/extras/geometries/TextGeometry.js
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author alteredq / http://alteredqualia.com/
*
* Text = 3D Text
*
* parameters = {
* font: <THREE.Font>, // font
*
* size: <float>, // size of the text
* height: <float>, // thickness to extrude text
* curveSegments: <int>, // number of points on the curves
*
* bevelEnabled: <bool>, // turn on bevel
* bevelThickness: <float>, // how deep into text bevel goes
* bevelSize: <float> // how far from text outline is bevel
* }
*/
THREE.TextGeometry = function ( text, parameters ) {
parameters = parameters || {};
var font = parameters.font;
if ( font instanceof THREE.Font === false ) {
console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' );
return new THREE.Geometry();
}
var shapes = font.generateShapes( text, parameters.size, parameters.curveSegments );
// translate parameters to ExtrudeGeometry API
parameters.amount = parameters.height !== undefined ? parameters.height : 50;
// defaults
if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10;
if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8;
if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false;
THREE.ExtrudeGeometry.call( this, shapes, parameters );
this.type = 'TextGeometry';
};
THREE.TextGeometry.prototype = Object.create( THREE.ExtrudeGeometry.prototype );
THREE.TextGeometry.prototype.constructor = THREE.TextGeometry;
// File:src/extras/geometries/TorusBufferGeometry.js
/**
* @author Mugen87 / https://github.com/Mugen87
*/
THREE.TorusBufferGeometry = function ( radius, tube, radialSegments, tubularSegments, arc ) {
THREE.BufferGeometry.call( this );
this.type = 'TorusBufferGeometry';
this.parameters = {
radius: radius,
tube: tube,
radialSegments: radialSegments,
tubularSegments: tubularSegments,
arc: arc
};
radius = radius || 100;
tube = tube || 40;
radialSegments = Math.floor( radialSegments ) || 8;
tubularSegments = Math.floor( tubularSegments ) || 6;
arc = arc || Math.PI * 2;
// used to calculate buffer length
var vertexCount = ( ( radialSegments + 1 ) * ( tubularSegments + 1 ) );
var indexCount = radialSegments * tubularSegments * 2 * 3;
// buffers
var indices = new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount );
var vertices = new Float32Array( vertexCount * 3 );
var normals = new Float32Array( vertexCount * 3 );
var uvs = new Float32Array( vertexCount * 2 );
// offset variables
var vertexBufferOffset = 0;
var uvBufferOffset = 0;
var indexBufferOffset = 0;
// helper variables
var center = new THREE.Vector3();
var vertex = new THREE.Vector3();
var normal = new THREE.Vector3();
var j, i;
// generate vertices, normals and uvs
for ( j = 0; j <= radialSegments; j ++ ) {
for ( i = 0; i <= tubularSegments; i ++ ) {
var u = i / tubularSegments * arc;
var v = j / radialSegments * Math.PI * 2;
// vertex
vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u );
vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u );
vertex.z = tube * Math.sin( v );
vertices[ vertexBufferOffset ] = vertex.x;
vertices[ vertexBufferOffset + 1 ] = vertex.y;
vertices[ vertexBufferOffset + 2 ] = vertex.z;
// this vector is used to calculate the normal
center.x = radius * Math.cos( u );
center.y = radius * Math.sin( u );
// normal
normal.subVectors( vertex, center ).normalize();
normals[ vertexBufferOffset ] = normal.x;
normals[ vertexBufferOffset + 1 ] = normal.y;
normals[ vertexBufferOffset + 2 ] = normal.z;
// uv
uvs[ uvBufferOffset ] = i / tubularSegments;
uvs[ uvBufferOffset + 1 ] = j / radialSegments;
// update offsets
vertexBufferOffset += 3;
uvBufferOffset += 2;
}
}
// generate indices
for ( j = 1; j <= radialSegments; j ++ ) {
for ( i = 1; i <= tubularSegments; i ++ ) {
// indices
var a = ( tubularSegments + 1 ) * j + i - 1;
var b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1;
var c = ( tubularSegments + 1 ) * ( j - 1 ) + i;
var d = ( tubularSegments + 1 ) * j + i;
// face one
indices[ indexBufferOffset ] = a;
indices[ indexBufferOffset + 1 ] = b;
indices[ indexBufferOffset + 2 ] = d;
// face two
indices[ indexBufferOffset + 3 ] = b;
indices[ indexBufferOffset + 4 ] = c;
indices[ indexBufferOffset + 5 ] = d;
// update offset
indexBufferOffset += 6;
}
}
// build geometry
this.setIndex( new THREE.BufferAttribute( indices, 1 ) );
this.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) );
this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) );
this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) );
};
THREE.TorusBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.TorusBufferGeometry.prototype.constructor = THREE.TorusBufferGeometry;
// File:src/extras/geometries/TorusGeometry.js
/**
* @author oosmoxiecode
* @author mrdoob / http://mrdoob.com/
* based on http://code.google.com/p/away3d/source/browse/trunk/fp10/Away3DLite/src/away3dlite/primitives/Torus.as?r=2888
*/
THREE.TorusGeometry = function ( radius, tube, radialSegments, tubularSegments, arc ) {
THREE.Geometry.call( this );
this.type = 'TorusGeometry';
this.parameters = {
radius: radius,
tube: tube,
radialSegments: radialSegments,
tubularSegments: tubularSegments,
arc: arc
};
this.fromBufferGeometry( new THREE.TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) );
};
THREE.TorusGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.TorusGeometry.prototype.constructor = THREE.TorusGeometry;
// File:src/extras/geometries/TorusKnotBufferGeometry.js
/**
* @author Mugen87 / https://github.com/Mugen87
*
* see: http://www.blackpawn.com/texts/pqtorus/
*/
THREE.TorusKnotBufferGeometry = function ( radius, tube, tubularSegments, radialSegments, p, q ) {
THREE.BufferGeometry.call( this );
this.type = 'TorusKnotBufferGeometry';
this.parameters = {
radius: radius,
tube: tube,
tubularSegments: tubularSegments,
radialSegments: radialSegments,
p: p,
q: q
};
radius = radius || 100;
tube = tube || 40;
tubularSegments = Math.floor( tubularSegments ) || 64;
radialSegments = Math.floor( radialSegments ) || 8;
p = p || 2;
q = q || 3;
// used to calculate buffer length
var vertexCount = ( ( radialSegments + 1 ) * ( tubularSegments + 1 ) );
var indexCount = radialSegments * tubularSegments * 2 * 3;
// buffers
var indices = new THREE.BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 );
var vertices = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 );
// helper variables
var i, j, index = 0, indexOffset = 0;
var vertex = new THREE.Vector3();
var normal = new THREE.Vector3();
var uv = new THREE.Vector2();
var P1 = new THREE.Vector3();
var P2 = new THREE.Vector3();
var B = new THREE.Vector3();
var T = new THREE.Vector3();
var N = new THREE.Vector3();
// generate vertices, normals and uvs
for ( i = 0; i <= tubularSegments; ++ i ) {
// the radian "u" is used to calculate the position on the torus curve of the current tubular segement
var u = i / tubularSegments * p * Math.PI * 2;
// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
calculatePositionOnCurve( u, p, q, radius, P1 );
calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );
// calculate orthonormal basis
T.subVectors( P2, P1 );
N.addVectors( P2, P1 );
B.crossVectors( T, N );
N.crossVectors( B, T );
// normalize B, N. T can be ignored, we don't use it
B.normalize();
N.normalize();
for ( j = 0; j <= radialSegments; ++ j ) {
// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
var v = j / radialSegments * Math.PI * 2;
var cx = - tube * Math.cos( v );
var cy = tube * Math.sin( v );
// now calculate the final vertex position.
// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve
vertex.x = P1.x + ( cx * N.x + cy * B.x );
vertex.y = P1.y + ( cx * N.y + cy * B.y );
vertex.z = P1.z + ( cx * N.z + cy * B.z );
// vertex
vertices.setXYZ( index, vertex.x, vertex.y, vertex.z );
// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
normal.subVectors( vertex, P1 ).normalize();
normals.setXYZ( index, normal.x, normal.y, normal.z );
// uv
uv.x = i / tubularSegments;
uv.y = j / radialSegments;
uvs.setXY( index, uv.x, uv.y );
// increase index
index ++;
}
}
// generate indices
for ( j = 1; j <= tubularSegments; j ++ ) {
for ( i = 1; i <= radialSegments; i ++ ) {
// indices
var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
var b = ( radialSegments + 1 ) * j + ( i - 1 );
var c = ( radialSegments + 1 ) * j + i;
var d = ( radialSegments + 1 ) * ( j - 1 ) + i;
// face one
indices.setX( indexOffset, a ); indexOffset++;
indices.setX( indexOffset, b ); indexOffset++;
indices.setX( indexOffset, d ); indexOffset++;
// face two
indices.setX( indexOffset, b ); indexOffset++;
indices.setX( indexOffset, c ); indexOffset++;
indices.setX( indexOffset, d ); indexOffset++;
}
}
// build geometry
this.setIndex( indices );
this.addAttribute( 'position', vertices );
this.addAttribute( 'normal', normals );
this.addAttribute( 'uv', uvs );
// this function calculates the current position on the torus curve
function calculatePositionOnCurve( u, p, q, radius, position ) {
var cu = Math.cos( u );
var su = Math.sin( u );
var quOverP = q / p * u;
var cs = Math.cos( quOverP );
position.x = radius * ( 2 + cs ) * 0.5 * cu;
position.y = radius * ( 2 + cs ) * su * 0.5;
position.z = radius * Math.sin( quOverP ) * 0.5;
}
};
THREE.TorusKnotBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.TorusKnotBufferGeometry.prototype.constructor = THREE.TorusKnotBufferGeometry;
// File:src/extras/geometries/TorusKnotGeometry.js
/**
* @author oosmoxiecode
*/
THREE.TorusKnotGeometry = function ( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) {
THREE.Geometry.call( this );
this.type = 'TorusKnotGeometry';
this.parameters = {
radius: radius,
tube: tube,
tubularSegments: tubularSegments,
radialSegments: radialSegments,
p: p,
q: q
};
if( heightScale !== undefined ) console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' );
this.fromBufferGeometry( new THREE.TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) );
this.mergeVertices();
};
THREE.TorusKnotGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.TorusKnotGeometry.prototype.constructor = THREE.TorusKnotGeometry;
// File:src/extras/geometries/TubeGeometry.js
/**
* @author WestLangley / https://github.com/WestLangley
* @author zz85 / https://github.com/zz85
* @author miningold / https://github.com/miningold
* @author jonobr1 / https://github.com/jonobr1
*
* Modified from the TorusKnotGeometry by @oosmoxiecode
*
* Creates a tube which extrudes along a 3d spline
*
* Uses parallel transport frames as described in
* http://www.cs.indiana.edu/pub/techreports/TR425.pdf
*/
THREE.TubeGeometry = function ( path, segments, radius, radialSegments, closed, taper ) {
THREE.Geometry.call( this );
this.type = 'TubeGeometry';
this.parameters = {
path: path,
segments: segments,
radius: radius,
radialSegments: radialSegments,
closed: closed,
taper: taper
};
segments = segments || 64;
radius = radius || 1;
radialSegments = radialSegments || 8;
closed = closed || false;
taper = taper || THREE.TubeGeometry.NoTaper;
var grid = [];
var scope = this,
tangent,
normal,
binormal,
numpoints = segments + 1,
u, v, r,
cx, cy,
pos, pos2 = new THREE.Vector3(),
i, j,
ip, jp,
a, b, c, d,
uva, uvb, uvc, uvd;
var frames = new THREE.TubeGeometry.FrenetFrames( path, segments, closed ),
tangents = frames.tangents,
normals = frames.normals,
binormals = frames.binormals;
// proxy internals
this.tangents = tangents;
this.normals = normals;
this.binormals = binormals;
function vert( x, y, z ) {
return scope.vertices.push( new THREE.Vector3( x, y, z ) ) - 1;
}
// construct the grid
for ( i = 0; i < numpoints; i ++ ) {
grid[ i ] = [];
u = i / ( numpoints - 1 );
pos = path.getPointAt( u );
tangent = tangents[ i ];
normal = normals[ i ];
binormal = binormals[ i ];
r = radius * taper( u );
for ( j = 0; j < radialSegments; j ++ ) {
v = j / radialSegments * 2 * Math.PI;
cx = - r * Math.cos( v ); // TODO: Hack: Negating it so it faces outside.
cy = r * Math.sin( v );
pos2.copy( pos );
pos2.x += cx * normal.x + cy * binormal.x;
pos2.y += cx * normal.y + cy * binormal.y;
pos2.z += cx * normal.z + cy * binormal.z;
grid[ i ][ j ] = vert( pos2.x, pos2.y, pos2.z );
}
}
// construct the mesh
for ( i = 0; i < segments; i ++ ) {
for ( j = 0; j < radialSegments; j ++ ) {
ip = ( closed ) ? ( i + 1 ) % segments : i + 1;
jp = ( j + 1 ) % radialSegments;
a = grid[ i ][ j ]; // *** NOT NECESSARILY PLANAR ! ***
b = grid[ ip ][ j ];
c = grid[ ip ][ jp ];
d = grid[ i ][ jp ];
uva = new THREE.Vector2( i / segments, j / radialSegments );
uvb = new THREE.Vector2( ( i + 1 ) / segments, j / radialSegments );
uvc = new THREE.Vector2( ( i + 1 ) / segments, ( j + 1 ) / radialSegments );
uvd = new THREE.Vector2( i / segments, ( j + 1 ) / radialSegments );
this.faces.push( new THREE.Face3( a, b, d ) );
this.faceVertexUvs[ 0 ].push( [ uva, uvb, uvd ] );
this.faces.push( new THREE.Face3( b, c, d ) );
this.faceVertexUvs[ 0 ].push( [ uvb.clone(), uvc, uvd.clone() ] );
}
}
this.computeFaceNormals();
this.computeVertexNormals();
};
THREE.TubeGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.TubeGeometry.prototype.constructor = THREE.TubeGeometry;
THREE.TubeGeometry.NoTaper = function ( u ) {
return 1;
};
THREE.TubeGeometry.SinusoidalTaper = function ( u ) {
return Math.sin( Math.PI * u );
};
// For computing of Frenet frames, exposing the tangents, normals and binormals the spline
THREE.TubeGeometry.FrenetFrames = function ( path, segments, closed ) {
var normal = new THREE.Vector3(),
tangents = [],
normals = [],
binormals = [],
vec = new THREE.Vector3(),
mat = new THREE.Matrix4(),
numpoints = segments + 1,
theta,
smallest,
tx, ty, tz,
i, u;
// expose internals
this.tangents = tangents;
this.normals = normals;
this.binormals = binormals;
// compute the tangent vectors for each segment on the path
for ( i = 0; i < numpoints; i ++ ) {
u = i / ( numpoints - 1 );
tangents[ i ] = path.getTangentAt( u );
tangents[ i ].normalize();
}
initialNormal3();
/*
function initialNormal1(lastBinormal) {
// fixed start binormal. Has dangers of 0 vectors
normals[ 0 ] = new THREE.Vector3();
binormals[ 0 ] = new THREE.Vector3();
if (lastBinormal===undefined) lastBinormal = new THREE.Vector3( 0, 0, 1 );
normals[ 0 ].crossVectors( lastBinormal, tangents[ 0 ] ).normalize();
binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ).normalize();
}
function initialNormal2() {
// This uses the Frenet-Serret formula for deriving binormal
var t2 = path.getTangentAt( epsilon );
normals[ 0 ] = new THREE.Vector3().subVectors( t2, tangents[ 0 ] ).normalize();
binormals[ 0 ] = new THREE.Vector3().crossVectors( tangents[ 0 ], normals[ 0 ] );
normals[ 0 ].crossVectors( binormals[ 0 ], tangents[ 0 ] ).normalize(); // last binormal x tangent
binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ).normalize();
}
*/
function initialNormal3() {
// select an initial normal vector perpendicular to the first tangent vector,
// and in the direction of the smallest tangent xyz component
normals[ 0 ] = new THREE.Vector3();
binormals[ 0 ] = new THREE.Vector3();
smallest = Number.MAX_VALUE;
tx = Math.abs( tangents[ 0 ].x );
ty = Math.abs( tangents[ 0 ].y );
tz = Math.abs( tangents[ 0 ].z );
if ( tx <= smallest ) {
smallest = tx;
normal.set( 1, 0, 0 );
}
if ( ty <= smallest ) {
smallest = ty;
normal.set( 0, 1, 0 );
}
if ( tz <= smallest ) {
normal.set( 0, 0, 1 );
}
vec.crossVectors( tangents[ 0 ], normal ).normalize();
normals[ 0 ].crossVectors( tangents[ 0 ], vec );
binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );
}
// compute the slowly-varying normal and binormal vectors for each segment on the path
for ( i = 1; i < numpoints; i ++ ) {
normals[ i ] = normals[ i - 1 ].clone();
binormals[ i ] = binormals[ i - 1 ].clone();
vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );
if ( vec.length() > Number.EPSILON ) {
vec.normalize();
theta = Math.acos( THREE.Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors
normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );
}
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
if ( closed ) {
theta = Math.acos( THREE.Math.clamp( normals[ 0 ].dot( normals[ numpoints - 1 ] ), - 1, 1 ) );
theta /= ( numpoints - 1 );
if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ numpoints - 1 ] ) ) > 0 ) {
theta = - theta;
}
for ( i = 1; i < numpoints; i ++ ) {
// twist a little...
normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
}
};
// File:src/extras/geometries/PolyhedronGeometry.js
/**
* @author clockworkgeek / https://github.com/clockworkgeek
* @author timothypratley / https://github.com/timothypratley
* @author WestLangley / http://github.com/WestLangley
*/
THREE.PolyhedronGeometry = function ( vertices, indices, radius, detail ) {
THREE.Geometry.call( this );
this.type = 'PolyhedronGeometry';
this.parameters = {
vertices: vertices,
indices: indices,
radius: radius,
detail: detail
};
radius = radius || 1;
detail = detail || 0;
var that = this;
for ( var i = 0, l = vertices.length; i < l; i += 3 ) {
prepare( new THREE.Vector3( vertices[ i ], vertices[ i + 1 ], vertices[ i + 2 ] ) );
}
var p = this.vertices;
var faces = [];
for ( var i = 0, j = 0, l = indices.length; i < l; i += 3, j ++ ) {
var v1 = p[ indices[ i ] ];
var v2 = p[ indices[ i + 1 ] ];
var v3 = p[ indices[ i + 2 ] ];
faces[ j ] = new THREE.Face3( v1.index, v2.index, v3.index, [ v1.clone(), v2.clone(), v3.clone() ], undefined, j );
}
var centroid = new THREE.Vector3();
for ( var i = 0, l = faces.length; i < l; i ++ ) {
subdivide( faces[ i ], detail );
}
// Handle case when face straddles the seam
for ( var i = 0, l = this.faceVertexUvs[ 0 ].length; i < l; i ++ ) {
var uvs = this.faceVertexUvs[ 0 ][ i ];
var x0 = uvs[ 0 ].x;
var x1 = uvs[ 1 ].x;
var x2 = uvs[ 2 ].x;
var max = Math.max( x0, x1, x2 );
var min = Math.min( x0, x1, x2 );
if ( max > 0.9 && min < 0.1 ) {
// 0.9 is somewhat arbitrary
if ( x0 < 0.2 ) uvs[ 0 ].x += 1;
if ( x1 < 0.2 ) uvs[ 1 ].x += 1;
if ( x2 < 0.2 ) uvs[ 2 ].x += 1;
}
}
// Apply radius
for ( var i = 0, l = this.vertices.length; i < l; i ++ ) {
this.vertices[ i ].multiplyScalar( radius );
}
// Merge vertices
this.mergeVertices();
this.computeFaceNormals();
this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius );
// Project vector onto sphere's surface
function prepare( vector ) {
var vertex = vector.normalize().clone();
vertex.index = that.vertices.push( vertex ) - 1;
// Texture coords are equivalent to map coords, calculate angle and convert to fraction of a circle.
var u = azimuth( vector ) / 2 / Math.PI + 0.5;
var v = inclination( vector ) / Math.PI + 0.5;
vertex.uv = new THREE.Vector2( u, 1 - v );
return vertex;
}
// Approximate a curved face with recursively sub-divided triangles.
function make( v1, v2, v3, materialIndex ) {
var face = new THREE.Face3( v1.index, v2.index, v3.index, [ v1.clone(), v2.clone(), v3.clone() ], undefined, materialIndex );
that.faces.push( face );
centroid.copy( v1 ).add( v2 ).add( v3 ).divideScalar( 3 );
var azi = azimuth( centroid );
that.faceVertexUvs[ 0 ].push( [
correctUV( v1.uv, v1, azi ),
correctUV( v2.uv, v2, azi ),
correctUV( v3.uv, v3, azi )
] );
}
// Analytically subdivide a face to the required detail level.
function subdivide( face, detail ) {
var cols = Math.pow( 2, detail );
var a = prepare( that.vertices[ face.a ] );
var b = prepare( that.vertices[ face.b ] );
var c = prepare( that.vertices[ face.c ] );
var v = [];
var materialIndex = face.materialIndex;
// Construct all of the vertices for this subdivision.
for ( var i = 0 ; i <= cols; i ++ ) {
v[ i ] = [];
var aj = prepare( a.clone().lerp( c, i / cols ) );
var bj = prepare( b.clone().lerp( c, i / cols ) );
var rows = cols - i;
for ( var j = 0; j <= rows; j ++ ) {
if ( j === 0 && i === cols ) {
v[ i ][ j ] = aj;
} else {
v[ i ][ j ] = prepare( aj.clone().lerp( bj, j / rows ) );
}
}
}
// Construct all of the faces.
for ( var i = 0; i < cols ; i ++ ) {
for ( var j = 0; j < 2 * ( cols - i ) - 1; j ++ ) {
var k = Math.floor( j / 2 );
if ( j % 2 === 0 ) {
make(
v[ i ][ k + 1 ],
v[ i + 1 ][ k ],
v[ i ][ k ],
materialIndex
);
} else {
make(
v[ i ][ k + 1 ],
v[ i + 1 ][ k + 1 ],
v[ i + 1 ][ k ],
materialIndex
);
}
}
}
}
// Angle around the Y axis, counter-clockwise when looking from above.
function azimuth( vector ) {
return Math.atan2( vector.z, - vector.x );
}
// Angle above the XZ plane.
function inclination( vector ) {
return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) );
}
// Texture fixing helper. Spheres have some odd behaviours.
