riscv-formal-nmigen/nmigen/vendor/xilinx_7series.py

434 lines
18 KiB
Python

from abc import abstractproperty
from ..hdl import *
from ..lib.cdc import ResetSynchronizer
from ..build import *
__all__ = ["Xilinx7SeriesPlatform"]
class Xilinx7SeriesPlatform(TemplatedPlatform):
"""
Required tools:
* ``vivado``
The environment is populated by running the script specified in the environment variable
``NMIGEN_ENV_Vivado``, if present.
Available overrides:
* ``script_after_read``: inserts commands after ``read_xdc`` in Tcl script.
* ``script_after_synth``: inserts commands after ``synth_design`` in Tcl script.
* ``script_after_place``: inserts commands after ``place_design`` in Tcl script.
* ``script_after_route``: inserts commands after ``route_design`` in Tcl script.
* ``script_before_bitstream``: inserts commands before ``write_bitstream`` in Tcl script.
* ``script_after_bitstream``: inserts commands after ``write_bitstream`` in Tcl script.
* ``add_constraints``: inserts commands in XDC file.
* ``vivado_opts``: adds extra options for ``vivado``.
Build products:
* ``{{name}}.log``: Vivado log.
* ``{{name}}_timing_synth.rpt``: Vivado report.
* ``{{name}}_utilization_hierarchical_synth.rpt``: Vivado report.
* ``{{name}}_utilization_synth.rpt``: Vivado report.
* ``{{name}}_utilization_hierarchical_place.rpt``: Vivado report.
* ``{{name}}_utilization_place.rpt``: Vivado report.
* ``{{name}}_io.rpt``: Vivado report.
* ``{{name}}_control_sets.rpt``: Vivado report.
* ``{{name}}_clock_utilization.rpt``: Vivado report.
* ``{{name}}_route_status.rpt``: Vivado report.
* ``{{name}}_drc.rpt``: Vivado report.
* ``{{name}}_methodology.rpt``: Vivado report.
* ``{{name}}_timing.rpt``: Vivado report.
* ``{{name}}_power.rpt``: Vivado report.
* ``{{name}}_route.dcp``: Vivado design checkpoint.
* ``{{name}}.bit``: binary bitstream with metadata.
* ``{{name}}.bin``: binary bitstream.
"""
toolchain = "Vivado"
device = abstractproperty()
package = abstractproperty()
speed = abstractproperty()
grade = None
required_tools = [
"yosys",
"vivado"
]
file_templates = {
**TemplatedPlatform.build_script_templates,
"build_{{name}}.sh": r"""
# {{autogenerated}}
set -e{{verbose("x")}}
if [ -z "$BASH" ] ; then exec /bin/bash "$0" "$@"; fi
[ -n "${{platform._toolchain_env_var}}" ] && . "${{platform._toolchain_env_var}}"
{{emit_commands("sh")}}
""",
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.tcl": r"""
# {{autogenerated}}
create_project -force -name {{name}} -part {{platform.device}}{{platform.package}}-{{platform.speed}}{{"-" + platform.grade if platform.grade else ""}}
{% for file in platform.iter_extra_files(".v", ".sv", ".vhd", ".vhdl") -%}
add_files {{file}}
{% endfor %}
add_files {{name}}.v
read_xdc {{name}}.xdc
{% for file in platform.iter_extra_files(".xdc") -%}
read_xdc {{file}}
{% endfor %}
{{get_override("script_after_read")|default("# (script_after_read placeholder)")}}
synth_design -top {{name}}
foreach cell [get_cells -quiet -hier -filter {nmigen.vivado.false_path == "TRUE"}] {
set_false_path -to $cell
}
foreach cell [get_cells -quiet -hier -filter {nmigen.vivado.max_delay != ""}] {
set clock [get_clocks -of_objects \
[all_fanin -flat -startpoints_only [get_pin $cell/D]]]
if {[llength $clock] != 0} {
set_max_delay -datapath_only -from $clock \
-to [get_cells $cell] [get_property nmigen.vivado.max_delay $cell]
}
}
{{get_override("script_after_synth")|default("# (script_after_synth placeholder)")}}
report_timing_summary -file {{name}}_timing_synth.rpt
report_utilization -hierarchical -file {{name}}_utilization_hierachical_synth.rpt
report_utilization -file {{name}}_utilization_synth.rpt
opt_design
place_design
{{get_override("script_after_place")|default("# (script_after_place placeholder)")}}
report_utilization -hierarchical -file {{name}}_utilization_hierarchical_place.rpt
report_utilization -file {{name}}_utilization_place.rpt
report_io -file {{name}}_io.rpt
report_control_sets -verbose -file {{name}}_control_sets.rpt
report_clock_utilization -file {{name}}_clock_utilization.rpt
route_design
{{get_override("script_after_route")|default("# (script_after_route placeholder)")}}
phys_opt_design
report_timing_summary -no_header -no_detailed_paths
write_checkpoint -force {{name}}_route.dcp
report_route_status -file {{name}}_route_status.rpt
