feature/modularize-assertions #1

Merged
dsleung merged 3 commits from feature/modularize-assertions into master 2020-11-05 16:39:05 +08:00
2 changed files with 123 additions and 98 deletions

View File

@ -45,11 +45,10 @@ def cmp_wrap(a, b):
return Mux((a[-2] == a[-1]) & (b[-2] == b[-1]) & (a[-1] != b[-1]), a[-1], a < b) return Mux((a[-2] == a[-1]) & (b[-2] == b[-1]) & (a[-1] != b[-1]), a[-1], a < b)
class OutputNetwork(Elaboratable): class OutputNetwork(Elaboratable):
def __init__(self, lane_count, seqn_width, layout_payload, *, fv_mode=False): def __init__(self, lane_count, seqn_width, layout_payload):
self.lane_count = lane_count self.lane_count = lane_count
self.seqn_width = seqn_width self.seqn_width = seqn_width
self.layout_payload = layout_payload self.layout_payload = layout_payload
self.fv_mode = fv_mode
self.steps = boms_steps_pairs(lane_count) self.steps = boms_steps_pairs(lane_count)
self.network = [[Record(layouts.output_network_node(seqn_width, layout_payload)) for _ in range(lane_count)] for _ in range(len(self.steps) + 1)] self.network = [[Record(layouts.output_network_node(seqn_width, layout_payload)) for _ in range(lane_count)] for _ in range(len(self.steps) + 1)]
@ -102,99 +101,4 @@ class OutputNetwork(Elaboratable):
for node in unchanged: for node in unchanged:
m.d.sync += self.network[i + 1][node].eq(self.network[i][node]) m.d.sync += self.network[i + 1][node].eq(self.network[i][node])
if self.fv_mode:
# Model arbitrary inputs for network nodes
for i in range(self.lane_count):
m.d.comb += self.input[i].valid.eq(1)
m.d.comb += self.input[i].seqn.eq(AnySeq(self.seqn_width))
m.d.comb += self.input[i].replace_occured.eq(0)
m.d.comb += self.input[i].nondata_replace_occured.eq(0)
for field, width in self.layout_payload:
m.d.comb += getattr(self.input[i].payload, field).eq(AnySeq(width))
# Indicator of when inputs from the first clock cycle make it
# through the sorting network
network_latency = latency(self.lane_count)
counter = Signal(range(network_latency + 1))
m.d.sync += counter.eq(counter + 1)
with m.If(counter == network_latency):
m.d.sync += counter.eq(counter)
f_output_valid = Signal()
m.d.comb += f_output_valid.eq(counter == network_latency)
with m.If(f_output_valid):
replacement_occurred = Signal()
for node in self.output:
with m.If(node.replace_occured):
m.d.comb += replacement_occurred.eq(1)
channels_unique = Signal(reset=1)
for node1 in range(len(self.input)):
for node2 in range(node1):
k1 = Past(self.input[node1].payload.channel, clocks=network_latency)
k2 = Past(self.input[node2].payload.channel, clocks=network_latency)
with m.If(k1 == k2):
m.d.comb += channels_unique.eq(0)
# If there are no replacements then:
# - Input channel numbers are unique
# - All outputs are valid
# - All inputs make it through the sorting network
with m.If(~replacement_occurred):
m.d.comb += Assert(channels_unique)
for node in self.output:
m.d.comb += Assert(node.valid)
for input_node in self.input:
appeared = Signal()
for output_node in self.output:
match = Signal(reset=1)
with m.If(Past(input_node.valid, clocks=network_latency) != output_node.valid):
m.d.comb += match.eq(0)
with m.If(Past(input_node.seqn, clocks=network_latency) != output_node.seqn):
m.d.comb += match.eq(0)
with m.If(Past(input_node.replace_occured, clocks=network_latency) != output_node.replace_occured):
m.d.comb += match.eq(0)
with m.If(Past(input_node.nondata_replace_occured, clocks=network_latency) != output_node.nondata_replace_occured):
m.d.comb += match.eq(0)
for field, _ in self.layout_payload:
with m.If(Past(getattr(input_node.payload, field), clocks=network_latency) != getattr(output_node.payload, field)):
m.d.comb += match.eq(0)
with m.If(match):
m.d.comb += appeared.eq(1)
m.d.comb += Assert(appeared)
# Otherwise, if there are replacements:
# - Channel numbers are not unique
# - Not all outputs are valid
# - All channel numbers in the input appear exactly once as a
# valid output
# - All valid outputs match an input modulo accounting
# information
with m.Else():
m.d.comb += Assert(~channels_unique)
all_valid = Signal(reset=1)
for node in self.output:
with m.If(~node.valid):
m.d.comb += all_valid.eq(0)
m.d.comb += Assert(~all_valid)
for input_node in self.input:
input_channel_valid_once = Const(0)
for node1 in range(len(self.output)):
accum = (Past(input_node.payload.channel, clocks=network_latency) == self.output[node1].payload.channel) & self.output[node1].valid
for node2 in range(len(self.output)):
if node1 != node2:
accum = accum & ((Past(input_node.payload.channel, clocks=network_latency) != self.output[node2].payload.channel) | ~self.output[node2].valid)
input_channel_valid_once = input_channel_valid_once | accum
m.d.comb += Assert(input_channel_valid_once)
for output_node in self.output:
with m.If(output_node.valid):
found_input = Signal()
for input_node in self.input:
match = Signal(reset=1)
with m.If(Past(input_node.seqn, clocks=network_latency) != output_node.seqn):
m.d.comb += match.eq(0)
for field, _ in self.layout_payload:
with m.If(Past(getattr(input_node.payload, field), clocks=network_latency) != getattr(output_node.payload, field)):
m.d.comb += match.eq(0)
with m.If(match):
m.d.comb += found_input.eq(1)
m.d.comb += Assert(found_input)
return m return m

