Separate sanity checks into validate() methods (#19)

This commit is contained in:
Rafał 2018-10-06 17:27:52 +02:00 committed by GitHub
parent 3590f43013
commit 9acd6ed6df
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

147
src/fs.rs
View File

@ -142,48 +142,6 @@ impl BiosParameterBlock {
bpb.hidden_sectors = rdr.read_u32::<LittleEndian>()?; bpb.hidden_sectors = rdr.read_u32::<LittleEndian>()?;
bpb.total_sectors_32 = rdr.read_u32::<LittleEndian>()?; bpb.total_sectors_32 = rdr.read_u32::<LittleEndian>()?;
// sanity checks
if bpb.bytes_per_sector.count_ones() != 1 {
return Err(Error::new(ErrorKind::Other, "invalid bytes_per_sector value in BPB (not power of two)"));
} else if bpb.bytes_per_sector < 512 {
return Err(Error::new(ErrorKind::Other, "invalid bytes_per_sector value in BPB (value < 512)"));
} else if bpb.bytes_per_sector > 4096 {
return Err(Error::new(ErrorKind::Other, "invalid bytes_per_sector value in BPB (value > 4096)"));
}
if bpb.sectors_per_cluster.count_ones() != 1 {
return Err(Error::new(ErrorKind::Other, "invalid sectors_per_cluster value in BPB (not power of two)"));
} else if bpb.sectors_per_cluster < 1 {
return Err(Error::new(ErrorKind::Other, "invalid sectors_per_cluster value in BPB (value < 1)"));
} else if bpb.sectors_per_cluster > 128 {
return Err(Error::new(ErrorKind::Other, "invalid sectors_per_cluster value in BPB (value > 128)"));
}
// bytes per sector is u16, sectors per cluster is u8, so guaranteed no overflow in multiplication
let bytes_per_cluster = bpb.bytes_per_sector as u32 * bpb.sectors_per_cluster as u32;
let maximum_compatibility_bytes_per_cluster : u32 = 32 * 1024;
if bytes_per_cluster > maximum_compatibility_bytes_per_cluster {
// 32k is the largest value to maintain greatest compatibility
// Many implementations appear to support 64k per cluster, and some may support 128k or larger
// However, >32k is not as thoroughly tested...
warn!("fs compatibility: bytes_per_cluster value '{}' in BPB exceeds '{}', and thus may be incompatible with some implementations", bytes_per_cluster, maximum_compatibility_bytes_per_cluster);
}
if bpb.reserved_sectors < 1 {
return Err(Error::new(ErrorKind::Other, "invalid reserved_sectors value in BPB"));
} else if !bpb.is_fat32() && bpb.reserved_sectors != 1 {
// Microsoft document indicates fat12 and fat16 code exists that presume this value is 1
warn!("fs compatibility: reserved_sectors value '{}' in BPB is not '1', and thus is incompatible with some implementations", bpb.reserved_sectors);
}
if bpb.fats == 0 {
return Err(Error::new(ErrorKind::Other, "invalid fats value in BPB"));
} else if bpb.fats > 2 {
// Microsoft document indicates that few implementations support any values other than 1 or 2
warn!("fs compatibility: numbers of FATs '{}' in BPB is greater than '2', and thus is incompatible with some implementations", bpb.fats);
}
if bpb.is_fat32() { if bpb.is_fat32() {
bpb.sectors_per_fat_32 = rdr.read_u32::<LittleEndian>()?; bpb.sectors_per_fat_32 = rdr.read_u32::<LittleEndian>()?;
bpb.extended_flags = rdr.read_u16::<LittleEndian>()?; bpb.extended_flags = rdr.read_u16::<LittleEndian>()?;
@ -218,6 +176,60 @@ impl BiosParameterBlock {
Ok(bpb) Ok(bpb)
} }
fn validate(&self) -> io::Result<()> {
// sanity checks
if self.bytes_per_sector.count_ones() != 1 {
return Err(Error::new(ErrorKind::Other, "invalid bytes_per_sector value in BPB (not power of two)"));
} else if self.bytes_per_sector < 512 {
return Err(Error::new(ErrorKind::Other, "invalid bytes_per_sector value in BPB (value < 512)"));
} else if self.bytes_per_sector > 4096 {
return Err(Error::new(ErrorKind::Other, "invalid bytes_per_sector value in BPB (value > 4096)"));
}
if self.sectors_per_cluster.count_ones() != 1 {
return Err(Error::new(ErrorKind::Other, "invalid sectors_per_cluster value in BPB (not power of two)"));
} else if self.sectors_per_cluster < 1 {
return Err(Error::new(ErrorKind::Other, "invalid sectors_per_cluster value in BPB (value < 1)"));
} else if self.sectors_per_cluster > 128 {
return Err(Error::new(ErrorKind::Other, "invalid sectors_per_cluster value in BPB (value > 128)"));
}
// bytes per sector is u16, sectors per cluster is u8, so guaranteed no overflow in multiplication
let bytes_per_cluster = self.bytes_per_sector as u32 * self.sectors_per_cluster as u32;
let maximum_compatibility_bytes_per_cluster : u32 = 32 * 1024;
if bytes_per_cluster > maximum_compatibility_bytes_per_cluster {
// 32k is the largest value to maintain greatest compatibility
// Many implementations appear to support 64k per cluster, and some may support 128k or larger
// However, >32k is not as thoroughly tested...
warn!("fs compatibility: bytes_per_cluster value '{}' in BPB exceeds '{}', and thus may be incompatible with some implementations",
bytes_per_cluster, maximum_compatibility_bytes_per_cluster);
}
if self.reserved_sectors < 1 {
