pytec: __name__ check, examples does not run when pytec module is imported, change autotune state management to use enum
This commit is contained in:
parent
d1f8a4761b
commit
ab305d5fa5
|
@ -3,35 +3,41 @@ import logging
|
|||
from time import time
|
||||
from collections import deque, namedtuple
|
||||
from pytec.client import Client
|
||||
from enum import Enum
|
||||
|
||||
# Based on hirshmann pid-autotune libiary
|
||||
# See https://github.com/hirschmann/pid-autotune
|
||||
# Which is in turn based on a fork of Arduino PID AutoTune Library
|
||||
# See https://github.com/t0mpr1c3/Arduino-PID-AutoTune-Library
|
||||
|
||||
# Auto tune parameters
|
||||
# Thermostat channel
|
||||
channel = 0
|
||||
# Target temperature of the autotune routine, celcius
|
||||
target_temperature = 30
|
||||
# Value by which output will be increased/decreased from zero, amps
|
||||
output_step = 1
|
||||
# Reference period for local minima/maxima, seconds
|
||||
lookback = 3
|
||||
# Determines by how much the input value must overshoot/undershoot the setpoint, celcius
|
||||
noiseband = 1.5
|
||||
|
||||
class PIDAutotune(object):
|
||||
if __name__ == "__main__":
|
||||
|
||||
PIDParams = namedtuple('PIDParams', ['Kp', 'Ki', 'Kd'])
|
||||
# Auto tune parameters
|
||||
# Thermostat channel
|
||||
channel = 0
|
||||
# Target temperature of the autotune routine, celcius
|
||||
target_temperature = 30
|
||||
# Value by which output will be increased/decreased from zero, amps
|
||||
output_step = 1
|
||||
# Reference period for local minima/maxima, seconds
|
||||
lookback = 3
|
||||
# Determines by how much the input value must overshoot/undershoot the setpoint, celcius
|
||||
noiseband = 1.5
|
||||
|
||||
PEAK_AMPLITUDE_TOLERANCE = 0.05
|
||||
class PIDAutotuneState(Enum):
|
||||
STATE_OFF = 'off'
|
||||
STATE_RELAY_STEP_UP = 'relay step up'
|
||||
STATE_RELAY_STEP_DOWN = 'relay step down'
|
||||
STATE_SUCCEEDED = 'succeeded'
|
||||
STATE_FAILED = 'failed'
|
||||
|
||||
class PIDAutotune():
|
||||
|
||||
PIDParams = namedtuple('PIDParams', ['Kp', 'Ki', 'Kd'])
|
||||
|
||||
PEAK_AMPLITUDE_TOLERANCE = 0.05
|
||||
|
||||
|
||||
_tuning_rules = {
|
||||
"ziegler-nichols": [0.6, 1.2, 0.075],
|
||||
"tyreus-luyben": [0.4545, 0.2066, 0.07214],
|
||||
|
@ -62,7 +68,7 @@ class PIDAutotune(object):
|
|||
self._noiseband = noiseband
|
||||
self._out_min = -out_step
|
||||
self._out_max = out_step
|
||||
self._state = PIDAutotune.STATE_OFF
|
||||
self._state = PIDAutotuneState.STATE_OFF
|
||||
self._peak_timestamps = deque(maxlen=5)
|
||||
self._peaks = deque(maxlen=5)
|
||||
self._output = 0
|
||||
|
@ -115,30 +121,30 @@ class PIDAutotune(object):
|
|||
"""
|
||||
now = time_input * 1000
|
||||
|
||||
if (self._state == PIDAutotune.STATE_OFF
|
||||
or self._state == PIDAutotune.STATE_SUCCEEDED
|
||||
or self._state == PIDAutotune.STATE_FAILED):
|
||||
if (self._state == PIDAutotuneState.STATE_OFF
|
||||
or self._state == PIDAutotuneState.STATE_SUCCEEDED
|
||||
or self._state == PIDAutotuneState.STATE_FAILED):
|
||||
self._initTuner(input_val, now)
|
||||
|
||||
self._last_run_timestamp = now
|
||||
# print("temp : ", input_val)
|
||||
|
||||
# check input and change relay state if necessary
|
||||
if (self._state == PIDAutotune.STATE_RELAY_STEP_UP
|
||||
if (self._state == PIDAutotuneState.STATE_RELAY_STEP_UP
|
||||
and input_val > self._setpoint + self._noiseband):
|
||||
self._state = PIDAutotune.STATE_RELAY_STEP_DOWN
|
||||
self._state = PIDAutotuneState.STATE_RELAY_STEP_DOWN
|
||||
logging.debug('switched state: {0}'.format(self._state))
