from abc import abstractproperty from ..hdl import * from ..lib.cdc import ResetSynchronizer from ..build import * __all__ = ["XilinxUltraScalePlatform"] class XilinxUltraScalePlatform(TemplatedPlatform): """ Required tools: * ``vivado`` The environment is populated by running the script specified in the environment variable ``NMIGEN_ENV_Vivado``, if present. Available overrides: * ``script_after_read``: inserts commands after ``read_xdc`` in Tcl script. * ``script_after_synth``: inserts commands after ``synth_design`` in Tcl script. * ``script_after_place``: inserts commands after ``place_design`` in Tcl script. * ``script_after_route``: inserts commands after ``route_design`` in Tcl script. * ``script_before_bitstream``: inserts commands before ``write_bitstream`` in Tcl script. * ``script_after_bitstream``: inserts commands after ``write_bitstream`` in Tcl script. * ``add_constraints``: inserts commands in XDC file. * ``vivado_opts``: adds extra options for ``vivado``. Build products: * ``{{name}}.log``: Vivado log. * ``{{name}}_timing_synth.rpt``: Vivado report. * ``{{name}}_utilization_hierarchical_synth.rpt``: Vivado report. * ``{{name}}_utilization_synth.rpt``: Vivado report. * ``{{name}}_utilization_hierarchical_place.rpt``: Vivado report. * ``{{name}}_utilization_place.rpt``: Vivado report. * ``{{name}}_io.rpt``: Vivado report. * ``{{name}}_control_sets.rpt``: Vivado report. * ``{{name}}_clock_utilization.rpt``: Vivado report. * ``{{name}}_route_status.rpt``: Vivado report. * ``{{name}}_drc.rpt``: Vivado report. * ``{{name}}_methodology.rpt``: Vivado report. * ``{{name}}_timing.rpt``: Vivado report. * ``{{name}}_power.rpt``: Vivado report. * ``{{name}}_route.dcp``: Vivado design checkpoint. * ``{{name}}.bit``: binary bitstream with metadata. * ``{{name}}.bin``: binary bitstream. """ toolchain = "Vivado" device = abstractproperty() package = abstractproperty() speed = abstractproperty() grade = None required_tools = [ "yosys", "vivado" ] file_templates = { **TemplatedPlatform.build_script_templates, "build_{{name}}.sh": r""" # {{autogenerated}} set -e{{verbose("x")}} if [ -z "$BASH" ] ; then exec /bin/bash "$0" "$@"; fi [ -n "${{platform._toolchain_env_var}}" ] && . "${{platform._toolchain_env_var}}" {{emit_commands("sh")}} """, "{{name}}.v": r""" /* {{autogenerated}} */ {{emit_verilog()}} """, "{{name}}.debug.v": r""" /* {{autogenerated}} */ {{emit_debug_verilog()}} """, "{{name}}.tcl": r""" # {{autogenerated}} create_project -force -name {{name}} -part {{platform.device}}-{{platform.package}}-{{platform.speed}}{{"-" + platform.grade if platform.grade else ""}} {% for file in platform.iter_extra_files(".v", ".sv", ".vhd", ".vhdl") -%} add_files {{file}} {% endfor %} add_files {{name}}.v read_xdc {{name}}.xdc {% for file in platform.iter_extra_files(".xdc") -%} read_xdc {{file}} {% endfor %} {{get_override("script_after_read")|default("# (script_after_read placeholder)")}} synth_design -top {{name}} foreach cell [get_cells -quiet -hier -filter {nmigen.vivado.false_path == "TRUE"}] { set_false_path -to $cell } foreach cell [get_cells -quiet -hier -filter {nmigen.vivado.max_delay != ""}] { set clock [get_clocks -of_objects \ [all_fanin -flat -startpoints_only [get_pin $cell/D]]] if {[llength $clock] != 0} { set_max_delay -datapath_only -from $clock \ -to [get_cells $cell] [get_property nmigen.vivado.max_delay $cell] } } {{get_override("script_after_synth")|default("# (script_after_synth