Support fan PWM settings #73

Merged
sb10q merged 16 commits from esavkin/thermostat:69-fan_pwm into master 2023-03-22 17:15:49 +08:00
5 changed files with 22 additions and 174 deletions
Showing only changes of commit a645bfb6e8 - Show all commits

View File

@ -125,9 +125,10 @@ formatted as line-delimited JSON.
| `dfu` | Reset device and enters USB device firmware update (DFU) mode |
| `ipv4 <X.X.X.X/L> [Y.Y.Y.Y]` | Configure IPv4 address, netmask length, and optional default gateway |
| `fan` | Show current fan settings and sensors' measurements |
| `fan <value>` | Set fan power with values from 0 to 100, where 0 is auto mode |
| `fan <value>` | Set fan power with values from 1 to 100 |
| `fan auto` | Enable automatic fan speed control |
| `fcurve <a> <b> <c>` | Set fan controller curve coefficients (see *Fan control* section) |
| `fcurve-restore` | Set fan controller curve coefficients to defaults (see *Fan control* section) |
| `fcurve default` | Set fan controller curve coefficients to defaults (see *Fan control* section) |
## USB
@ -277,13 +278,11 @@ The thermostat implements a PID control loop for each of the TEC channels, more
## Fan control
sb10q marked this conversation as resolved
Review

Why is it so approximate?

Why is it so approximate?
Review

Mostly because I cannot guarantee it is precise and would not like to see how someone would tie something-very-important to its value.

Mostly because I cannot guarantee it is precise and would not like to see how someone would tie something-very-important to its value.
Fan control is available for the thermostat revisions with integrated fan system. For this purpose four commands are available:
1. `fan` - show fan stats: `fan_pwm`, `tacho`, `abs_max_tec_i`, `auto_mode`. Please note that `tacho` shows *approximate* value, which
linearly correlates with the actual fan speed.
2. `fan <value>` - set the fan power with the value from `0` to `100`. Since there is no hardware way to disable the fan,
`0` value is used for enabling automatic fan control mode, which correlates with the square of the TEC's current.
Values from `1` to `100` are used for setting the power from minimum to maximum respectively.
1. `fan` - show fan stats: `fan_pwm`, `abs_max_tec_i`, `auto_mode`, `k_a`, `k_b`, `k_c`.
2. `fan auto` - enable auto speed controller mode, which correlates with the square of the TEC's current.
3. `fan <value>` - set the fan power with the value from `1` to `100` and disable auto mode. There is no way to disable the fan.
Please note that power doesn't correlate with the actual speed linearly.
3. `fcurve <a> <b> <c>` - set coefficients of the controlling curve `a*x^2 + b*x + c`, where `x` is `abs_max_tec_i/MAX_TEC_I`,
4. `fcurve <a> <b> <c>` - set coefficients of the controlling curve `a*x^2 + b*x + c`, where `x` is `abs_max_tec_i/MAX_TEC_I`,
i.e. receives values from 0 to 1 linearly tied to the maximum current. The controlling curve should produce values from 0 to 1,
as below and beyond values would be substituted by 0 and 1 respectively.
4. `fcurve-restore` - restore fan settings to defaults: `auto = true, a = 1.0, b = 0.0, c = 0.00`.
5. `fcurve default` - restore fan curve settings to defaults: `a = 1.0, b = 0.0, c = 0.0`.

View File

@ -342,7 +342,7 @@ impl Handler {
Ok(Handler::Reset)
}
fn fan(socket: &mut TcpSocket, fan_pwm: u32, fan_ctrl: &mut FanCtrl) -> Result<Handler, Error> {
fn set_fan(socket: &mut TcpSocket, fan_pwm: u32, fan_ctrl: &mut FanCtrl) -> Result<Handler, Error> {
fan_ctrl.set_auto_mode(false);
fan_ctrl.set_pwm(fan_pwm);
send_line(socket, b"{}");
@ -404,7 +404,7 @@ impl Handler {
Command::Ipv4(config) => Handler::set_ipv4(socket, store, config),
Command::Reset => Handler::reset(&mut fan_ctrl.channels),
Command::Dfu => Handler::dfu(&mut fan_ctrl.channels),
Command::FanSet {fan_pwm} => Handler::fan(socket, fan_pwm, fan_ctrl),
Command::FanSet {fan_pwm} => Handler::set_fan(socket, fan_pwm, fan_ctrl),
Command::ShowFan => Handler::show_fan(socket, fan_ctrl),
Command::FanAuto => Handler::fan_auto(socket, fan_ctrl),
Command::FanCurve { k_a, k_b, k_c } => Handler::fan_curve(socket, fan_ctrl, k_a, k_b, k_c),