|
||||
logging.debug('input: {0}'.format(input_val))
|
||||
elif (self._state == PIDAutotune.STATE_RELAY_STEP_DOWN
|
||||
elif (self._state == PIDAutotuneState.STATE_RELAY_STEP_DOWN
|
||||
and input_val < self._setpoint - self._noiseband):
|
||||
self._state = PIDAutotune.STATE_RELAY_STEP_UP
|
||||
self._state = PIDAutotuneState.STATE_RELAY_STEP_UP
|
||||
logging.debug('switched state: {0}'.format(self._state))
|
||||
logging.debug('input: {0}'.format(input_val))
|
||||
|
||||
# set output
|
||||
if (self._state == PIDAutotune.STATE_RELAY_STEP_UP):
|
||||
if (self._state == PIDAutotuneState.STATE_RELAY_STEP_UP):
|
||||
self._output = self._initial_output + self._outputstep
|
||||
elif self._state == PIDAutotune.STATE_RELAY_STEP_DOWN:
|
||||
elif self._state == PIDAutotuneState.STATE_RELAY_STEP_DOWN:
|
||||
self._output = self._initial_output - self._outputstep
|
||||
|
||||
# respect output limits
|
||||
|
@ -204,17 +210,17 @@ class PIDAutotune(object):
|
|||
logging.debug('amplitude deviation: {0}'.format(amplitude_dev))
|
||||
|
||||
if amplitude_dev < PIDAutotune.PEAK_AMPLITUDE_TOLERANCE:
|
||||
self._state = PIDAutotune.STATE_SUCCEEDED
|
||||
self._state = PIDAutotuneState.STATE_SUCCEEDED
|
||||
# logging.debug('peak finding succeeded')
|
||||
|
||||
# if the autotune has not already converged
|
||||
# terminate after 10 cycles
|
||||
if self._peak_count >= 20:
|
||||
self._output = 0
|
||||
self._state = PIDAutotune.STATE_FAILED
|
||||
self._state = PIDAutotuneState.STATE_FAILED
|
||||
return True
|
||||
|
||||
if self._state == PIDAutotune.STATE_SUCCEEDED:
|
||||
if self._state == PIDAutotuneState.STATE_SUCCEEDED:
|
||||
self._output = 0
|
||||
logging.debug('peak finding successful')
|
||||
|
||||
|
@ -250,33 +256,34 @@ class PIDAutotune(object):
|
|||
self._peaks.clear()
|
||||
self._peak_timestamps.clear()
|
||||
self._peak_timestamps.append(timestamp)
|
||||
self._state = PIDAutotune.STATE_RELAY_STEP_UP
|
||||
self._state = PIDAutotuneState.STATE_RELAY_STEP_UP
|
||||
|
||||
# logging.basicConfig(level=logging.DEBUG)
|
||||
if __name__ == "__main__":
|
||||
|
||||
tec = Client() #(host="localhost", port=6667)
|
||||
# logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
data = next(tec.report_mode())
|
||||
ch = data[channel]
|
||||
tec = Client() #(host="localhost", port=6667)
|
||||
|
||||
tuner = PIDAutotune(target_temperature, output_step, lookback, noiseband, ch['interval'])
|
||||
data = next(tec.report_mode())
|
||||
ch = data[channel]
|
||||
|
||||
for data in tec.report_mode():
|
||||
tuner = PIDAutotune(target_temperature, output_step, lookback, noiseband, ch['interval'])
|
||||
|
||||
try:
|
||||
ch = data[channel]
|
||||
for data in tec.report_mode():
|
||||
|
||||
temperature = ch['temperature']
|
||||
try:
|
||||
ch = data[channel]
|
||||
|
||||
if (tuner.run(temperature, ch['time'])):
|
||||
# logging.debug('true')
|
||||
break
|
||||
temperature = ch['temperature']
|
||||
|
||||
tunerOut = tuner.output()
|
||||
if (tuner.run(temperature, ch['time'])):
|
||||
break
|
||||
|
||||
tec.set_param("pwm", channel, "i_set" , tunerOut)
|
||||
tunerOut = tuner.output()
|
||||
|
||||
except:
|
||||
pass
|
||||
tec.set_param("pwm", channel, "i_set" , tunerOut)
|
||||
|
||||
tec.set_param("pwm", channel, "i_set" , channel)
|
||||
except:
|
||||
pass
|
||||
|
||||
tec.set_param("pwm", channel, "i_set" , channel)
|
|
@ -1,11 +1,13 @@
|
|||
from pytec.client import Client
|
||||
if __name__ == "__main__":
|
||||
|
||||
tec = Client() #(host="localhost", port=6667)
|
||||