function correctUV( uv, vector, azimuth ) {
if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) uv = new THREE.Vector2( uv.x - 1, uv.y );
if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) uv = new THREE.Vector2( azimuth / 2 / Math.PI + 0.5, uv.y );
return uv.clone();
}
};
THREE.PolyhedronGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.PolyhedronGeometry.prototype.constructor = THREE.PolyhedronGeometry;
// File:src/extras/geometries/DodecahedronGeometry.js
/**
* @author Abe Pazos / https://hamoid.com
*/
THREE.DodecahedronGeometry = function ( radius, detail ) {
var t = ( 1 + Math.sqrt( 5 ) ) / 2;
var r = 1 / t;
var vertices = [
// (±1, ±1, ±1)
- 1, - 1, - 1, - 1, - 1, 1,
- 1, 1, - 1, - 1, 1, 1,
1, - 1, - 1, 1, - 1, 1,
1, 1, - 1, 1, 1, 1,
// (0, ±1/φ, ±φ)
0, - r, - t, 0, - r, t,
0, r, - t, 0, r, t,
// (±1/φ, ±φ, 0)
- r, - t, 0, - r, t, 0,
r, - t, 0, r, t, 0,
// (±φ, 0, ±1/φ)
- t, 0, - r, t, 0, - r,
- t, 0, r, t, 0, r
];
var indices = [
3, 11, 7, 3, 7, 15, 3, 15, 13,
7, 19, 17, 7, 17, 6, 7, 6, 15,
17, 4, 8, 17, 8, 10, 17, 10, 6,
8, 0, 16, 8, 16, 2, 8, 2, 10,
0, 12, 1, 0, 1, 18, 0, 18, 16,
6, 10, 2, 6, 2, 13, 6, 13, 15,
2, 16, 18, 2, 18, 3, 2, 3, 13,
18, 1, 9, 18, 9, 11, 18, 11, 3,
4, 14, 12, 4, 12, 0, 4, 0, 8,
11, 9, 5, 11, 5, 19, 11, 19, 7,
19, 5, 14, 19, 14, 4, 19, 4, 17,
1, 12, 14, 1, 14, 5, 1, 5, 9
];
THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail );
this.type = 'DodecahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
};
THREE.DodecahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype );
THREE.DodecahedronGeometry.prototype.constructor = THREE.DodecahedronGeometry;
// File:src/extras/geometries/IcosahedronGeometry.js
/**
* @author timothypratley / https://github.com/timothypratley
*/
THREE.IcosahedronGeometry = function ( radius, detail ) {
var t = ( 1 + Math.sqrt( 5 ) ) / 2;
var vertices = [
- 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, 0,
0, - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t,
t, 0, - 1, t, 0, 1, - t, 0, - 1, - t, 0, 1
];
var indices = [
0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11,
1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8,
3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9,
4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1
];
THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail );
this.type = 'IcosahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
};
THREE.IcosahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype );
THREE.IcosahedronGeometry.prototype.constructor = THREE.IcosahedronGeometry;
// File:src/extras/geometries/OctahedronGeometry.js
/**
* @author timothypratley / https://github.com/timothypratley
*/
THREE.OctahedronGeometry = function ( radius, detail ) {
var vertices = [
1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1
];
var indices = [
0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2
];
THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail );
this.type = 'OctahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
};
THREE.OctahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype );
THREE.OctahedronGeometry.prototype.constructor = THREE.OctahedronGeometry;
// File:src/extras/geometries/TetrahedronGeometry.js
/**
* @author timothypratley / https://github.com/timothypratley
*/
THREE.TetrahedronGeometry = function ( radius, detail ) {
var vertices = [
1, 1, 1, - 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1
];
var indices = [
2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1
];
THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail );
this.type = 'TetrahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
};
THREE.TetrahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype );
THREE.TetrahedronGeometry.prototype.constructor = THREE.TetrahedronGeometry;
// File:src/extras/geometries/ParametricGeometry.js
/**
* @author zz85 / https://github.com/zz85
* Parametric Surfaces Geometry
* based on the brilliant article by @prideout http://prideout.net/blog/?p=44
*
* new THREE.ParametricGeometry( parametricFunction, uSegments, ySegements );
*
*/
THREE.ParametricGeometry = function ( func, slices, stacks ) {
THREE.Geometry.call( this );
this.type = 'ParametricGeometry';
this.parameters = {
func: func,
slices: slices,
stacks: stacks
};
var verts = this.vertices;
var faces = this.faces;
var uvs = this.faceVertexUvs[ 0 ];
var i, j, p;
var u, v;
var sliceCount = slices + 1;
for ( i = 0; i <= stacks; i ++ ) {
v = i / stacks;
for ( j = 0; j <= slices; j ++ ) {
u = j / slices;
p = func( u, v );
verts.push( p );
}
}
var a, b, c, d;
var uva, uvb, uvc, uvd;
for ( i = 0; i < stacks; i ++ ) {
for ( j = 0; j < slices; j ++ ) {
a = i * sliceCount + j;
b = i * sliceCount + j + 1;
c = ( i + 1 ) * sliceCount + j + 1;
d = ( i + 1 ) * sliceCount + j;
uva = new THREE.Vector2( j / slices, i / stacks );
uvb = new THREE.Vector2( ( j + 1 ) / slices, i / stacks );
uvc = new THREE.Vector2( ( j + 1 ) / slices, ( i + 1 ) / stacks );
uvd = new THREE.Vector2( j / slices, ( i + 1 ) / stacks );
faces.push( new THREE.Face3( a, b, d ) );
uvs.push( [ uva, uvb, uvd ] );
faces.push( new THREE.Face3( b, c, d ) );
uvs.push( [ uvb.clone(), uvc, uvd.clone() ] );
}
}
// console.log(this);
// magic bullet
// var diff = this.mergeVertices();
// console.log('removed ', diff, ' vertices by merging');
this.computeFaceNormals();
this.computeVertexNormals();
};
THREE.ParametricGeometry.prototype = Object.create( THREE.Geometry.prototype );
THREE.ParametricGeometry.prototype.constructor = THREE.ParametricGeometry;
// File:src/extras/geometries/WireframeGeometry.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WireframeGeometry = function ( geometry ) {
THREE.BufferGeometry.call( this );
var edge = [ 0, 0 ], hash = {};
function sortFunction( a, b ) {
return a - b;
}
var keys = [ 'a', 'b', 'c' ];
if ( geometry instanceof THREE.Geometry ) {
var vertices = geometry.vertices;
var faces = geometry.faces;
var numEdges = 0;
// allocate maximal size
var edges = new Uint32Array( 6 * faces.length );
for ( var i = 0, l = faces.length; i < l; i ++ ) {
var face = faces[ i ];
for ( var j = 0; j < 3; j ++ ) {
edge[ 0 ] = face[ keys[ j ] ];
edge[ 1 ] = face[ keys[ ( j + 1 ) % 3 ] ];
edge.sort( sortFunction );
var key = edge.toString();
if ( hash[ key ] === undefined ) {
edges[ 2 * numEdges ] = edge[ 0 ];
edges[ 2 * numEdges + 1 ] = edge[ 1 ];
hash[ key ] = true;
numEdges ++;
}
}
}
var coords = new Float32Array( numEdges * 2 * 3 );
for ( var i = 0, l = numEdges; i < l; i ++ ) {
for ( var j = 0; j < 2; j ++ ) {
var vertex = vertices[ edges [ 2 * i + j ] ];
var index = 6 * i + 3 * j;
coords[ index + 0 ] = vertex.x;
coords[ index + 1 ] = vertex.y;
coords[ index + 2 ] = vertex.z;
}
}
this.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) );
} else if ( geometry instanceof THREE.BufferGeometry ) {
if ( geometry.index !== null ) {
// Indexed BufferGeometry
var indices = geometry.index.array;
var vertices = geometry.attributes.position;
var groups = geometry.groups;
var numEdges = 0;
if ( groups.length === 0 ) {
geometry.addGroup( 0, indices.length );
}
// allocate maximal size
var edges = new Uint32Array( 2 * indices.length );
for ( var o = 0, ol = groups.length; o < ol; ++ o ) {
var group = groups[ o ];
var start = group.start;
var count = group.count;
for ( var i = start, il = start + count; i < il; i += 3 ) {
for ( var j = 0; j < 3; j ++ ) {
edge[ 0 ] = indices[ i + j ];
edge[ 1 ] = indices[ i + ( j + 1 ) % 3 ];
edge.sort( sortFunction );
var key = edge.toString();
if ( hash[ key ] === undefined ) {
edges[ 2 * numEdges ] = edge[ 0 ];
edges[ 2 * numEdges + 1 ] = edge[ 1 ];
hash[ key ] = true;
numEdges ++;
}
}
}
}
var coords = new Float32Array( numEdges * 2 * 3 );
for ( var i = 0, l = numEdges; i < l; i ++ ) {
for ( var j = 0; j < 2; j ++ ) {
var index = 6 * i + 3 * j;
var index2 = edges[ 2 * i + j ];
coords[ index + 0 ] = vertices.getX( index2 );
coords[ index + 1 ] = vertices.getY( index2 );
coords[ index + 2 ] = vertices.getZ( index2 );
}
}
this.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) );
} else {
// non-indexed BufferGeometry