View File

@ -7,11 +7,132 @@ from ...sed.output_network import *
Verification tasks for OutputNetwork Verification tasks for OutputNetwork
""" """
class OutputNetworkSpec(Elaboratable):
def elaborate(self, platform):
m = Module()
m.submodules.output_network = output_network = OutputNetwork(4, 2, [("data", 32), ("channel", 3)])
# Model arbitrary inputs for network nodes
for i in range(output_network.lane_count):
m.d.comb += output_network.input[i].eq(AnySeq(1))
m.d.comb += output_network.input[i].seqn.eq(AnySeq(output_network.seqn_width))
m.d.comb += output_network.input[i].replace_occured.eq(0)
m.d.comb += output_network.input[i].nondata_replace_occured.eq(0)
for field, width in output_network.layout_payload:
m.d.comb += getattr(output_network.input[i].payload, field).eq(AnySeq(width))
# Indicator of when inputs from the first clock cycle make it
# through the sorting network
network_latency = latency(output_network.lane_count)
counter = Signal(range(network_latency + 1))
m.d.sync += counter.eq(counter + 1)
with m.If(counter == network_latency):
m.d.sync += counter.eq(counter)
f_output_valid = Signal()
m.d.comb += f_output_valid.eq(counter == network_latency)
with m.If(f_output_valid):
replacement_occurred = Signal()
for node in output_network.output:
with m.If(node.replace_occured):
m.d.comb += replacement_occurred.eq(1)
valid_channels_unique = Signal(reset=1)
for node1 in range(len(output_network.input)):
with m.If(Past(output_network.input[node1].valid, clocks=network_latency)):
for node2 in range(node1):
with m.If(Past(output_network.input[node2].valid, clocks=network_latency)):
k1 = Past(output_network.input[node1].payload.channel, clocks=network_latency)
k2 = Past(output_network.input[node2].payload.channel, clocks=network_latency)
with m.If(k1 == k2):
m.d.comb += valid_channels_unique.eq(0)
invalid_channels_unique = Signal(reset=1)
for node1 in range(len(output_network.input)):
with m.If(~Past(output_network.input[node1].valid, clocks=network_latency)):
for node2 in range(node1):
with m.If(~Past(output_network.input[node2].valid, clocks=network_latency)):
k1 = Past(output_network.input[node1].payload.channel, clocks=network_latency)
k2 = Past(output_network.input[node2].payload.channel, clocks=network_latency)
with m.If(k1 == k2):
m.d.comb += invalid_channels_unique.eq(0)
# If there are no replacements then:
# - Input channel numbers are unique among (in)valid nodes
# - All inputs make it through the sorting network unmodified
with m.If(~replacement_occurred):
m.d.comb += Assert(valid_channels_unique)
m.d.comb += Assert(invalid_channels_unique)
for input_node in output_network.input:
appeared = Signal()
for output_node in output_network.output:
match = Signal(reset=1)
with m.If(Past(input_node.valid, clocks=network_latency) != output_node.valid):
m.d.comb += match.eq(0)
with m.If(Past(input_node.seqn, clocks=network_latency) != output_node.seqn):
m.d.comb += match.eq(0)
with m.If(Past(input_node.replace_occured, clocks=network_latency) != output_node.replace_occured):
m.d.comb += match.eq(0)
with m.If(Past(input_node.nondata_replace_occured, clocks=network_latency) != output_node.nondata_replace_occured):