tec.set_param("s-h", 1, "t0", 20)
|
||||
print(tec.get_pwm())
|
||||
print(tec.get_pid())
|
||||
print(tec.get_pwm())
|
||||
print(tec.get_postfilter())
|
||||
print(tec.get_steinhart_hart())
|
||||
for data in tec.report_mode():
|
||||
print(data)
|
||||
from pytec.client import Client
|
||||
|
||||
tec = Client() #(host="localhost", port=6667)
|
||||
tec.set_param("s-h", 1, "t0", 20)
|
||||
print(tec.get_pwm())
|
||||
print(tec.get_pid())
|
||||
print(tec.get_pwm())
|
||||
print(tec.get_postfilter())
|
||||
print(tec.get_steinhart_hart())
|
||||
for data in tec.report_mode():
|
||||
print(data)
|
||||
|
|
218
pytec/plot.py
218
pytec/plot.py
|
@ -4,125 +4,127 @@ import matplotlib.animation as animation
|
|||
from threading import Thread, Lock
|
||||
from pytec.client import Client
|
||||
|
||||
TIME_WINDOW = 300.0
|
||||
if __name__ == "__main__":
|
||||
|
||||
tec = Client()
|
||||
target_temperature = tec.get_pid()[0]['target']
|
||||
print("Channel 0 target temperature: {:.3f}".format(target_temperature))
|
||||
TIME_WINDOW = 300.0
|
||||
|
||||
class Series:
|
||||
def __init__(self, conv=lambda x: x):
|
||||
self.conv = conv
|
||||
self.x_data = []
|
||||
self.y_data = []
|
||||
tec = Client()
|
||||
target_temperature = tec.get_pid()[0]['target']
|
||||
print("Channel 0 target temperature: {:.3f}".format(target_temperature))
|
||||
|
||||
def append(self, x, y):
|
||||
self.x_data.append(x)
|
||||
self.y_data.append(self.conv(y))
|
||||
class Series:
|
||||
def __init__(self, conv=lambda x: x):
|
||||
self.conv = conv
|
||||
self.x_data = []
|
||||
self.y_data = []
|
||||
|
||||
def clip(self, min_x):
|
||||
drop = 0
|
||||
while drop < len(self.x_data) and self.x_data[drop] < min_x:
|
||||
drop += 1
|
||||
self.x_data = self.x_data[drop:]
|
||||
self.y_data = self.y_data[drop:]
|
||||
def append(self, x, y):
|
||||
self.x_data.append(x)
|
||||
self.y_data.append(self.conv(y))
|
||||
|
||||
def clip(self, min_x):
|
||||
drop = 0
|
||||
while drop < len(self.x_data) and self.x_data[drop] < min_x:
|
||||
drop += 1
|
||||
self.x_data = self.x_data[drop:]
|
||||
self.y_data = self.y_data[drop:]
|
||||
|
||||
series = {
|
||||
'adc': Series(),
|
||||
'sens': Series(lambda x: x * 0.0001),
|
||||
'temperature': Series(),
|
||||
'i_set': Series(),
|
||||
'pid_output': Series(),
|
||||
'vref': Series(),
|
||||
'dac_value': Series(),
|
||||
'dac_feedback': Series(),
|
||||
'i_tec': Series(),
|
||||
'tec_i': Series(),
|
||||
'tec_u_meas': Series(),
|
||||
'interval': Series(),
|
||||
}
|
||||
series_lock = Lock()
|
||||
|
||||
quit = False
|
||||
|
||||
def recv_data(tec):
|
||||
global last_packet_time
|
||||
for data in tec.report_mode():
|
||||
ch0 = data[0]
|
||||
series_lock.acquire()
|
||||
try:
|
||||
for k, s in series.items():
|
||||
if k in ch0:
|
||||
v = ch0[k]
|
||||
if type(v) is float:
|
||||
s.append(ch0['time'], v)
|
||||
finally:
|
||||
series_lock.release()
|
||||
|
||||
if quit:
|
||||
break
|
||||
|
||||
thread = Thread(target=recv_data, args=(tec,))
|
||||
thread.start()
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
for k, s in series.items():
|
||||
s.plot, = ax.plot([], [], label=k)
|
||||
legend = ax.legend()
|
||||
|
||||
def animate(i):
|
||||
min_x, max_x, min_y, max_y = None, None, None, None
|
||||
|
||||
series = {
|
||||
'adc': Series(),
|
||||
'sens': Series(lambda x: x * 0.0001),
|
||||
'temperature': Series(lambda t: t - target_temperature),
|
||||
'i_set': Series(),
|
||||
'pid_output': Series(),
|
||||
'vref': Series(),
|
||||
'dac_value': Series(),
|
||||