var vertices = geometry.attributes.position.array;
var numEdges = vertices.length / 3;
var numTris = numEdges / 3;
var coords = new Float32Array( numEdges * 2 * 3 );
for ( var i = 0, l = numTris; i < l; i ++ ) {
for ( var j = 0; j < 3; j ++ ) {
var index = 18 * i + 6 * j;
var index1 = 9 * i + 3 * j;
coords[ index + 0 ] = vertices[ index1 ];
coords[ index + 1 ] = vertices[ index1 + 1 ];
coords[ index + 2 ] = vertices[ index1 + 2 ];
var index2 = 9 * i + 3 * ( ( j + 1 ) % 3 );
coords[ index + 3 ] = vertices[ index2 ];
coords[ index + 4 ] = vertices[ index2 + 1 ];
coords[ index + 5 ] = vertices[ index2 + 2 ];
}
}
this.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) );
}
}
};
THREE.WireframeGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.WireframeGeometry.prototype.constructor = THREE.WireframeGeometry;
// File:src/extras/helpers/AxisHelper.js
/**
* @author sroucheray / http://sroucheray.org/
* @author mrdoob / http://mrdoob.com/
*/
THREE.AxisHelper = function ( size ) {
size = size || 1;
var vertices = new Float32Array( [
0, 0, 0, size, 0, 0,
0, 0, 0, 0, size, 0,
0, 0, 0, 0, 0, size
] );
var colors = new Float32Array( [
1, 0, 0, 1, 0.6, 0,
0, 1, 0, 0.6, 1, 0,
0, 0, 1, 0, 0.6, 1
] );
var geometry = new THREE.BufferGeometry();
geometry.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) );
geometry.addAttribute( 'color', new THREE.BufferAttribute( colors, 3 ) );
var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors } );
THREE.LineSegments.call( this, geometry, material );
};
THREE.AxisHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.AxisHelper.prototype.constructor = THREE.AxisHelper;
// File:src/extras/helpers/ArrowHelper.js
/**
* @author WestLangley / http://github.com/WestLangley
* @author zz85 / http://github.com/zz85
* @author bhouston / http://clara.io
*
* Creates an arrow for visualizing directions
*
* Parameters:
* dir - Vector3
* origin - Vector3
* length - Number
* color - color in hex value
* headLength - Number
* headWidth - Number
*/
THREE.ArrowHelper = ( function () {
var lineGeometry = new THREE.Geometry();
lineGeometry.vertices.push( new THREE.Vector3( 0, 0, 0 ), new THREE.Vector3( 0, 1, 0 ) );
var coneGeometry = new THREE.CylinderGeometry( 0, 0.5, 1, 5, 1 );
coneGeometry.translate( 0, - 0.5, 0 );
return function ArrowHelper( dir, origin, length, color, headLength, headWidth ) {
// dir is assumed to be normalized
THREE.Object3D.call( this );
if ( color === undefined ) color = 0xffff00;
if ( length === undefined ) length = 1;
if ( headLength === undefined ) headLength = 0.2 * length;
if ( headWidth === undefined ) headWidth = 0.2 * headLength;
this.position.copy( origin );
this.line = new THREE.Line( lineGeometry, new THREE.LineBasicMaterial( { color: color } ) );
this.line.matrixAutoUpdate = false;
this.add( this.line );
this.cone = new THREE.Mesh( coneGeometry, new THREE.MeshBasicMaterial( { color: color } ) );
this.cone.matrixAutoUpdate = false;
this.add( this.cone );
this.setDirection( dir );
this.setLength( length, headLength, headWidth );
}
}() );
THREE.ArrowHelper.prototype = Object.create( THREE.Object3D.prototype );
THREE.ArrowHelper.prototype.constructor = THREE.ArrowHelper;
THREE.ArrowHelper.prototype.setDirection = ( function () {
var axis = new THREE.Vector3();
var radians;
return function setDirection( dir ) {
// dir is assumed to be normalized
if ( dir.y > 0.99999 ) {
this.quaternion.set( 0, 0, 0, 1 );
} else if ( dir.y < - 0.99999 ) {
this.quaternion.set( 1, 0, 0, 0 );
} else {
axis.set( dir.z, 0, - dir.x ).normalize();
radians = Math.acos( dir.y );
this.quaternion.setFromAxisAngle( axis, radians );
}
};
}() );
THREE.ArrowHelper.prototype.setLength = function ( length, headLength, headWidth ) {
if ( headLength === undefined ) headLength = 0.2 * length;
if ( headWidth === undefined ) headWidth = 0.2 * headLength;
this.line.scale.set( 1, Math.max( 0, length - headLength ), 1 );
this.line.updateMatrix();
this.cone.scale.set( headWidth, headLength, headWidth );
this.cone.position.y = length;
this.cone.updateMatrix();
};
THREE.ArrowHelper.prototype.setColor = function ( color ) {
this.line.material.color.set( color );
this.cone.material.color.set( color );
};
// File:src/extras/helpers/BoxHelper.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.BoxHelper = function ( object ) {
var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );
var positions = new Float32Array( 8 * 3 );
var geometry = new THREE.BufferGeometry();
geometry.setIndex( new THREE.BufferAttribute( indices, 1 ) );
geometry.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) );
THREE.LineSegments.call( this, geometry, new THREE.LineBasicMaterial( { color: 0xffff00 } ) );
if ( object !== undefined ) {
this.update( object );
}
};
THREE.BoxHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.BoxHelper.prototype.constructor = THREE.BoxHelper;
THREE.BoxHelper.prototype.update = ( function () {
var box = new THREE.Box3();
return function ( object ) {
if ( object instanceof THREE.Box3 ) {
box.copy( object );
} else {
box.setFromObject( object );
}
if ( box.isEmpty() ) return;
var min = box.min;
var max = box.max;
/*
5____4
1/___0/|
| 6__|_7
2/___3/
0: max.x, max.y, max.z
1: min.x, max.y, max.z
2: min.x, min.y, max.z
3: max.x, min.y, max.z
4: max.x, max.y, min.z
5: min.x, max.y, min.z
6: min.x, min.y, min.z
7: max.x, min.y, min.z
*/
var position = this.geometry.attributes.position;
var array = position.array;
array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z;
array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z;
array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z;
array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z;
array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z;
array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z;
array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z;
array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z;
position.needsUpdate = true;
this.geometry.computeBoundingSphere();
};
} )();
// File:src/extras/helpers/BoundingBoxHelper.js
/**
* @author WestLangley / http://github.com/WestLangley
*/
// a helper to show the world-axis-aligned bounding box for an object
THREE.BoundingBoxHelper = function ( object, hex ) {
var color = ( hex !== undefined ) ? hex : 0x888888;
this.object = object;
this.box = new THREE.Box3();
THREE.Mesh.call( this, new THREE.BoxGeometry( 1, 1, 1 ), new THREE.MeshBasicMaterial( { color: color, wireframe: true } ) );
};
THREE.BoundingBoxHelper.prototype = Object.create( THREE.Mesh.prototype );
THREE.BoundingBoxHelper.prototype.constructor = THREE.BoundingBoxHelper;
THREE.BoundingBoxHelper.prototype.update = function () {
this.box.setFromObject( this.object );
this.box.size( this.scale );
this.box.center( this.position );
};
// File:src/extras/helpers/CameraHelper.js
/**
* @author alteredq / http://alteredqualia.com/
*
* - shows frustum, line of sight and up of the camera
* - suitable for fast updates
* - based on frustum visualization in lightgl.js shadowmap example
* http://evanw.github.com/lightgl.js/tests/shadowmap.html
*/
THREE.CameraHelper = function ( camera ) {
var geometry = new THREE.Geometry();
var material = new THREE.LineBasicMaterial( { color: 0xffffff, vertexColors: THREE.FaceColors } );
var pointMap = {};
// colors
var hexFrustum = 0xffaa00;
var hexCone = 0xff0000;
var hexUp = 0x00aaff;
var hexTarget = 0xffffff;
var hexCross = 0x333333;
// near
addLine( "n1", "n2", hexFrustum );
addLine( "n2", "n4", hexFrustum );
addLine( "n4", "n3", hexFrustum );
addLine( "n3", "n1", hexFrustum );
// far
addLine( "f1", "f2", hexFrustum );
addLine( "f2", "f4", hexFrustum );
addLine( "f4", "f3", hexFrustum );
addLine( "f3", "f1", hexFrustum );
// sides
addLine( "n1", "f1", hexFrustum );
addLine( "n2", "f2", hexFrustum );
addLine( "n3", "f3", hexFrustum );
addLine( "n4", "f4", hexFrustum );
// cone
addLine( "p", "n1", hexCone );
addLine( "p", "n2", hexCone );
addLine( "p", "n3", hexCone );
addLine( "p", "n4", hexCone );
// up
addLine( "u1", "u2", hexUp );
addLine( "u2", "u3", hexUp );
addLine( "u3", "u1", hexUp );
// target
addLine( "c", "t", hexTarget );