View File

@ -2,23 +2,14 @@ use serde::Serialize;
use stm32f4xx_hal::{
pwm::{self, PwmChannels},
pac::TIM8,
gpio::{
Floating, Input, ExtiPin,
gpioc::PC8, Edge,
},
stm32::EXTI,
syscfg::{SysCfg},
};
use smoltcp::time::Instant;
use crate::{
pins::HWRevPins,
channels::{Channels, JsonBuffer},
timer
};
pub type FanPin = PwmChannels<TIM8, pwm::C4>;
pub type TachoPin = PC8<Input<Floating>>;
// as stated in the schematics
const MAX_TEC_I: f64 = 3.0;
@ -26,27 +17,13 @@ const MAX_TEC_I: f64 = 3.0;
const MAX_USER_FAN_PWM: f64 = 100.0;
const MIN_USER_FAN_PWM: f64 = 1.0;
const MAX_FAN_PWM: f64 = 1.0;
// below this value, motor pulse signal is too weak to be registered by tachometer
// below this value, motor pulse signal is too weak
const MIN_FAN_PWM: f64 = 0.05;
const TACHO_MEASURE_MS: i64 = 2500;
// by default up to 2 cycles are skipped on changes in PWM output,
// and the halt threshold will help detect the failure during these skipped cycles
const TACHO_HALT_THRESHOLD: u32 = 250;
const TACHO_SKIP_CYCLES: u8 = 2;
const DEFAULT_K_A: f64 = 1.0;
const DEFAULT_K_B: f64 = 0.0;
const DEFAULT_K_C: f64 = 0.0;
Review

Those naive values will need proper testing and determination at some point.

Those naive values will need proper testing and determination at some point.
// This regression is from 6% to 25% lower than values registered in the experiments.
// Actual values would be better estimated by logarithmic regression, but that would require more
// runtime computation, and wouldn't give significant correlation difference
// (0.996 for log and 0.966 for quadratic regression).
const TACHO_REGRESSION_A: f64 = -0.04135128436;
const TACHO_REGRESSION_B: f64 = 6.23015531;
const TACHO_REGRESSION_C: f64 = 403.6833577;
#[derive(Serialize, Copy, Clone)]
pub struct HWRev {
@ -54,83 +31,46 @@ pub struct HWRev {
pub minor: u8,
}
#[derive(Serialize, Clone, Copy, PartialEq)]
pub enum FanStatus {
OK,
NotAvailable,
TooSlow,
Halted
}
struct TachoCtrl {
tacho: TachoPin,
tacho_cnt: u32,
tacho_value: Option<u32>,
prev_epoch: i64,
}
pub struct FanCtrl {
fan: FanPin,
tacho: TachoCtrl,
fan_auto: bool,
available: bool,
k_a: f64,
k_b: f64,
k_c: f64,
pub channels: Channels,
last_status: FanStatus,
skip_cycles: u8,
}
impl FanCtrl {
pub fn new(mut fan: FanPin, tacho: TachoPin, channels: Channels, exti: &mut EXTI, syscfg: &mut SysCfg) -> Self {
pub fn new(mut fan: FanPin, channels: Channels) -> Self {
let available = channels.hwrev.fan_available();
let mut tacho_ctrl = TachoCtrl::new(tacho);
if available {
fan.set_duty(0);
fan.enable();
tacho_ctrl.init(exti, syscfg);
}
FanCtrl {
fan,
tacho: tacho_ctrl,
available,
fan_auto: true,
k_a: DEFAULT_K_A,
k_b: DEFAULT_K_B,
k_c: DEFAULT_K_C,
channels,
last_status: if available { FanStatus::OK } else { FanStatus::NotAvailable },
skip_cycles: 0
}
}
pub fn cycle(&mut self) -> Result<(), FanStatus> {
if self.available {
if self.tacho.cycle() {
self.skip_cycles >>= 1;
}
}
pub fn cycle(&mut self) {
self.adjust_speed();
let diagnose = self.diagnose();
if (self.skip_cycles == 0 || diagnose == FanStatus::Halted) && diagnose != self.last_status {
self.last_status = diagnose;
Err(diagnose)
} else {
Ok(())
}
}
Review