placeholder)")}} report_timing_summary -file {{name}}_timing_synth.rpt report_utilization -hierarchical -file {{name}}_utilization_hierachical_synth.rpt report_utilization -file {{name}}_utilization_synth.rpt opt_design place_design {{get_override("script_after_place")|default("# (script_after_place placeholder)")}} report_utilization -hierarchical -file {{name}}_utilization_hierarchical_place.rpt report_utilization -file {{name}}_utilization_place.rpt report_io -file {{name}}_io.rpt report_control_sets -verbose -file {{name}}_control_sets.rpt report_clock_utilization -file {{name}}_clock_utilization.rpt route_design {{get_override("script_after_route")|default("# (script_after_route placeholder)")}} phys_opt_design report_timing_summary -no_header -no_detailed_paths write_checkpoint -force {{name}}_route.dcp report_route_status -file {{name}}_route_status.rpt report_drc -file {{name}}_drc.rpt report_methodology -file {{name}}_methodology.rpt report_timing_summary -datasheet -max_paths 10 -file {{name}}_timing.rpt report_power -file {{name}}_power.rpt {{get_override("script_before_bitstream")|default("# (script_before_bitstream placeholder)")}} write_bitstream -force -bin_file {{name}}.bit {{get_override("script_after_bitstream")|default("# (script_after_bitstream placeholder)")}} quit """, "{{name}}.xdc": r""" # {{autogenerated}} {% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%} set_property LOC {{pin_name}} [get_ports {{port_name}}] {% for attr_name, attr_value in attrs.items() -%} set_property {{attr_name}} {{attr_value}} [get_ports {{port_name}}] {% endfor %} {% endfor %} {% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%} {% if port_signal is not none -%} create_clock -name {{port_signal.name}} -period {{1000000000/frequency}} [get_ports {{port_signal.name}}] {% else -%} create_clock -name {{net_signal.name}} -period {{1000000000/frequency}} [get_nets {{net_signal|hierarchy("/")}}] {% endif %} {% endfor %} {{get_override("add_constraints")|default("# (add_constraints placeholder)")}} """ } command_templates = [ r""" {{invoke_tool("vivado")}} {{verbose("-verbose")}} {{get_override("vivado_opts")|options}} -mode batch -log {{name}}.log -source {{name}}.tcl """ ] def create_missing_domain(self, name): # Xilinx devices have a global write enable (GWE) signal that asserted during configuraiton # and deasserted once it ends. Because it is an asynchronous signal (GWE is driven by logic # syncronous to configuration clock, which is not used by most designs), even though it is # a low-skew global network, its deassertion may violate a setup/hold constraint with # relation to a user clock. The recommended solution is to use a BUFGCE driven by the EOS # signal. For details, see: # * https://www.xilinx.com/support/answers/44174.html # * https://www.xilinx.com/support/documentation/white_papers/wp272.pdf if name == "sync" and self.default_clk is not None: clk_i = self.request(self.default_clk).i if self.default_rst is not None: rst_i = self.request(self.default_rst).i m = Module() ready = Signal() m.submodules += Instance("STARTUPE3", o_EOS=ready) m.domains += ClockDomain("sync", reset_less=self.default_rst is None) m.submodules += Instance("BUFGCE", i_CE=ready, i_I=clk_i, o_O=ClockSignal("sync")) if self.default_rst is not None: m.submodules.reset_sync = ResetSynchronizer(rst_i, domain="sync") return m def _get_xdr_buffer(self, m, pin, *, i_invert=False, o_invert=False): def get_dff(clk, d, q): # SDR I/O is