# nmigen: UnusedElaboratable=no from collections import OrderedDict from enum import Enum from ..hdl.ast import * from ..hdl.cd import * from ..hdl.dsl import * from .utils import * class DSLTestCase(FHDLTestCase): def setUp(self): self.s1 = Signal() self.s2 = Signal() self.s3 = Signal() self.c1 = Signal() self.c2 = Signal() self.c3 = Signal() self.w1 = Signal(4) def test_cant_inherit(self): with self.assertRaises(SyntaxError, msg="Instead of inheriting from `Module`, inherit from `Elaboratable` and " "return a `Module` from the `elaborate(self, platform)` method"): class ORGate(Module): pass def test_d_comb(self): m = Module() m.d.comb += self.c1.eq(1) m._flush() self.assertEqual(m._driving[self.c1], None) self.assertRepr(m._statements, """( (eq (sig c1) (const 1'd1)) )""") def test_d_sync(self): m = Module() m.d.sync += self.c1.eq(1) m._flush() self.assertEqual(m._driving[self.c1], "sync") self.assertRepr(m._statements, """( (eq (sig c1) (const 1'd1)) )""") def test_d_pix(self): m = Module() m.d.pix += self.c1.eq(1) m._flush() self.assertEqual(m._driving[self.c1], "pix") self.assertRepr(m._statements, """( (eq (sig c1) (const 1'd1)) )""") def test_d_index(self): m = Module() m.d["pix"] += self.c1.eq(1) m._flush() self.assertEqual(m._driving[self.c1], "pix") self.assertRepr(m._statements, """( (eq (sig c1) (const 1'd1)) )""") def test_d_no_conflict(self): m = Module() m.d.comb += self.w1[0].eq(1) m.d.comb += self.w1[1].eq(1) def test_d_conflict(self): m = Module() with self.assertRaises(SyntaxError, msg="Driver-driver conflict: trying to drive (sig c1) from d.sync, but it " "is already driven from d.comb"): m.d.comb += self.c1.eq(1) m.d.sync += self.c1.eq(1) def test_d_wrong(self): m = Module() with self.assertRaises(AttributeError, msg="Cannot assign 'd.pix' attribute; did you mean 'd.pix +='?"): m.d.pix = None def test_d_asgn_wrong(self): m = Module() with self.assertRaises(SyntaxError, msg="Only assignments and property checks may be appended to d.sync"): m.d.sync += Switch(self.s1, {}) def test_comb_wrong(self): m = Module() with self.assertRaises(AttributeError, msg="'Module' object has no attribute 'comb'; did you mean 'd.comb'?"): m.comb += self.c1.eq(1) def test_sync_wrong(self): m = Module() with self.assertRaises(AttributeError, msg="'Module' object has no attribute 'sync'; did you mean 'd.sync'?"): m.sync += self.c1.eq(1) def test_attr_wrong(self): m = Module() with self.assertRaises(AttributeError, msg="'Module' object has no attribute 'nonexistentattr'"): m.nonexistentattr def test_d_suspicious(self): m = Module() with self.assertWarns(SyntaxWarning, msg="Using '.d.submodules' would add statements to clock domain " "'submodules'; did you mean .submodules instead?"): m.d.submodules += [] def test_clock_signal(self): m = Module() m.d.comb += ClockSignal("pix").eq(ClockSignal()) self.assertRepr(m._statements, """ ( (eq (clk pix) (clk sync)) ) """) def test_reset_signal(self): m = Module() m.d.comb += ResetSignal("pix").eq(1) self.assertRepr(m._statements, """ ( (eq (rst pix) (const 1'd1)) ) """) def test_sample_domain(self): m = Module() i = Signal() o1 = Signal() o2 = Signal() o3 = Signal() m.d.sync += o1.eq(Past(i)) m.d.pix += o2.eq(Past(i)) m.d.pix += o3.eq(Past(i, domain="sync")) f = m.elaborate(platform=None) self.assertRepr(f.statements, """ ( (eq (sig o1) (sample (sig i) @ sync[1])) (eq (sig o2) (sample (sig i) @ pix[1])) (eq (sig o3) (sample (sig i) @ sync[1])) ) """) def test_If(self): m = Module() with m.If(self.s1): m.d.comb += self.c1.eq(1) m._flush() self.assertRepr(m._statements, """ ( (switch (cat (sig s1)) (case 1 (eq (sig c1) (const 1'd1))) ) ) """) def test_If_Elif(self): m = Module() with m.If(self.s1): m.d.comb += self.c1.eq(1) with m.Elif(self.s2): m.d.sync += self.c2.eq(0) m._flush() self.assertRepr(m._statements, """ ( (switch (cat (sig s1) (sig s2)) (case -1 (eq (sig c1) (const 1'd1))) (case 1- (eq (sig c2) (const 1'd0))) ) ) """) def