report_drc -file {{name}}_drc.rpt
report_methodology -file {{name}}_methodology.rpt
report_timing_summary -datasheet -max_paths 10 -file {{name}}_timing.rpt
report_power -file {{name}}_power.rpt
{{get_override("script_before_bitstream")|default("# (script_before_bitstream placeholder)")}}
write_bitstream -force -bin_file {{name}}.bit
{{get_override("script_after_bitstream")|default("# (script_after_bitstream placeholder)")}}
quit
""",
"{{name}}.xdc": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
set_property LOC {{pin_name}} [get_ports {{port_name}}]
{% for attr_name, attr_value in attrs.items() -%}
set_property {{attr_name}} {{attr_value}} [get_ports {{port_name}}]
{% endfor %}
{% endfor %}
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
{% if port_signal is not none -%}
create_clock -name {{port_signal.name}} -period {{1000000000/frequency}} [get_ports {{port_signal.name}}]
{% else -%}
create_clock -name {{net_signal.name}} -period {{1000000000/frequency}} [get_nets {{net_signal|hierarchy("/")}}]
{% endif %}
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
"""
}
command_templates = [
r"""
{{invoke_tool("vivado")}}
{{verbose("-verbose")}}
{{get_override("vivado_opts")|options}}
-mode batch
-log {{name}}.log
-source {{name}}.tcl
"""
]
def create_missing_domain(self, name):
# Xilinx devices have a global write enable (GWE) signal that asserted during configuraiton
# and deasserted once it ends. Because it is an asynchronous signal (GWE is driven by logic
# syncronous to configuration clock, which is not used by most designs), even though it is
# a low-skew global network, its deassertion may violate a setup/hold constraint with
# relation to a user clock. The recommended solution is to use a BUFGCE driven by the EOS
# signal. For details, see:
# * https://www.xilinx.com/support/answers/44174.html
# * https://www.xilinx.com/support/documentation/white_papers/wp272.pdf
if name == "sync" and self.default_clk is not None:
clk_i = self.request(self.default_clk).i
if self.default_rst is not None:
rst_i = self.request(self.default_rst).i
m = Module()
ready = Signal()
m.submodules += Instance("STARTUPE2", o_EOS=ready)
m.domains += ClockDomain("sync", reset_less=self.default_rst is None)
m.submodules += Instance("BUFGCE", i_CE=ready, i_I=clk_i, o_O=ClockSignal("sync"))
if self.default_rst is not None:
m.submodules.reset_sync = ResetSynchronizer(rst_i, domain="sync")
return m
def _get_xdr_buffer(self, m, pin, *, i_invert=False, o_invert=False):
def get_dff(clk, d, q):
# SDR I/O is performed by packing a flip-flop into the pad IOB.
for bit in range(len(q)):
m.submodules += Instance("FDCE",
a_IOB="TRUE",
i_C=clk,
i_CE=Const(1),
i_CLR=Const(0),
i_D=d[bit],
o_Q=q[bit]
)
def get_iddr(clk, d, q1, q2):
for bit in range(len(q1)):
m.submodules += Instance("IDDR",
p_DDR_CLK_EDGE="SAME_EDGE_PIPELINED",
p_SRTYPE="ASYNC",
p_INIT_Q1=0, p_INIT_Q2=0,
i_C=clk,
i_CE=Const(1),
i_S=Const(0), i_R=Const(0),
i_D=d[bit],
o_Q1=q1[bit], o_Q2=q2[bit]
)
def get_oddr(clk, d1, d2, q):
for bit in range(len(q)):
m.submodules += Instance("ODDR",
p_DDR_CLK_EDGE="SAME_EDGE",
p_SRTYPE="ASYNC",
p_INIT=0,
i_C=clk,
i_CE=Const(1),
i_S=Const(0), i_R=Const(0),
i_D1=d1[bit], i_D2=d2[bit],
o_Q=q[bit]
)
def get_ineg(y, invert):
if invert:
a = Signal.like(y, name_suffix="_n")
m.d.comb += y.eq(~a)
return a
else:
return y
def get_oneg(a, invert):
if invert:
y = Signal.like(a, name_suffix="_n")
m.d.comb += y.eq(~a)
return y
else:
return a
if "i" in pin.dir:
if pin.xdr < 2:
pin_i = get_ineg(pin.i, i_invert)
elif pin.xdr == 2:
pin_i0 = get_ineg(pin.i0, i_invert)
pin_i1 = get_ineg(pin.i1, i_invert)
if "o" in pin.dir:
if pin.xdr < 2:
pin_o = get_oneg(pin.o, o_invert)
elif pin.xdr == 2:
pin_o0 = get_oneg(pin.o0, o_invert)
pin_o1 = get_oneg(pin.o1, o_invert)
i = o = t = None
if "i" in pin.dir:
i = Signal(pin.width, name="{}_xdr_i".format(pin.name))
if "o" in pin.dir:
o = Signal(pin.width, name="{}_xdr_o".format(pin.name))
if pin.dir in ("oe", "io"):
t = Signal(1, name="{}_xdr_t".format(pin.name))
if pin.xdr == 0:
if "i" in pin.dir:
i = pin_i
if "o" in pin.dir:
o = pin_o
if pin.dir in ("oe", "io"):
t = ~pin.oe
elif pin.xdr == 1:
if "i" in pin.dir:
get_dff(pin.i_clk, i, pin_i)
if "o" in pin.dir:
get_dff(pin.o_clk, pin_o, o)
