pytec: Set autotune
and plot
as entry points
For easier access to `plot.py` and `autotune.py` scripts.
This commit is contained in:
parent
52e35d2a98
commit
54296c88b4
214
pytec/plot.py
214
pytec/plot.py
@ -4,125 +4,131 @@ import matplotlib.animation as animation
|
||||
from threading import Thread, Lock
|
||||
from pytec.client import Client
|
||||
|
||||
TIME_WINDOW = 300.0
|
||||
|
||||
tec = Client()
|
||||
target_temperature = tec.get_pid()[0]['target']
|
||||
print("Channel 0 target temperature: {:.3f}".format(target_temperature))
|
||||
def main():
|
||||
TIME_WINDOW = 300.0
|
||||
|
||||
class Series:
|
||||
def __init__(self, conv=lambda x: x):
|
||||
self.conv = conv
|
||||
self.x_data = []
|
||||
self.y_data = []
|
||||
tec = Client()
|
||||
target_temperature = tec.get_pid()[0]['target']
|
||||
print("Channel 0 target temperature: {:.3f}".format(target_temperature))
|
||||
|
||||
def append(self, x, y):
|
||||
self.x_data.append(x)
|
||||
self.y_data.append(self.conv(y))
|
||||
class Series:
|
||||
def __init__(self, conv=lambda x: x):
|
||||
self.conv = conv
|
||||
self.x_data = []
|
||||
self.y_data = []
|
||||
|
||||
def clip(self, min_x):
|
||||
drop = 0
|
||||
while drop < len(self.x_data) and self.x_data[drop] < min_x:
|
||||
drop += 1
|
||||
self.x_data = self.x_data[drop:]
|
||||
self.y_data = self.y_data[drop:]
|
||||
def append(self, x, y):
|
||||
self.x_data.append(x)
|
||||
self.y_data.append(self.conv(y))
|
||||
|
||||
series = {
|
||||
# 'adc': Series(),
|
||||
# 'sens': Series(lambda x: x * 0.0001),
|
||||
'temperature': Series(),
|
||||
# 'i_set': Series(),
|
||||
'pid_output': Series(),
|
||||
# 'vref': Series(),
|
||||
# 'dac_value': Series(),
|
||||
# 'dac_feedback': Series(),
|
||||
# 'i_tec': Series(),
|
||||
'tec_i': Series(),
|
||||
'tec_u_meas': Series(),
|
||||
# 'interval': Series(),
|
||||
}
|
||||
series_lock = Lock()
|
||||
def clip(self, min_x):
|
||||
drop = 0
|
||||
while drop < len(self.x_data) and self.x_data[drop] < min_x:
|
||||
drop += 1
|
||||
self.x_data = self.x_data[drop:]
|
||||
self.y_data = self.y_data[drop:]
|
||||
|
||||
quit = False
|
||||
series = {
|
||||
# 'adc': Series(),
|
||||
# 'sens': Series(lambda x: x * 0.0001),
|
||||
'temperature': Series(),
|
||||
# 'i_set': Series(),
|
||||
'pid_output': Series(),
|
||||
# 'vref': Series(),
|
||||
# 'dac_value': Series(),
|
||||
# 'dac_feedback': Series(),
|
||||
# 'i_tec': Series(),
|
||||
'tec_i': Series(),
|
||||
'tec_u_meas': Series(),
|
||||
# 'interval': Series(),
|
||||
}
|
||||
series_lock = Lock()
|
||||
|
||||
quit = False
|
||||
|
||||
def recv_data(tec):
|
||||
global last_packet_time
|
||||
for data in tec.report_mode():
|
||||
ch0 = data[0]
|
||||
series_lock.acquire()
|
||||
try:
|
||||
for k, s in series.items():
|
||||
if k in ch0:
|
||||
v = ch0[k]
|
||||
if type(v) is float:
|
||||
s.append(ch0['time'], v)
|
||||
finally:
|
||||
series_lock.release()
|
||||
|
||||
if quit:
|
||||
break
|
||||
|
||||
thread = Thread(target=recv_data, args=(tec,))
|
||||
thread.start()
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
for k, s in series.items():
|
||||
s.plot, = ax.plot([], [], label=k)
|
||||
legend = ax.legend()
|
||||
|
||||
def animate(i):
|
||||
min_x, max_x, min_y, max_y = None, None, None, None
|
||||
|
||||
def recv_data(tec):
|
||||
global last_packet_time
|
||||
for data in tec.report_mode():
|
||||
ch0 = data[0]
|
||||
series_lock.acquire()
|
||||
try:
|
||||
for k, s in series.items():
|
||||
if k in ch0:
|
||||
v = ch0[k]
|
||||
if type(v) is float:
|
||||
s.append(ch0['time'], v)
|
||||
s.plot.set_data(s.x_data, s.y_data)
|
||||
if len(s.y_data) > 0:
|
||||
s.plot.set_label("{}: {:.3f}".format(k, s.y_data[-1]))
|
||||
|
||||
if len(s.x_data) > 0:
|
||||
min_x_ = min(s.x_data)
|
||||
if min_x is None:
|
||||
min_x = min_x_
|
||||
else:
|
||||
min_x = min(min_x, min_x_)
|
||||
max_x_ = max(s.x_data)
|
||||
if max_x is None:
|
||||
max_x = max_x_
|
||||
else:
|
||||
max_x = max(max_x, max_x_)
|
||||
if len(s.y_data) > 0:
|
||||
min_y_ = min(s.y_data)
|
||||
if min_y is None:
|
||||
min_y = min_y_
|
||||
else:
|
||||
min_y = min(min_y, min_y_)
|
||||
max_y_ = max(s.y_data)
|
||||
if max_y is None:
|
||||
max_y = max_y_
|
||||
else:
|
||||
max_y = max(max_y, max_y_)
|
||||
|
||||
if min_x and max_x - TIME_WINDOW > min_x:
|
||||
for s in series.values():
|
||||
s.clip(max_x - TIME_WINDOW)
|
||||
finally:
|
||||
series_lock.release()
|
||||
|
||||
if quit:
|
||||
break
|
||||
if min_x != max_x:
|
||||
ax.set_xlim(min_x, max_x)
|
||||
if min_y != max_y:
|
||||
margin_y = 0.01 * (max_y - min_y)
|
||||
ax.set_ylim(min_y - margin_y, max_y + margin_y)
|
||||
|
||||
thread = Thread(target=recv_data, args=(tec,))
|
||||
thread.start()
|
||||
nonlocal legend
|
||||
legend.remove()
|
||||
legend = ax.legend()
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ani = animation.FuncAnimation(
|
||||
fig, animate, interval=1, blit=False, save_count=50)
|
||||
|
||||
for k, s in series.items():
|
||||
s.plot, = ax.plot([], [], label=k)
|
||||
legend = ax.legend()
|
||||
plt.show()
|
||||
quit = True
|
||||
thread.join()
|
||||
|
||||
def animate(i):
|
||||
min_x, max_x, min_y, max_y = None, None, None, None
|
||||
|
||||
series_lock.acquire()
|
||||
try:
|
||||
for k, s in series.items():
|
||||
s.plot.set_data(s.x_data, s.y_data)
|
||||
if len(s.y_data) > 0:
|
||||
s.plot.set_label("{}: {:.3f}".format(k, s.y_data[-1]))
|
||||
|
||||
if len(s.x_data) > 0:
|
||||
min_x_ = min(s.x_data)
|
||||
if min_x is None:
|
||||
min_x = min_x_
|
||||
else:
|
||||
min_x = min(min_x, min_x_)
|
||||
max_x_ = max(s.x_data)
|
||||
if max_x is None:
|
||||
max_x = max_x_
|
||||
else:
|
||||
max_x = max(max_x, max_x_)
|
||||
if len(s.y_data) > 0:
|
||||
min_y_ = min(s.y_data)
|
||||
if min_y is None:
|
||||
min_y = min_y_
|
||||
else:
|
||||
min_y = min(min_y, min_y_)
|
||||
max_y_ = max(s.y_data)
|
||||
if max_y is None:
|
||||
max_y = max_y_
|
||||
else:
|
||||
max_y = max(max_y, max_y_)
|
||||
|
||||
if min_x and max_x - TIME_WINDOW > min_x:
|
||||
for s in series.values():
|
||||
s.clip(max_x - TIME_WINDOW)
|
||||
finally:
|
||||
series_lock.release()
|
||||
|
||||
if min_x != max_x:
|
||||
ax.set_xlim(min_x, max_x)
|
||||
if min_y != max_y:
|
||||
margin_y = 0.01 * (max_y - min_y)
|
||||
ax.set_ylim(min_y - margin_y, max_y + margin_y)
|
||||
|
||||
global legend
|
||||
legend.remove()
|
||||
legend = ax.legend()
|
||||
|
||||
ani = animation.FuncAnimation(
|
||||
fig, animate, interval=1, blit=False, save_count=50)
|
||||
|
||||
plt.show()
|
||||
quit = True
|
||||
thread.join()
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -9,4 +9,11 @@ setup(
|
||||
license="GPLv3",
|
||||
install_requires=["setuptools"],
|
||||
packages=find_packages(),
|
||||
entry_points={
|
||||
"gui_scripts": [
|
||||
"autotune = autotune:main",
|
||||
"plot = plot:main",
|
||||
]
|
||||
},
|
||||
py_modules=["autotune", "plot"],
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user