inline

inline
pub fn summary(&mut self) -> Result<JsonBuffer, serde_json_core::ser::Error> {
if self.available {
let summary = FanSummary {
fan_pwm: self.get_pwm(),
tacho: self.tacho.get(),
abs_max_tec_i: self.channels.current_abs_max_tec_i(),
auto_mode: self.fan_auto,
status: self.diagnose(),
k_a: self.k_a,
k_b: self.k_b,
k_c: self.k_c,
@ -165,15 +105,11 @@ impl FanCtrl {
#[inline]
pub fn restore_defaults(&mut self) {
self.set_auto_mode(true);
self.set_curve(DEFAULT_K_A, DEFAULT_K_B, DEFAULT_K_C);
}
pub fn set_pwm(&mut self, fan_pwm: u32) -> f64 {
let fan_pwm = fan_pwm.min(MAX_USER_FAN_PWM as u32).max(MIN_USER_FAN_PWM as u32);
self.skip_cycles = if (self.tacho.get() as f64) <= Self::threshold_for_pwm(fan_pwm as f64) {
TACHO_SKIP_CYCLES
} else { self.skip_cycles };
let duty = Self::scale_number(fan_pwm as f64, MIN_FAN_PWM, MAX_FAN_PWM, MIN_USER_FAN_PWM, MAX_USER_FAN_PWM);
let max = self.fan.get_max_duty();
let value = ((duty * (max as f64)) as u16).min(max);
@ -181,31 +117,11 @@ impl FanCtrl {
value as f64 / (max as f64)
}
#[inline]
fn threshold_for_pwm(fan_pwm: f64) -> f64 {
(TACHO_REGRESSION_A * fan_pwm + TACHO_REGRESSION_B) * fan_pwm + TACHO_REGRESSION_C
}
#[inline]
fn scale_number(unscaled: f64, to_min: f64, to_max: f64, from_min: f64, from_max: f64) -> f64 {
(to_max - to_min) * (unscaled - from_min) / (from_max - from_min) + to_min
}
fn diagnose(&mut self) -> FanStatus {
if !self.available {
return FanStatus::NotAvailable;
}
let threshold = Self::threshold_for_pwm(self.get_pwm() as f64) as u32;
let tacho = self.tacho.get();
if tacho >= threshold {
FanStatus::OK
} else if tacho >= TACHO_HALT_THRESHOLD {
FanStatus::TooSlow
} else {
FanStatus::Halted
}
}
fn get_pwm(&self) -> u32 {
let duty = self.fan.get_duty();
let max = self.fan.get_max_duty();
@ -213,53 +129,6 @@ impl FanCtrl {
}
}
impl TachoCtrl {
fn new(tacho: TachoPin) -> Self {
TachoCtrl {
tacho,
tacho_cnt: 0,
tacho_value: None,
prev_epoch: 0,
}
}
fn init(&mut self, exti: &mut EXTI, syscfg: &mut SysCfg) {
// These lines do not cause NVIC to run the ISR,
// since the interrupt is masked in the cortex_m::peripheral::NVIC.
// Also using interrupt-related workaround is the best
// option for the current version of stm32f4xx-hal,
// since tying the IC's PC8 with the PWM's PC9 to the same TIM8 is not supported.
// The possible solution would be to update the library to >=v0.14.*,
// and use its Timer's counter functionality.
self.tacho.make_interrupt_source(syscfg);
self.tacho.trigger_on_edge(exti, Edge::Rising);
self.tacho.enable_interrupt(exti);
}
// returns whether the epoch elapsed
fn cycle(&mut self) -> bool {
let tacho_input = self.tacho.check_interrupt();
if tacho_input {
self.tacho.clear_interrupt_pending_bit();
self.tacho_cnt += 1;
}
let instant = Instant::from_millis(i64::from(timer::now()));
if instant.millis - self.prev_epoch >= TACHO_MEASURE_MS {
self.tacho_value = Some(self.tacho_cnt);
self.tacho_cnt = 0;
self.prev_epoch = instant.millis;
true
} else {
false
}
}
fn get(&self) -> u32 {
self.tacho_value.unwrap_or(u32::MAX)
}
}
impl HWRev {
pub fn detect_hw_rev(hwrev_pins: &HWRevPins) -> Self {
let (h0, h1, h2, h3) = (hwrev_pins.hwrev0.is_high(), hwrev_pins.hwrev1.is_high(),
@ -280,26 +149,13 @@ impl HWRev {
#[derive(Serialize)]
pub struct FanSummary {
fan_pwm: u32,
tacho: u32,
abs_max_tec_i: f64,
auto_mode: bool,
status: FanStatus,
k_a: f64,
k_b: f64,
k_c: f64,
}
impl FanStatus {
pub fn fmt_u8(&self) -> &'static [u8] {
match *self {
FanStatus::OK => "Fan is OK".as_bytes(),
FanStatus::NotAvailable => "Fan is not available".as_bytes(),
FanStatus::TooSlow => "Fan is too slow".as_bytes(),
FanStatus::Halted => "Fan is halted".as_bytes(),
}
}
}
#[cfg(test)]
mod test {
use super::*;