if pin.dir in ("oe", "io"):
get_dff(pin.o_clk, ~pin.oe, t)
elif pin.xdr == 2:
if "i" in pin.dir:
get_iddr(pin.i_clk, i, pin_i0, pin_i1)
if "o" in pin.dir:
get_oddr(pin.o_clk, pin_o0, pin_o1, o)
if pin.dir in ("oe", "io"):
get_dff(pin.o_clk, ~pin.oe, t)
else:
assert False
return (i, o, t)
def get_input(self, pin, port, attrs, invert):
self._check_feature("single-ended input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IBUF",
i_I=port[bit],
o_O=i[bit]
)
return m
def get_output(self, pin, port, attrs, invert):
self._check_feature("single-ended output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUF",
i_I=o[bit],
o_O=port[bit]
)
return m
def get_tristate(self, pin, port, attrs, invert):
self._check_feature("single-ended tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFT",
i_T=t,
i_I=o[bit],
o_O=port[bit]
)
return m
def get_input_output(self, pin, port, attrs, invert):
self._check_feature("single-ended input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IOBUF",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_IO=port[bit]
)
return m
def get_diff_input(self, pin, p_port, n_port, attrs, invert):
self._check_feature("differential input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(len(p_port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IBUFDS",
i_I=p_port[bit], i_IB=n_port[bit],
o_O=i[bit]
)
return m
def get_diff_output(self, pin, p_port, n_port, attrs, invert):
self._check_feature("differential output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(len(p_port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFDS",
i_I=o[bit],
o_O=p_port[bit], o_OB=n_port[bit]
)
return m
def get_diff_tristate(self, pin, p_port, n_port, attrs, invert):
self._check_feature("differential tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(len(p_port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFTDS",
i_T=t,
i_I=o[bit],
o_O=p_port[bit], o_OB=n_port[bit]
)
return m
def get_diff_input_output(self, pin, p_port, n_port, attrs, invert):
self._check_feature("differential input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(len(p_port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IOBUFDS",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_IO=p_port[bit], io_IOB=n_port[bit]
)
return m
# The synchronizer implementations below apply two separate but related timing constraints.
#
# First, the ASYNC_REG attribute prevents inference of shift registers from synchronizer FFs,
# and constraints the FFs to be placed as close as possible, ideally in one CLB. This attribute
# only affects the synchronizer FFs themselves.
#
# Second, the nmigen.vivado.false_path or nmigen.vivado.max_delay attribute affects the path
# into the synchronizer. If maximum input delay is specified, a datapath-only maximum delay
# constraint is applied, limiting routing delay (and therefore skew) at the synchronizer input.
# Otherwise, a false path constraint is used to omit the input path from the timing analysis.
def get_ff_sync(self, ff_sync):
m = Module()
flops = [Signal(ff_sync.i.shape(), name="stage{}".format(index),
reset=ff_sync._reset, reset_less=ff_sync._reset_less,
attrs={"ASYNC_REG": "TRUE"})
for index in range(ff_sync._stages)]
if ff_sync._max_input_delay is None:
flops[0].attrs["nmigen.vivado.false_path"] = "TRUE"
else:
flops[0].attrs["nmigen.vivado.max_delay"] = str(ff_sync._max_input_delay * 1e9)
for i, o in zip((ff_sync.i, *flops), flops):
m.d[ff_sync._o_domain] += o.eq(i)
m.d.comb += ff_sync.o.eq(flops[-1])
return m
def get_async_ff_sync(self, async_ff_sync):
m = Module()
m.domains += ClockDomain("async_ff", async_reset=True, local=True)
flops = [Signal(1, name="stage{}".format(index), reset=1,
attrs={"ASYNC_REG": "TRUE"})
for index in range(async_ff_sync._stages)]
if async_ff_sync._max_input_delay is None:
flops[0].attrs["nmigen.vivado.false_path"] = "TRUE"
else:
flops[0].attrs["nmigen.vivado.max_delay"] = str(async_ff_sync._max_input_delay * 1e9)
for i, o in zip((0, *flops), flops):
m.d.async_ff += o.eq(i)
if async_ff_sync._edge == "pos":
m.d.comb += ResetSignal("async_ff").eq(asnyc_ff_sync.i)
else:
m.d.comb += ResetSignal("async_ff").eq(~asnyc_ff_sync.i)
m.d.comb += [
ClockSignal("async_ff").eq(ClockSignal(asnyc_ff_sync._domain)),
async_ff_sync.o.eq(flops[-1])
]
return m