addLine( "p", "c", hexCross );
// cross
addLine( "cn1", "cn2", hexCross );
addLine( "cn3", "cn4", hexCross );
addLine( "cf1", "cf2", hexCross );
addLine( "cf3", "cf4", hexCross );
function addLine( a, b, hex ) {
addPoint( a, hex );
addPoint( b, hex );
}
function addPoint( id, hex ) {
geometry.vertices.push( new THREE.Vector3() );
geometry.colors.push( new THREE.Color( hex ) );
if ( pointMap[ id ] === undefined ) {
pointMap[ id ] = [];
}
pointMap[ id ].push( geometry.vertices.length - 1 );
}
THREE.LineSegments.call( this, geometry, material );
this.camera = camera;
this.camera.updateProjectionMatrix();
this.matrix = camera.matrixWorld;
this.matrixAutoUpdate = false;
this.pointMap = pointMap;
this.update();
};
THREE.CameraHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.CameraHelper.prototype.constructor = THREE.CameraHelper;
THREE.CameraHelper.prototype.update = function () {
var geometry, pointMap;
var vector = new THREE.Vector3();
var camera = new THREE.Camera();
function setPoint( point, x, y, z ) {
vector.set( x, y, z ).unproject( camera );
var points = pointMap[ point ];
if ( points !== undefined ) {
for ( var i = 0, il = points.length; i < il; i ++ ) {
geometry.vertices[ points[ i ] ].copy( vector );
}
}
}
return function () {
geometry = this.geometry;
pointMap = this.pointMap;
var w = 1, h = 1;
// we need just camera projection matrix
// world matrix must be identity
camera.projectionMatrix.copy( this.camera.projectionMatrix );
// center / target
setPoint( "c", 0, 0, - 1 );
setPoint( "t", 0, 0, 1 );
// near
setPoint( "n1", - w, - h, - 1 );
setPoint( "n2", w, - h, - 1 );
setPoint( "n3", - w, h, - 1 );
setPoint( "n4", w, h, - 1 );
// far
setPoint( "f1", - w, - h, 1 );
setPoint( "f2", w, - h, 1 );
setPoint( "f3", - w, h, 1 );
setPoint( "f4", w, h, 1 );
// up
setPoint( "u1", w * 0.7, h * 1.1, - 1 );
setPoint( "u2", - w * 0.7, h * 1.1, - 1 );
setPoint( "u3", 0, h * 2, - 1 );
// cross
setPoint( "cf1", - w, 0, 1 );
setPoint( "cf2", w, 0, 1 );
setPoint( "cf3", 0, - h, 1 );
setPoint( "cf4", 0, h, 1 );
setPoint( "cn1", - w, 0, - 1 );
setPoint( "cn2", w, 0, - 1 );
setPoint( "cn3", 0, - h, - 1 );
setPoint( "cn4", 0, h, - 1 );
geometry.verticesNeedUpdate = true;
};
}();
// File:src/extras/helpers/DirectionalLightHelper.js
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
*/
THREE.DirectionalLightHelper = function ( light, size ) {
THREE.Object3D.call( this );
this.light = light;
this.light.updateMatrixWorld();
this.matrix = light.matrixWorld;
this.matrixAutoUpdate = false;
size = size || 1;
var geometry = new THREE.Geometry();
geometry.vertices.push(
new THREE.Vector3( - size, size, 0 ),
new THREE.Vector3( size, size, 0 ),
new THREE.Vector3( size, - size, 0 ),
new THREE.Vector3( - size, - size, 0 ),
new THREE.Vector3( - size, size, 0 )
);
var material = new THREE.LineBasicMaterial( { fog: false } );
material.color.copy( this.light.color ).multiplyScalar( this.light.intensity );
this.lightPlane = new THREE.Line( geometry, material );
this.add( this.lightPlane );
geometry = new THREE.Geometry();
geometry.vertices.push(
new THREE.Vector3(),
new THREE.Vector3()
);
material = new THREE.LineBasicMaterial( { fog: false } );
material.color.copy( this.light.color ).multiplyScalar( this.light.intensity );
this.targetLine = new THREE.Line( geometry, material );
this.add( this.targetLine );
this.update();
};
THREE.DirectionalLightHelper.prototype = Object.create( THREE.Object3D.prototype );
THREE.DirectionalLightHelper.prototype.constructor = THREE.DirectionalLightHelper;
THREE.DirectionalLightHelper.prototype.dispose = function () {
this.lightPlane.geometry.dispose();
this.lightPlane.material.dispose();
this.targetLine.geometry.dispose();
this.targetLine.material.dispose();
};
THREE.DirectionalLightHelper.prototype.update = function () {
var v1 = new THREE.Vector3();
var v2 = new THREE.Vector3();
var v3 = new THREE.Vector3();
return function () {
v1.setFromMatrixPosition( this.light.matrixWorld );
v2.setFromMatrixPosition( this.light.target.matrixWorld );
v3.subVectors( v2, v1 );
this.lightPlane.lookAt( v3 );
this.lightPlane.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity );
this.targetLine.geometry.vertices[ 1 ].copy( v3 );
this.targetLine.geometry.verticesNeedUpdate = true;
this.targetLine.material.color.copy( this.lightPlane.material.color );
};
}();
// File:src/extras/helpers/EdgesHelper.js
/**
* @author WestLangley / http://github.com/WestLangley
* @param object THREE.Mesh whose geometry will be used
* @param hex line color
* @param thresholdAngle the minimum angle (in degrees),
* between the face normals of adjacent faces,
* that is required to render an edge. A value of 10 means
* an edge is only rendered if the angle is at least 10 degrees.
*/
THREE.EdgesHelper = function ( object, hex, thresholdAngle ) {
var color = ( hex !== undefined ) ? hex : 0xffffff;
THREE.LineSegments.call( this, new THREE.EdgesGeometry( object.geometry, thresholdAngle ), new THREE.LineBasicMaterial( { color: color } ) );
this.matrix = object.matrixWorld;
this.matrixAutoUpdate = false;
};
THREE.EdgesHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.EdgesHelper.prototype.constructor = THREE.EdgesHelper;
// File:src/extras/helpers/FaceNormalsHelper.js
/**
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
*/
THREE.FaceNormalsHelper = function ( object, size, hex, linewidth ) {
// FaceNormalsHelper only supports THREE.Geometry
this.object = object;
this.size = ( size !== undefined ) ? size : 1;
var color = ( hex !== undefined ) ? hex : 0xffff00;
var width = ( linewidth !== undefined ) ? linewidth : 1;
//
var nNormals = 0;
var objGeometry = this.object.geometry;
if ( objGeometry instanceof THREE.Geometry ) {
nNormals = objGeometry.faces.length;
} else {
console.warn( 'THREE.FaceNormalsHelper: only THREE.Geometry is supported. Use THREE.VertexNormalsHelper, instead.' );
}
//
var geometry = new THREE.BufferGeometry();
var positions = new THREE.Float32Attribute( nNormals * 2 * 3, 3 );
geometry.addAttribute( 'position', positions );
THREE.LineSegments.call( this, geometry, new THREE.LineBasicMaterial( { color: color, linewidth: width } ) );
//
this.matrixAutoUpdate = false;
this.update();
};
THREE.FaceNormalsHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.FaceNormalsHelper.prototype.constructor = THREE.FaceNormalsHelper;
THREE.FaceNormalsHelper.prototype.update = ( function () {
var v1 = new THREE.Vector3();
var v2 = new THREE.Vector3();
var normalMatrix = new THREE.Matrix3();
return function update() {
this.object.updateMatrixWorld( true );
normalMatrix.getNormalMatrix( this.object.matrixWorld );
var matrixWorld = this.object.matrixWorld;
var position = this.geometry.attributes.position;
//
var objGeometry = this.object.geometry;
var vertices = objGeometry.vertices;
var faces = objGeometry.faces;
var idx = 0;
for ( var i = 0, l = faces.length; i < l; i ++ ) {
var face = faces[ i ];
var normal = face.normal;
v1.copy( vertices[ face.a ] )
.add( vertices[ face.b ] )
.add( vertices[ face.c ] )
.divideScalar( 3 )
.applyMatrix4( matrixWorld );
v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );
position.setXYZ( idx, v1.x, v1.y, v1.z );
idx = idx + 1;
position.setXYZ( idx, v2.x, v2.y, v2.z );
idx = idx + 1;
}
position.needsUpdate = true;
return this;
}
}() );
// File:src/extras/helpers/GridHelper.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.GridHelper = function ( size, step ) {
var geometry = new THREE.Geometry();
var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors } );
this.color1 = new THREE.Color( 0x444444 );
this.color2 = new THREE.Color( 0x888888 );
for ( var i = - size; i <= size; i += step ) {
geometry.vertices.push(
new THREE.Vector3( - size, 0, i ), new THREE.Vector3( size, 0, i ),
new THREE.Vector3( i, 0, - size ), new THREE.Vector3( i, 0, size )
);
var color = i === 0 ? this.color1 : this.color2;
geometry.colors.push( color, color, color, color );
}
THREE.LineSegments.call( this, geometry, material );
};
THREE.GridHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.GridHelper.prototype.constructor = THREE.GridHelper;