'dac_feedback': Series(),
|
||||
'i_tec': Series(),
|
||||
'tec_i': Series(),
|
||||
'tec_u_meas': Series(),
|
||||
'interval': Series(),
|
||||
}
|
||||
series_lock = Lock()
|
||||
|
||||
quit = False
|
||||
|
||||
def recv_data(tec):
|
||||
global last_packet_time
|
||||
for data in tec.report_mode():
|
||||
ch0 = data[0]
|
||||
series_lock.acquire()
|
||||
try:
|
||||
for k, s in series.items():
|
||||
if k in ch0:
|
||||
v = ch0[k]
|
||||
if type(v) is float:
|
||||
s.append(ch0['time'], v)
|
||||
s.plot.set_data(s.x_data, s.y_data)
|
||||
if len(s.y_data) > 0:
|
||||
s.plot.set_label("{}: {:.3f}".format(k, s.y_data[-1]))
|
||||
|
||||
if len(s.x_data) > 0:
|
||||
min_x_ = min(s.x_data)
|
||||
if min_x is None:
|
||||
min_x = min_x_
|
||||
else:
|
||||
min_x = min(min_x, min_x_)
|
||||
max_x_ = max(s.x_data)
|
||||
if max_x is None:
|
||||
max_x = max_x_
|
||||
else:
|
||||
max_x = max(max_x, max_x_)
|
||||
if len(s.y_data) > 0:
|
||||
min_y_ = min(s.y_data)
|
||||
if min_y is None:
|
||||
min_y = min_y_
|
||||
else:
|
||||
min_y = min(min_y, min_y_)
|
||||
max_y_ = max(s.y_data)
|
||||
if max_y is None:
|
||||
max_y = max_y_
|
||||
else:
|
||||
max_y = max(max_y, max_y_)
|
||||
|
||||
if min_x and max_x - TIME_WINDOW > min_x:
|
||||
for s in series.values():
|
||||
s.clip(max_x - TIME_WINDOW)
|
||||
finally:
|
||||
series_lock.release()
|
||||
|
||||
if quit:
|
||||
break
|
||||
if min_x != max_x:
|
||||
ax.set_xlim(min_x, max_x)
|
||||
if min_y != max_y:
|
||||
margin_y = 0.01 * (max_y - min_y)
|
||||
ax.set_ylim(min_y - margin_y, max_y + margin_y)
|
||||
|
||||
thread = Thread(target=recv_data, args=(tec,))
|
||||
thread.start()
|
||||
global legend
|
||||
legend.remove()
|
||||
legend = ax.legend()
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ani = animation.FuncAnimation(
|
||||
fig, animate, interval=1, blit=False, save_count=50)
|
||||
|
||||
for k, s in series.items():
|
||||
s.plot, = ax.plot([], [], label=k)
|
||||
legend = ax.legend()
|
||||
|
||||
def animate(i):
|
||||
min_x, max_x, min_y, max_y = None, None, None, None
|
||||
|
||||
series_lock.acquire()
|
||||
try:
|
||||
for k, s in series.items():
|
||||
s.plot.set_data(s.x_data, s.y_data)
|
||||
if len(s.y_data) > 0:
|
||||
s.plot.set_label("{}: {:.3f}".format(k, s.y_data[-1]))
|
||||
|
||||
if len(s.x_data) > 0:
|
||||
min_x_ = min(s.x_data)
|
||||
if min_x is None:
|
||||
min_x = min_x_
|
||||
else:
|
||||
min_x = min(min_x, min_x_)
|
||||
max_x_ = max(s.x_data)
|
||||
if max_x is None:
|
||||
max_x = max_x_
|
||||
else:
|
||||
max_x = max(max_x, max_x_)
|
||||
if len(s.y_data) > 0:
|
||||
min_y_ = min(s.y_data)
|
||||
if min_y is None:
|
||||
min_y = min_y_
|
||||
else:
|
||||
min_y = min(min_y, min_y_)
|
||||
max_y_ = max(s.y_data)
|
||||
if max_y is None:
|
||||
max_y = max_y_
|
||||
else:
|
||||
max_y = max(max_y, max_y_)
|
||||
|
||||
if min_x and max_x - TIME_WINDOW > min_x:
|
||||
for s in series.values():
|
||||
s.clip(max_x - TIME_WINDOW)
|
||||
finally:
|
||||
series_lock.release()
|
||||
|
||||
if min_x != max_x:
|
||||
ax.set_xlim(min_x, max_x)
|
||||
if min_y != max_y:
|
||||
margin_y = 0.01 * (max_y - min_y)
|
||||
ax.set_ylim(min_y - margin_y, max_y + margin_y)
|
||||
|
||||
global legend
|
||||
legend.remove()
|
||||
legend = ax.legend()
|
||||
|
||||
ani = animation.FuncAnimation(
|
||||
fig, animate, interval=1, blit=False, save_count=50)
|
||||
|
||||
plt.show()
|
||||
quit = True
|
||||
thread.join()
|
||||
plt.show()
|
||||
quit = True
|
||||
thread.join()
|
||||
|
|
Loading…
Reference in New Issue