performed by packing a flip-flop into the pad IOB. for bit in range(len(q)): m.submodules += Instance("FDCE", a_IOB="TRUE", i_C=clk, i_CE=Const(1), i_CLR=Const(0), i_D=d[bit], o_Q=q[bit] ) def get_iddr(clk, d, q1, q2): for bit in range(len(q1)): m.submodules += Instance("IDDRE1", p_DDR_CLK_EDGE="SAME_EDGE_PIPELINED", p_IS_C_INVERTED=0, p_IS_CB_INVERTED=1, i_C=clk, i_CB=clk, i_R=Const(0), i_D=d[bit], o_Q1=q1[bit], o_Q2=q2[bit] ) def get_oddr(clk, d1, d2, q): for bit in range(len(q)): m.submodules += Instance("ODDRE1", p_DDR_CLK_EDGE="SAME_EDGE", p_INIT=0, i_C=clk, i_SR=Const(0), i_D1=d1[bit], i_D2=d2[bit], o_Q=q[bit] ) def get_ineg(y, invert): if invert: a = Signal.like(y, name_suffix="_n") m.d.comb += y.eq(~a) return a else: return y def get_oneg(a, invert): if invert: y = Signal.like(a, name_suffix="_n") m.d.comb += y.eq(~a) return y else: return a if "i" in pin.dir: if pin.xdr < 2: pin_i = get_ineg(pin.i, i_invert) elif pin.xdr == 2: pin_i0 = get_ineg(pin.i0, i_invert) pin_i1 = get_ineg(pin.i1, i_invert) if "o" in pin.dir: if pin.xdr < 2: pin_o = get_oneg(pin.o, o_invert) elif pin.xdr == 2: pin_o0 = get_oneg(pin.o0, o_invert) pin_o1 = get_oneg(pin.o1, o_invert) i = o = t = None if "i" in pin.dir: i = Signal(pin.width, name="{}_xdr_i".format(pin.name)) if "o" in pin.dir: o = Signal(pin.width, name="{}_xdr_o".format(pin.name)) if pin.dir in ("oe", "io"): t = Signal(1, name="{}_xdr_t".format(pin.name)) if pin.xdr == 0: if "i" in pin.dir: i = pin_i if "o" in pin.dir: o = pin_o if pin.dir in ("oe", "io"): t = ~pin.oe elif pin.xdr == 1: if "i" in pin.dir: get_dff(pin.i_clk, i, pin_i) if "o" in pin.dir: get_dff(pin.o_clk, pin_o, o) if pin.dir in ("oe", "io"): get_dff(pin.o_clk, ~pin.oe, t) elif pin.xdr == 2: if "i" in pin.dir: get_iddr(pin.i_clk, i, pin_i0, pin_i1) if "o" in pin.dir: get_oddr(pin.o_clk, pin_o0, pin_o1, o) if pin.dir in ("oe", "io"): get_dff(pin.o_clk, ~pin.oe, t) else: assert False return (i, o, t) def get_input(self, pin, port, attrs, invert): self._check_feature("single-ended input", pin, attrs, valid_xdrs=(0, 1, 2), valid_attrs=True) m = Module() i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert) for bit in range(len(port)): m.submodules["{}_{}".format(pin.name, bit)] = Instance("IBUF", i_I=port[bit], o_O=i[bit] ) return m def get_output(self, pin, port, attrs, invert): self._check_feature("single-ended output", pin, attrs, valid_xdrs=(0, 1, 2), valid_attrs=True) m = Module() i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert) for bit in range(len(port)): m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUF", i_I=o[bit], o_O=port[bit] ) return m def get_tristate(self, pin, port, attrs, invert): self._check_feature("single-ended tristate", pin, attrs, valid_xdrs=(0, 1, 2), valid_attrs=True) m = Module() i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert) for bit in range(len(port)): m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFT", i_T=t, i_I=o[bit], o_O=port[bit] ) return m def get_input_output(self, pin, port, attrs, invert): self._check_feature("single-ended input/output", pin, attrs, valid_xdrs=(0, 1, 2), valid_attrs=True) m = Module() i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert) for bit in range(len(port)): m.submodules["{}_{}".format(pin.name, bit)] = Instance("IOBUF", i_T=t, i_I=o[bit], o_O=i[bit], io_IO=port[bit] ) return m def get_diff_input(self, pin, p_port, n_port, attrs, invert): self._check_feature("differential