return Err(Error::new(ErrorKind::Other, "invalid reserved_sectors value in BPB"));
} else if !self.is_fat32() && self.reserved_sectors != 1 {
// Microsoft document indicates fat12 and fat16 code exists that presume this value is 1
warn!("fs compatibility: reserved_sectors value '{}' in BPB is not '1', and thus is incompatible with some implementations",
self.reserved_sectors);
}
if self.fats == 0 {
return Err(Error::new(ErrorKind::Other, "invalid fats value in BPB"));
} else if self.fats > 2 {
// Microsoft document indicates that few implementations support any values other than 1 or 2
warn!("fs compatibility: numbers of FATs '{}' in BPB is greater than '2', and thus is incompatible with some implementations",
self.fats);
}
if self.fs_version != 0 {
return Err(Error::new(ErrorKind::Other, "Unknown FS version"));
}
Ok(())
}
fn mirroring_enabled(&self) -> bool { fn mirroring_enabled(&self) -> bool {
self.extended_flags & 0x80 == 0 self.extended_flags & 0x80 == 0
} }
@ -283,6 +295,17 @@ impl BootRecord {
rdr.read_exact(&mut boot.boot_sig)?; rdr.read_exact(&mut boot.boot_sig)?;
Ok(boot) Ok(boot)
} }
fn validate(&self) -> io::Result<()> {
if self.boot_sig != [0x55, 0xAA] {
return Err(Error::new(ErrorKind::Other, "Invalid boot sector signature"));
}
if self.bootjmp[0] != 0xEB && self.bootjmp[0] != 0xE9 {
warn!("Unknown opcode {} in bootjmp boot sector field", self.bootjmp[0]);
}
self.bpb.validate()?;
Ok(())
}
} }
impl Default for BootRecord { impl Default for BootRecord {
@ -360,6 +383,22 @@ impl FsInfoSector {
Ok(()) Ok(())
} }
fn validate_and_fix(&mut self, total_clusters: u32) {
let max_valid_cluster_number = total_clusters + RESERVED_FAT_ENTRIES;
if let Some(n) = self.free_cluster_count {
if n > total_clusters {
warn!("invalid free_cluster_count ({}) in fs_info exceeds total cluster count ({})", n, total_clusters);
self.free_cluster_count = None;
}
}
if let Some(n) = self.next_free_cluster {
if n > max_valid_cluster_number {
warn!("invalid free_cluster_count ({}) in fs_info exceeds maximum cluster number ({})", n, max_valid_cluster_number);
self.next_free_cluster = None;
}
}
}
fn add_free_clusters(&mut self, free_clusters: i32) { fn add_free_clusters(&mut self, free_clusters: i32) {
if let Some(n) = self.free_cluster_count { if let Some(n) = self.free_cluster_count {
self.free_cluster_count = Some((n as i32 + free_clusters) as u32); self.free_cluster_count = Some((n as i32 + free_clusters) as u32);
@ -473,16 +512,10 @@ impl<T: ReadWriteSeek> FileSystem<T> {
// read boot sector // read boot sector
let bpb = { let bpb = {
let boot = BootRecord::deserialize(&mut disk)?; let boot = BootRecord::deserialize(&mut disk)?;
if boot.boot_sig != [0x55, 0xAA] { boot.validate()?;
return Err(Error::new(ErrorKind::Other, "Invalid boot sector signature"));
}
boot.bpb boot.bpb
}; };
if bpb.fs_version != 0 {
return Err(Error::new(ErrorKind::Other, "Unknown FS version"));
}
let total_sectors = bpb.total_sectors(); let total_sectors = bpb.total_sectors();
let sectors_per_fat = bpb.sectors_per_fat(); let sectors_per_fat = bpb.sectors_per_fat();
let root_dir_bytes = bpb.root_entries as u32 * DIR_ENTRY_SIZE as u32; let root_dir_bytes = bpb.root_entries as u32 * DIR_ENTRY_SIZE as u32;
@ -491,7 +524,6 @@ impl<T: ReadWriteSeek> FileSystem<T> {
let fat_sectors = bpb.fats as u32 * sectors_per_fat; let fat_sectors = bpb.fats as u32 * sectors_per_fat;
let data_sectors = total_sectors - (bpb.reserved_sectors as u32 + fat_sectors + root_dir_sectors as u32); let data_sectors = total_sectors - (bpb.reserved_sectors as u32 + fat_sectors + root_dir_sectors as u32);
let total_clusters = data_sectors / bpb.sectors_per_cluster as u32; let total_clusters = data_sectors / bpb.sectors_per_cluster as u32;
let max_valid_cluster_number = total_clusters + RESERVED_FAT_ENTRIES;
let fat_type = FatType::from_clusters(total_clusters); let fat_type = FatType::from_clusters(total_clusters);
// read FSInfo sector if this is FAT32 // read FSInfo sector if this is FAT32
@ -508,20 +540,7 @@ impl<T: ReadWriteSeek> FileSystem<T> {
} }
// Validate the numbers stored in the free_cluster_count and next_free_cluster are within bounds for volume // Validate the numbers stored in the free_cluster_count and next_free_cluster are within bounds for volume
match fs_info.free_cluster_count { fs_info.validate_and_fix(total_clusters);
Some(n) if n > total_clusters => {
warn!("invalid free_cluster_count ({}) in fs_info exceeds total cluster count ({})", n, total_clusters);
fs_info.free_cluster_count = None;
},
_ => {},
};
match fs_info.next_free_cluster {
Some(n) if n > max_valid_cluster_number => {
warn!("invalid free_cluster_count ({}) in fs_info exceeds maximum cluster number ({})", n, max_valid_cluster_number);
fs_info.next_free_cluster = None;
},
_ => {},
};
// return FileSystem struct // return FileSystem struct
let status_flags = bpb.status_flags(); let status_flags = bpb.status_flags();