THREE.GridHelper.prototype.setColors = function( colorCenterLine, colorGrid ) {
this.color1.set( colorCenterLine );
this.color2.set( colorGrid );
this.geometry.colorsNeedUpdate = true;
};
// File:src/extras/helpers/HemisphereLightHelper.js
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
THREE.HemisphereLightHelper = function ( light, sphereSize ) {
THREE.Object3D.call( this );
this.light = light;
this.light.updateMatrixWorld();
this.matrix = light.matrixWorld;
this.matrixAutoUpdate = false;
this.colors = [ new THREE.Color(), new THREE.Color() ];
var geometry = new THREE.SphereGeometry( sphereSize, 4, 2 );
geometry.rotateX( - Math.PI / 2 );
for ( var i = 0, il = 8; i < il; i ++ ) {
geometry.faces[ i ].color = this.colors[ i < 4 ? 0 : 1 ];
}
var material = new THREE.MeshBasicMaterial( { vertexColors: THREE.FaceColors, wireframe: true } );
this.lightSphere = new THREE.Mesh( geometry, material );
this.add( this.lightSphere );
this.update();
};
THREE.HemisphereLightHelper.prototype = Object.create( THREE.Object3D.prototype );
THREE.HemisphereLightHelper.prototype.constructor = THREE.HemisphereLightHelper;
THREE.HemisphereLightHelper.prototype.dispose = function () {
this.lightSphere.geometry.dispose();
this.lightSphere.material.dispose();
};
THREE.HemisphereLightHelper.prototype.update = function () {
var vector = new THREE.Vector3();
return function () {
this.colors[ 0 ].copy( this.light.color ).multiplyScalar( this.light.intensity );
this.colors[ 1 ].copy( this.light.groundColor ).multiplyScalar( this.light.intensity );
this.lightSphere.lookAt( vector.setFromMatrixPosition( this.light.matrixWorld ).negate() );
this.lightSphere.geometry.colorsNeedUpdate = true;
}
}();
// File:src/extras/helpers/PointLightHelper.js
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
THREE.PointLightHelper = function ( light, sphereSize ) {
this.light = light;
this.light.updateMatrixWorld();
var geometry = new THREE.SphereGeometry( sphereSize, 4, 2 );
var material = new THREE.MeshBasicMaterial( { wireframe: true, fog: false } );
material.color.copy( this.light.color ).multiplyScalar( this.light.intensity );
THREE.Mesh.call( this, geometry, material );
this.matrix = this.light.matrixWorld;
this.matrixAutoUpdate = false;
/*
var distanceGeometry = new THREE.IcosahedronGeometry( 1, 2 );
var distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );
this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial );
this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial );
var d = light.distance;
if ( d === 0.0 ) {
this.lightDistance.visible = false;
} else {
this.lightDistance.scale.set( d, d, d );
}
this.add( this.lightDistance );
*/
};
THREE.PointLightHelper.prototype = Object.create( THREE.Mesh.prototype );
THREE.PointLightHelper.prototype.constructor = THREE.PointLightHelper;
THREE.PointLightHelper.prototype.dispose = function () {
this.geometry.dispose();
this.material.dispose();
};
THREE.PointLightHelper.prototype.update = function () {
this.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity );
/*
var d = this.light.distance;
if ( d === 0.0 ) {
this.lightDistance.visible = false;
} else {
this.lightDistance.visible = true;
this.lightDistance.scale.set( d, d, d );
}
*/
};
// File:src/extras/helpers/SkeletonHelper.js
/**
* @author Sean Griffin / http://twitter.com/sgrif
* @author Michael Guerrero / http://realitymeltdown.com
* @author mrdoob / http://mrdoob.com/
* @author ikerr / http://verold.com
*/
THREE.SkeletonHelper = function ( object ) {
this.bones = this.getBoneList( object );
var geometry = new THREE.Geometry();
for ( var i = 0; i < this.bones.length; i ++ ) {
var bone = this.bones[ i ];
if ( bone.parent instanceof THREE.Bone ) {
geometry.vertices.push( new THREE.Vector3() );
geometry.vertices.push( new THREE.Vector3() );
geometry.colors.push( new THREE.Color( 0, 0, 1 ) );
geometry.colors.push( new THREE.Color( 0, 1, 0 ) );
}
}
geometry.dynamic = true;
var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors, depthTest: false, depthWrite: false, transparent: true } );
THREE.LineSegments.call( this, geometry, material );
this.root = object;
this.matrix = object.matrixWorld;
this.matrixAutoUpdate = false;
this.update();
};
THREE.SkeletonHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.SkeletonHelper.prototype.constructor = THREE.SkeletonHelper;
THREE.SkeletonHelper.prototype.getBoneList = function( object ) {
var boneList = [];
if ( object instanceof THREE.Bone ) {
boneList.push( object );
}
for ( var i = 0; i < object.children.length; i ++ ) {
boneList.push.apply( boneList, this.getBoneList( object.children[ i ] ) );
}
return boneList;
};
THREE.SkeletonHelper.prototype.update = function () {
var geometry = this.geometry;
var matrixWorldInv = new THREE.Matrix4().getInverse( this.root.matrixWorld );
var boneMatrix = new THREE.Matrix4();
var j = 0;
for ( var i = 0; i < this.bones.length; i ++ ) {
var bone = this.bones[ i ];
if ( bone.parent instanceof THREE.Bone ) {
boneMatrix.multiplyMatrices( matrixWorldInv, bone.matrixWorld );
geometry.vertices[ j ].setFromMatrixPosition( boneMatrix );
boneMatrix.multiplyMatrices( matrixWorldInv, bone.parent.matrixWorld );
geometry.vertices[ j + 1 ].setFromMatrixPosition( boneMatrix );
j += 2;
}
}
geometry.verticesNeedUpdate = true;
geometry.computeBoundingSphere();
};
// File:src/extras/helpers/SpotLightHelper.js
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
*/
THREE.SpotLightHelper = function ( light ) {
THREE.Object3D.call( this );
this.light = light;
this.light.updateMatrixWorld();
this.matrix = light.matrixWorld;
this.matrixAutoUpdate = false;
var geometry = new THREE.BufferGeometry();
var positions = [
0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, - 1, 0, 1,
0, 0, 0, 0, 1, 1,
0, 0, 0, 0, - 1, 1
];
for ( var i = 0, j = 1, l = 32; i < l; i ++, j ++ ) {
var p1 = ( i / l ) * Math.PI * 2;
var p2 = ( j / l ) * Math.PI * 2;
positions.push(
Math.cos( p1 ), Math.sin( p1 ), 1,
Math.cos( p2 ), Math.sin( p2 ), 1
);
}
geometry.addAttribute( 'position', new THREE.Float32Attribute( positions, 3 ) );
var material = new THREE.LineBasicMaterial( { fog: false } );
this.cone = new THREE.LineSegments( geometry, material );
this.add( this.cone );
this.update();
};
THREE.SpotLightHelper.prototype = Object.create( THREE.Object3D.prototype );
THREE.SpotLightHelper.prototype.constructor = THREE.SpotLightHelper;
THREE.SpotLightHelper.prototype.dispose = function () {
this.cone.geometry.dispose();
this.cone.material.dispose();
};
THREE.SpotLightHelper.prototype.update = function () {
var vector = new THREE.Vector3();
var vector2 = new THREE.Vector3();
return function () {
var coneLength = this.light.distance ? this.light.distance : 1000;
var coneWidth = coneLength * Math.tan( this.light.angle );
this.cone.scale.set( coneWidth, coneWidth, coneLength );
vector.setFromMatrixPosition( this.light.matrixWorld );
vector2.setFromMatrixPosition( this.light.target.matrixWorld );
this.cone.lookAt( vector2.sub( vector ) );
this.cone.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity );
};
}();
// File:src/extras/helpers/VertexNormalsHelper.js
/**
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
*/
THREE.VertexNormalsHelper = function ( object, size, hex, linewidth ) {
this.object = object;
this.size = ( size !== undefined ) ? size : 1;
var color = ( hex !== undefined ) ? hex : 0xff0000;
var width = ( linewidth !== undefined ) ? linewidth : 1;
//
var nNormals = 0;
var objGeometry = this.object.geometry;
if ( objGeometry instanceof THREE.Geometry ) {
nNormals = objGeometry.faces.length * 3;
} else if ( objGeometry instanceof THREE.BufferGeometry ) {
nNormals = objGeometry.attributes.normal.count
}
//
var geometry = new THREE.BufferGeometry();
var positions = new THREE.Float32Attribute( nNormals * 2 * 3, 3 );
geometry.addAttribute( 'position', positions );
THREE.LineSegments.call( this, geometry, new THREE.LineBasicMaterial( { color: color, linewidth: width } ) );
//
this.matrixAutoUpdate = false;
this.update();
};
THREE.VertexNormalsHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.VertexNormalsHelper.prototype.constructor = THREE.VertexNormalsHelper;