View File

@ -18,7 +18,6 @@ use stm32f4xx_hal::{
stm32::{CorePeripherals, Peripherals, SCB},
time::{U32Ext, MegaHertz},
watchdog::IndependentWatchdog,
syscfg::SysCfgExt
};
use smoltcp::{
time::Instant,
@ -104,7 +103,7 @@ fn main() -> ! {
cp.SCB.enable_icache();
cp.SCB.enable_dcache(&mut cp.CPUID);
let mut dp = Peripherals::take().unwrap();
let dp = Peripherals::take().unwrap();
let clocks = dp.RCC.constrain()
.cfgr
.use_hse(HSE)
@ -120,7 +119,7 @@ fn main() -> ! {
timer::setup(cp.SYST, clocks);
let (pins, mut leds, mut eeprom, eth_pins, usb, fan, tacho) = Pins::setup(
let (pins, mut leds, mut eeprom, eth_pins, usb, fan) = Pins::setup(
clocks, dp.TIM1, dp.TIM3, dp.TIM8,
dp.GPIOA, dp.GPIOB, dp.GPIOC, dp.GPIOD, dp.GPIOE, dp.GPIOF, dp.GPIOG,
dp.I2C1,
@ -151,7 +150,7 @@ fn main() -> ! {
}
}
let mut fan_ctrl = FanCtrl::new(fan, tacho, channels, &mut dp.EXTI, &mut dp.SYSCFG.constrain());
let mut fan_ctrl = FanCtrl::new(fan, channels);
// default net config:
let mut ipv4_config = Ipv4Config {
@ -186,7 +185,7 @@ fn main() -> ! {
server.for_each(|_, session| session.set_report_pending(channel.into()));
}
let fan_status = fan_ctrl.cycle();
fan_ctrl.cycle();
let instant = Instant::from_millis(i64::from(timer::now()));
cortex_m::interrupt::free(net::clear_pending);
@ -239,12 +238,6 @@ fn main() -> ! {
}
}
}
match fan_status {
Ok(_) => {}
Err(status) => {
send_line(&mut socket, status.fmt_u8());
}
};
}
});
} else {

View File

@ -33,7 +33,7 @@ use stm32_eth::EthPins;
use crate::{
channel::{Channel0, Channel1},
leds::Leds,
fan_ctrl::{TachoPin, FanPin}
fan_ctrl::FanPin
};
const PWM_FREQ: KiloHertz = KiloHertz(20u32);
@ -131,7 +131,7 @@ impl Pins {
spi2: SPI2, spi4: SPI4, spi5: SPI5,
adc1: ADC1,
otg_fs_global: OTG_FS_GLOBAL, otg_fs_device: OTG_FS_DEVICE, otg_fs_pwrclk: OTG_FS_PWRCLK,
) -> (Self, Leds, Eeprom, EthernetPins, USB, FanPin, TachoPin) {
) -> (Self, Leds, Eeprom, EthernetPins, USB, FanPin) {
let gpioa = gpioa.split();
let gpiob = gpiob.split();
let gpioc = gpioc.split();
@ -228,9 +228,9 @@ impl Pins {
hclk: clocks.hclk(),
};
let fan = Timer::new(tim8, &clocks).pwm(gpioc.pc9.into_alternate(), 20u32.khz());
let fan = Timer::new(tim8, &clocks).pwm(gpioc.pc9.into_alternate(), PWM_FREQ);
(pins, leds, eeprom, eth_pins, usb, fan, gpioc.pc8)
(pins, leds, eeprom, eth_pins, usb, fan)
}
/// Configure the GPIO pins for SPI operation, and initialize SPI
@ -342,7 +342,7 @@ impl PwmPins {
PwmPins {
max_v0, max_v1,
max_i_pos0, max_i_pos1,
max_i_neg0, max_i_neg1
max_i_neg0, max_i_neg1,
}
}
}