input", pin, attrs, valid_xdrs=(0, 1, 2), valid_attrs=True) m = Module() i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert) for bit in range(len(p_port)): m.submodules["{}_{}".format(pin.name, bit)] = Instance("IBUFDS", i_I=p_port[bit], i_IB=n_port[bit], o_O=i[bit] ) return m def get_diff_output(self, pin, p_port, n_port, attrs, invert): self._check_feature("differential output", pin, attrs, valid_xdrs=(0, 1, 2), valid_attrs=True) m = Module() i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert) for bit in range(len(p_port)): m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFDS", i_I=o[bit], o_O=p_port[bit], o_OB=n_port[bit] ) return m def get_diff_tristate(self, pin, p_port, n_port, attrs, invert): self._check_feature("differential tristate", pin, attrs, valid_xdrs=(0, 1, 2), valid_attrs=True) m = Module() i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert) for bit in range(len(p_port)): m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFTDS", i_T=t, i_I=o[bit], o_O=p_port[bit], o_OB=n_port[bit] ) return m def get_diff_input_output(self, pin, p_port, n_port, attrs, invert): self._check_feature("differential input/output", pin, attrs, valid_xdrs=(0, 1, 2), valid_attrs=True) m = Module() i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert) for bit in range(len(p_port)): m.submodules["{}_{}".format(pin.name, bit)] = Instance("IOBUFDS", i_T=t, i_I=o[bit], o_O=i[bit], io_IO=p_port[bit], io_IOB=n_port[bit] ) return m # The synchronizer implementations below apply two separate but related timing constraints. # # First, the ASYNC_REG attribute prevents inference of shift registers from synchronizer FFs, # and constraints the FFs to be placed as close as possible, ideally in one CLB. This attribute # only affects the synchronizer FFs themselves. # # Second, the nmigen.vivado.false_path or nmigen.vivado.max_delay attribute affects the path # into the synchronizer. If maximum input delay is specified, a datapath-only maximum delay # constraint is applied, limiting routing delay (and therefore skew) at the synchronizer input. # Otherwise, a false path constraint is used to omit the input path from the timing analysis. def get_ff_sync(self, ff_sync): m = Module() flops = [Signal(ff_sync.i.shape(), name="stage{}".format(index), reset=ff_sync._reset, reset_less=ff_sync._reset_less, attrs={"ASYNC_REG": "TRUE"}) for index in range(ff_sync._stages)] if ff_sync._max_input_delay is None: flops[0].attrs["nmigen.vivado.false_path"] = "TRUE" else: flops[0].attrs["nmigen.vivado.max_delay"] = str(ff_sync._max_input_delay * 1e9) for i, o in zip((ff_sync.i, *flops), flops): m.d[ff_sync._o_domain] += o.eq(i) m.d.comb += ff_sync.o.eq(flops[-1]) return m def get_async_ff_sync(self, async_ff_sync): m = Module() m.domains += ClockDomain("async_ff", async_reset=True, local=True) flops = [Signal(1, name="stage{}".format(index), reset=1, attrs={"ASYNC_REG": "TRUE"}) for index in range(async_ff_sync._stages)] if async_ff_sync._max_input_delay is None: flops[0].attrs["nmigen.vivado.false_path"] = "TRUE" else: flops[0].attrs["nmigen.vivado.max_delay"] = str(async_ff_sync._max_input_delay * 1e9) for i, o in zip((0, *flops), flops): m.d.async_ff += o.eq(i) if async_ff_sync._edge == "pos": m.d.comb += ResetSignal("async_ff").eq(asnyc_ff_sync.i) else: m.d.comb += ResetSignal("async_ff").eq(~asnyc_ff_sync.i) m.d.comb += [ ClockSignal("async_ff").eq(ClockSignal(asnyc_ff_sync._domain)), async_ff_sync.o.eq(flops[-1]) ] return m