THREE.VertexNormalsHelper.prototype.update = ( function () {
var v1 = new THREE.Vector3();
var v2 = new THREE.Vector3();
var normalMatrix = new THREE.Matrix3();
return function update() {
var keys = [ 'a', 'b', 'c' ];
this.object.updateMatrixWorld( true );
normalMatrix.getNormalMatrix( this.object.matrixWorld );
var matrixWorld = this.object.matrixWorld;
var position = this.geometry.attributes.position;
//
var objGeometry = this.object.geometry;
if ( objGeometry instanceof THREE.Geometry ) {
var vertices = objGeometry.vertices;
var faces = objGeometry.faces;
var idx = 0;
for ( var i = 0, l = faces.length; i < l; i ++ ) {
var face = faces[ i ];
for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {
var vertex = vertices[ face[ keys[ j ] ] ];
var normal = face.vertexNormals[ j ];
v1.copy( vertex ).applyMatrix4( matrixWorld );
v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );
position.setXYZ( idx, v1.x, v1.y, v1.z );
idx = idx + 1;
position.setXYZ( idx, v2.x, v2.y, v2.z );
idx = idx + 1;
}
}
} else if ( objGeometry instanceof THREE.BufferGeometry ) {
var objPos = objGeometry.attributes.position;
var objNorm = objGeometry.attributes.normal;
var idx = 0;
// for simplicity, ignore index and drawcalls, and render every normal
for ( var j = 0, jl = objPos.count; j < jl; j ++ ) {
v1.set( objPos.getX( j ), objPos.getY( j ), objPos.getZ( j ) ).applyMatrix4( matrixWorld );
v2.set( objNorm.getX( j ), objNorm.getY( j ), objNorm.getZ( j ) );
v2.applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );
position.setXYZ( idx, v1.x, v1.y, v1.z );
idx = idx + 1;
position.setXYZ( idx, v2.x, v2.y, v2.z );
idx = idx + 1;
}
}
position.needsUpdate = true;
return this;
}
}() );
// File:src/extras/helpers/WireframeHelper.js
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.WireframeHelper = function ( object, hex ) {
var color = ( hex !== undefined ) ? hex : 0xffffff;
THREE.LineSegments.call( this, new THREE.WireframeGeometry( object.geometry ), new THREE.LineBasicMaterial( { color: color } ) );
this.matrix = object.matrixWorld;
this.matrixAutoUpdate = false;
};
THREE.WireframeHelper.prototype = Object.create( THREE.LineSegments.prototype );
THREE.WireframeHelper.prototype.constructor = THREE.WireframeHelper;
// File:src/extras/objects/ImmediateRenderObject.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.ImmediateRenderObject = function ( material ) {
THREE.Object3D.call( this );
this.material = material;
this.render = function ( renderCallback ) {};
};
THREE.ImmediateRenderObject.prototype = Object.create( THREE.Object3D.prototype );
THREE.ImmediateRenderObject.prototype.constructor = THREE.ImmediateRenderObject;
// File:src/extras/objects/MorphBlendMesh.js
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.MorphBlendMesh = function( geometry, material ) {
THREE.Mesh.call( this, geometry, material );
this.animationsMap = {};
this.animationsList = [];
// prepare default animation
// (all frames played together in 1 second)
var numFrames = this.geometry.morphTargets.length;
var name = "__default";
var startFrame = 0;
var endFrame = numFrames - 1;
var fps = numFrames / 1;
this.createAnimation( name, startFrame, endFrame, fps );
this.setAnimationWeight( name, 1 );
};
THREE.MorphBlendMesh.prototype = Object.create( THREE.Mesh.prototype );
THREE.MorphBlendMesh.prototype.constructor = THREE.MorphBlendMesh;
THREE.MorphBlendMesh.prototype.createAnimation = function ( name, start, end, fps ) {
var animation = {
start: start,
end: end,
length: end - start + 1,
fps: fps,
duration: ( end - start ) / fps,
lastFrame: 0,
currentFrame: 0,
active: false,
time: 0,
direction: 1,
weight: 1,
directionBackwards: false,
mirroredLoop: false
};
this.animationsMap[ name ] = animation;
this.animationsList.push( animation );
};
THREE.MorphBlendMesh.prototype.autoCreateAnimations = function ( fps ) {
var pattern = /([a-z]+)_?(\d+)/i;
var firstAnimation, frameRanges = {};
var geometry = this.geometry;
for ( var i = 0, il = geometry.morphTargets.length; i < il; i ++ ) {
var morph = geometry.morphTargets[ i ];
var chunks = morph.name.match( pattern );
if ( chunks && chunks.length > 1 ) {
var name = chunks[ 1 ];
if ( ! frameRanges[ name ] ) frameRanges[ name ] = { start: Infinity, end: - Infinity };
var range = frameRanges[ name ];
if ( i < range.start ) range.start = i;
if ( i > range.end ) range.end = i;
if ( ! firstAnimation ) firstAnimation = name;
}
}
for ( var name in frameRanges ) {
var range = frameRanges[ name ];
this.createAnimation( name, range.start, range.end, fps );
}
this.firstAnimation = firstAnimation;
};
THREE.MorphBlendMesh.prototype.setAnimationDirectionForward = function ( name ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.direction = 1;
animation.directionBackwards = false;
}
};
THREE.MorphBlendMesh.prototype.setAnimationDirectionBackward = function ( name ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.direction = - 1;
animation.directionBackwards = true;
}
};
THREE.MorphBlendMesh.prototype.setAnimationFPS = function ( name, fps ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.fps = fps;
animation.duration = ( animation.end - animation.start ) / animation.fps;
}
};
THREE.MorphBlendMesh.prototype.setAnimationDuration = function ( name, duration ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.duration = duration;
animation.fps = ( animation.end - animation.start ) / animation.duration;
}
};
THREE.MorphBlendMesh.prototype.setAnimationWeight = function ( name, weight ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.weight = weight;
}
};
THREE.MorphBlendMesh.prototype.setAnimationTime = function ( name, time ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.time = time;
}
};
THREE.MorphBlendMesh.prototype.getAnimationTime = function ( name ) {
var time = 0;
var animation = this.animationsMap[ name ];
if ( animation ) {
time = animation.time;
}
return time;
};
THREE.MorphBlendMesh.prototype.getAnimationDuration = function ( name ) {
var duration = - 1;
var animation = this.animationsMap[ name ];
if ( animation ) {
duration = animation.duration;
}
return duration;
};
THREE.MorphBlendMesh.prototype.playAnimation = function ( name ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.time = 0;
animation.active = true;
} else {
console.warn( "THREE.MorphBlendMesh: animation[" + name + "] undefined in .playAnimation()" );
}
};
THREE.MorphBlendMesh.prototype.stopAnimation = function ( name ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.active = false;
}
};
THREE.MorphBlendMesh.prototype.update = function ( delta ) {
for ( var i = 0, il = this.animationsList.length; i < il; i ++ ) {
var animation = this.animationsList[ i ];
if ( ! animation.active ) continue;
var frameTime = animation.duration / animation.length;
animation.time += animation.direction * delta;
if ( animation.mirroredLoop ) {
if ( animation.time > animation.duration || animation.time < 0 ) {
animation.direction *= - 1;
if ( animation.time > animation.duration ) {
animation.time = animation.duration;
animation.directionBackwards = true;
}
if ( animation.time < 0 ) {
animation.time = 0;
animation.directionBackwards = false;
}
}
} else {
animation.time = animation.time % animation.duration;
if ( animation.time < 0 ) animation.time += animation.duration;
}
var keyframe = animation.start + THREE.Math.clamp( Math.floor( animation.time / frameTime ), 0, animation.length - 1 );
var weight = animation.weight;
if ( keyframe !== animation.currentFrame ) {
this.morphTargetInfluences[ animation.lastFrame ] = 0;
this.morphTargetInfluences[ animation.currentFrame ] = 1 * weight;
this.morphTargetInfluences[ keyframe ] = 0;
animation.lastFrame = animation.currentFrame;
animation.currentFrame = keyframe;
}
var mix = ( animation.time % frameTime ) / frameTime;
if ( animation.directionBackwards ) mix = 1 - mix;
if ( animation.currentFrame !== animation.lastFrame ) {
this.morphTargetInfluences[ animation.currentFrame ] = mix * weight;
this.morphTargetInfluences[ animation.lastFrame ] = ( 1 - mix ) * weight;
} else {
this.morphTargetInfluences[ animation.currentFrame ] = weight;
}
}
};