m.d.comb += match.eq(0)
for field, _ in output_network.layout_payload:
with m.If(Past(getattr(input_node.payload, field), clocks=network_latency) != getattr(output_node.payload, field)):
m.d.comb += match.eq(0)
with m.If(match):
m.d.comb += appeared.eq(1)
m.d.comb += Assert(appeared)
# Otherwise, if there are replacements:
# - There is a channel number collision among the valid or invalid
# nodes
# - All channel numbers in valid inputs appear exactly once as a
# valid output
# - All valid outputs correspond to a valid input modulo accounting
# information
# - Channel numbers in invalid inputs not appearing in valid inputs
# as well never appear as a valid output
with m.Else():
m.d.comb += Assert(~valid_channels_unique | ~invalid_channels_unique)
for input_node in output_network.input:
input_channel_valid_once = Const(0)
for node1 in range(len(output_network.output)):
accum = (Past(input_node.payload.channel, clocks=network_latency) == output_network.output[node1].payload.channel) & output_network.output[node1].valid
for node2 in range(len(output_network.output)):
if node1 != node2:
accum = accum & ((Past(input_node.payload.channel, clocks=network_latency) != output_network.output[node2].payload.channel) | ~output_network.output[node2].valid)
input_channel_valid_once = input_channel_valid_once | accum
with m.If(Past(input_node.valid, clocks=network_latency)):
m.d.comb += Assert(input_channel_valid_once)
for output_node in output_network.output:
with m.If(output_node.valid):
found_input = Signal()
for input_node in output_network.input:
match = Signal(reset=1)
with m.If(~Past(input_node.valid, clocks=network_latency)):
m.d.comb += match.eq(0)
with m.If(Past(input_node.seqn, clocks=network_latency) != output_node.seqn):
m.d.comb += match.eq(0)
for field, _ in output_network.layout_payload:
with m.If(Past(getattr(input_node.payload, field), clocks=network_latency) != getattr(output_node.payload, field)):
m.d.comb += match.eq(0)
with m.If(match):
m.d.comb += found_input.eq(1)
m.d.comb += Assert(found_input)
for node1 in output_network.input:
with m.If(~Past(node1.valid, clocks=network_latency)):
has_valid_input = Signal()
for node2 in output_network.input:
with m.If(Past(node2.valid, clocks=network_latency) & (Past(node1.payload.channel, clocks=network_latency) == Past(node2.payload.channel, clocks=network_latency))):
m.d.comb += has_valid_input.eq(1)
with m.If(~has_valid_input):
has_valid_output = Signal()
for output_node in output_network.output:
with m.If(output_node.valid & (output_node.payload.channel == Past(node1.payload.channel, clocks=network_latency))):
m.d.comb += has_valid_output.eq(1)
m.d.comb += Assert(~has_valid_output)
return m
class OutputNetworkTestCase(FHDLTestCase): class OutputNetworkTestCase(FHDLTestCase):
def verify(self): def verify(self):
# Bounded model check # Bounded model check
self.assertFormal( self.assertFormal(
OutputNetwork(4, 2, [("data", 32), ("channel", 3)], fv_mode=True), OutputNetworkSpec(),
mode="bmc", depth=40) mode="bmc", depth=40)
# TODO: unbounded proof # TODO: unbounded proof