test_If_Elif_Else(self): m = Module() with m.If(self.s1): m.d.comb += self.c1.eq(1) with m.Elif(self.s2): m.d.sync += self.c2.eq(0) with m.Else(): m.d.comb += self.c3.eq(1) m._flush() self.assertRepr(m._statements, """ ( (switch (cat (sig s1) (sig s2)) (case -1 (eq (sig c1) (const 1'd1))) (case 1- (eq (sig c2) (const 1'd0))) (default (eq (sig c3) (const 1'd1))) ) ) """) def test_If_If(self): m = Module() with m.If(self.s1): m.d.comb += self.c1.eq(1) with m.If(self.s2): m.d.comb += self.c2.eq(1) m._flush() self.assertRepr(m._statements, """ ( (switch (cat (sig s1)) (case 1 (eq (sig c1) (const 1'd1))) ) (switch (cat (sig s2)) (case 1 (eq (sig c2) (const 1'd1))) ) ) """) def test_If_nested_If(self): m = Module() with m.If(self.s1): m.d.comb += self.c1.eq(1) with m.If(self.s2): m.d.comb += self.c2.eq(1) m._flush() self.assertRepr(m._statements, """ ( (switch (cat (sig s1)) (case 1 (eq (sig c1) (const 1'd1)) (switch (cat (sig s2)) (case 1 (eq (sig c2) (const 1'd1))) ) ) ) ) """) def test_If_dangling_Else(self): m = Module() with m.If(self.s1): m.d.comb += self.c1.eq(1) with m.If(self.s2): m.d.comb += self.c2.eq(1) with m.Else(): m.d.comb += self.c3.eq(1) m._flush() self.assertRepr(m._statements, """ ( (switch (cat (sig s1)) (case 1 (eq (sig c1) (const 1'd1)) (switch (cat (sig s2)) (case 1 (eq (sig c2) (const 1'd1))) ) ) (default (eq (sig c3) (const 1'd1)) ) ) ) """) def test_Elif_wrong(self): m = Module() with self.assertRaises(SyntaxError, msg="Elif without preceding If"): with m.Elif(self.s2): pass def test_Else_wrong(self): m = Module() with self.assertRaises(SyntaxError, msg="Else without preceding If/Elif"): with m.Else(): pass def test_If_wide(self): m = Module() with m.If(self.w1): m.d.comb += self.c1.eq(1) m._flush() self.assertRepr(m._statements, """ ( (switch (cat (b (sig w1))) (case 1 (eq (sig c1) (const 1'd1))) ) ) """) def test_If_signed_suspicious(self): m = Module() with self.assertWarns(SyntaxWarning, msg="Signed values in If/Elif conditions usually result from inverting Python " "booleans with ~, which leads to unexpected results: ~True is -2, which is " "truthful. Replace `~flag` with `not flag`. (If this is a false positive, " "silence this warning with `m.If(x)` → `m.If(x.bool())`.)"): with m.If(~True): pass def test_Elif_signed_suspicious(self): m = Module() with m.If(0): pass with self.assertWarns(SyntaxWarning, msg="Signed values in If/Elif conditions usually result from inverting Python " "booleans with ~, which leads to unexpected results: ~True is -2, which is " "truthful. Replace `~flag` with `not flag`. (If this is a false positive, " "silence this warning with `m.If(x)` → `m.If(x.bool())`.)"): with m.Elif(~True): pass def test_if_If_Elif_Else(self): m = Module() with self.assertRaises(SyntaxError, msg="`if m.If(...):` does not work; use `with m.If(...)`"): if m.If(0): pass with m.If(0): pass with self.assertRaises(SyntaxError, msg="`if m.Elif(...):` does not work; use `with m.Elif(...)`"): if m.Elif(0): pass with self.assertRaises(SyntaxError, msg="`if m.Else(...):` does not work; use `with m.Else(...)`"): if m.Else(): pass def test_Switch(self): m = Module() with m.Switch(self.w1): with m.Case(3): m.d.comb += self.c1.eq(1) with m.Case("11--"): m.d.comb += self.c2.eq(1) with m.Case("1 0--"): m.d.comb += self.c2.eq(1) m._flush() self.assertRepr(m._statements, """ ( (switch (sig w1) (case 0011 (eq (sig c1) (const 1'd1))) (case 11-- (eq (sig c2) (const 1'd1))) (case 10-- (eq (sig c2) (const 1'd1))) ) ) """) def test_Switch_default_Case(self): m = Module() with m.Switch(self.w1): with m.Case(3): m.d.comb += self.c1.eq(1) with m.Case(): m.d.comb += self.c2.eq(1) m._flush() self.assertRepr(m._statements, """ ( (switch (sig w1) (case 0011 (eq (sig c1) (const 1'd1))) (default (eq (sig c2) (const 1'd1))) ) ) """) def test_Switch_default_Default(self): m = Module() with m.Switch(self.w1): with m.Case(3): m.d.comb += self.c1.eq(1) with m.Default(): m.d.comb += self.c2.eq(1) m._flush() self.assertRepr(m._statements, """ ( (switch (sig w1) (case 0011 (eq (sig c1) (const 1'd1))) (default (eq (sig c2) (const 1'd1))) ) ) """) def test_Switch_const_test(self): m = Module() with m.Switch(1): with m.Case(1): m.d.comb += self.c1.eq(1) m._flush() self.assertRepr(m._statements, """ ( (switch (const 1'd1) (case 1 (eq (sig c1) (const 1'd1))) ) ) """) def test_Switch_enum(self): class Color(Enum): RED = 1 BLUE = 2 m = Module() se = Signal(Color) with m.Switch(se): with m.Case(Color.RED): m.d.comb += self.c1.eq(1) self.assertRepr(m._statements, """ ( (switch (sig se) (case 01 (eq (sig c1) (const 1'd1))) ) ) """) def test_Case_width_wrong(self): class Color(Enum): RED = 0b10101010 m = Module() with m.Switch(self.w1): with self.assertRaises(SyntaxError, msg="Case pattern '--' must have the same width as switch value (which is 4)"): with m.Case("--"): pass with self.assertWarns(SyntaxWarning, msg="Case pattern '10110' is wider than switch value (which has width 4); " "comparison will never be true"): with m.Case(0b10110): pass with self.assertWarns(SyntaxWarning, msg="Case pattern '10101010' (Color.RED) is wider than switch value " "(which has width 4); comparison will never be true"): with m.Case(Color.RED): pass self.assertRepr(m._statements, """ ( (switch (sig w1) ) ) """) def test_Case_bits_wrong(self): m = Module() with m.Switch(self.w1): with self.assertRaises(SyntaxError, msg="Case pattern 'abc' must consist of 0, 1, and - (don't care) bits, " "and may include whitespace"): with m.Case("abc"): pass def test_Case_pattern_wrong(self): m = Module() with m.Switch(self.w1): with self.assertRaises(SyntaxError, msg="Case pattern must be an integer, a string, or an enumeration, not 1.0"): with m.Case(1.0): pass def test_Case_outside_Switch_wrong(self): m = Module() with self.assertRaises(SyntaxError, msg="Case is not permitted outside of Switch"): with m.Case(): pass def test_If_inside_Switch_wrong(self): m = Module() with m.Switch(self.s1): with self.assertRaises(SyntaxError, msg="If is not permitted directly inside of Switch; " "it is permitted inside of Switch Case"): with m.If(self.s2): pass def test_FSM_basic(self): a = Signal() b = Signal() c = Signal() m = Module() with m.FSM(): with m.State("FIRST"): m.d.comb += a.eq(1) m.next = "SECOND" with m.State("SECOND"): m.d.sync += b.eq(~b) with m.If(c): m.next = "FIRST" m._flush() self.assertRepr(m._statements, """ ( (switch (sig fsm_state) (case 0 (eq (sig a) (const 1'd1)) (eq (sig fsm_state) (const 1'd1)) ) (case 1 (eq (sig b) (~ (sig b))) (switch (cat (sig c)) (case 1 (eq (sig fsm_state) (const 1'd0))) ) ) ) ) """) self.assertEqual({repr(k): v for k, v in m._driving.items()}, { "(sig a)": None, "(sig fsm_state)": "sync", "(sig b)": "sync", }) frag = m.elaborate(platform=None) fsm = frag.find_generated("fsm") self.assertIsInstance(fsm.state, Signal) self.assertEqual(fsm.encoding, OrderedDict({ "FIRST": 0, "SECOND": 1, })) self.assertEqual(fsm.decoding, OrderedDict({ 0: "FIRST", 1: "SECOND" })) def test_FSM_reset(self): a = Signal() m = Module() with m.FSM(reset="SECOND"): with m.State("FIRST"): m.d.comb += a.eq(0) m.next = "SECOND" with m.State("SECOND"): m.next = "FIRST" m._flush() self.assertRepr(m._statements, """ ( (switch (sig fsm_state) (case 0 (eq (sig a) (const 1'd0)) (eq (sig fsm_state) (const 1'd1)) ) (case 1 (eq (sig fsm_state) (const 1'd0)) ) ) ) """) def test_FSM_ongoing(self): a = Signal() b = Signal() m = Module() with m.FSM() as fsm: m.d.comb += b.eq(fsm.ongoing("SECOND")) with m.State("FIRST"): pass m.d.comb += a.eq(fsm.ongoing("FIRST")) with m.State("SECOND"): pass m._flush() self.assertEqual(m._generated["fsm"].state.reset, 1) self.maxDiff = 10000 self.assertRepr(m._statements, """ ( (eq (sig b) (== (sig fsm_state) (const 1'd0))) (eq (sig a) (== (sig fsm_state) (const 1'd1))) (switch (sig fsm_state) (case 1 ) (case 0 ) ) ) """) def test_FSM_empty(self): m = Module() with m.FSM(): pass self.assertRepr(m._statements, """ () """) def test_FSM_wrong_domain(self): m = Module() with self.assertRaises(ValueError, msg="FSM may not be driven by the 'comb' domain"): with m.FSM(domain="comb"): pass def test_FSM_wrong_undefined(self): m = Module() with self.assertRaises(NameError, msg="FSM state 'FOO' is referenced but not defined"): with m.FSM() as fsm: fsm.ongoing("FOO") def test_FSM_wrong_redefined(self): m = Module() with m.FSM(): with m.State("FOO"): pass with self.assertRaises(NameError, msg="FSM state 'FOO' is already defined"): with m.State("FOO"): pass def test_FSM_wrong_next(self): m = Module() with self.assertRaises(SyntaxError, msg="Only assignment to `m.next` is permitted"): m.next with self.assertRaises(SyntaxError, msg="`m.next = <...>` is only permitted inside an FSM state"): m.next = "FOO" with self.assertRaises(SyntaxError, msg="`m.next = <...>` is only permitted inside an FSM state"): with m.FSM(): m.next = "FOO" def test_If_inside_FSM_wrong(self): m = Module() with m.FSM(): with m.State("FOO"): pass with self.assertRaises(SyntaxError, msg="If is not permitted directly inside of FSM; " "it is permitted inside of FSM State"): with m.If(self.s2): pass def test_auto_pop_ctrl(self): m = Module() with m.If(self.w1): m.d.comb += self.c1.eq(1) m.d.comb += self.c2.eq(1) self.assertRepr(m._statements, """ ( (switch (cat (b (sig w1))) (case 1 (eq (sig c1) (const 1'd1))) ) (eq (sig c2) (const 1'd1)) ) """) def test_submodule_anon(self): m1 = Module() m2 = Module() m1.submodules += m2 self.assertEqual(m1._anon_submodules, [m2]) self.assertEqual(m1._named_submodules, {}) def test_submodule_anon_multi(self): m1 = Module() m2 = Module() m3 = Module() m1.submodules += m2, m3 self.assertEqual(m1._anon_submodules, [m2, m3]) self.assertEqual(m1._named_submodules, {}) def test_submodule_named(self): m1 = Module() m2 = Module() m1.submodules.foo = m2 self.assertEqual(m1._anon_submodules, []) self.assertEqual(m1._named_submodules, {"foo": m2}) def test_submodule_named_index(self): m1 = Module() m2 = Module() m1.submodules["foo"] = m2 self.assertEqual(m1._anon_submodules, []) self.assertEqual(m1._named_submodules, {"foo": m2}) def test_submodule_wrong(self): m = Module() with self.assertRaises(TypeError, msg="Trying to add 1, which does not implement .elaborate(), as a submodule"): m.submodules.foo = 1 with self.assertRaises(TypeError, msg="Trying to add 1, which does not implement .elaborate(), as a submodule"): m.submodules += 1 def test_submodule_named_conflict(self): m1 = Module() m2 = Module() m1.submodules.foo = m2 with self.assertRaises(NameError, msg="Submodule named 'foo' already exists"): m1.submodules.foo = m2 def test_submodule_get(self): m1 = Module() m2 = Module() m1.submodules.foo = m2 m3 = m1.submodules.foo self.assertEqual(m2, m3) def test_submodule_get_index(self): m1 = Module() m2 = Module() m1.submodules["foo"] = m2 m3 = m1.submodules["foo"] self.assertEqual(m2, m3) def test_submodule_get_unset(self): m1 = Module() with self.assertRaises(AttributeError, msg="No submodule named 'foo' exists"): m2 = m1.submodules.foo with self.assertRaises(AttributeError, msg="No submodule named 'foo' exists"): m2 = m1.submodules["foo"] def test_domain_named_implicit(self): m = Module() m.domains += ClockDomain("sync") self.assertEqual(len(m._domains), 1) def test_domain_named_explicit(self): m = Module() m.domains.foo = ClockDomain() self.assertEqual(len(m._domains), 1) self.assertEqual(m._domains[0].name, "foo") def test_domain_add_wrong(self): m = Module() with self.assertRaises(TypeError, msg="Only clock domains may be added to `m.domains`, not 1"): m.domains.foo = 1 with self.assertRaises(TypeError, msg="Only clock domains may be added to `m.domains`, not 1"): m.domains += 1 def test_domain_add_wrong_name(self): m = Module() with self.assertRaises(NameError, msg="Clock domain name 'bar' must match name in `m.domains.foo += ...` syntax"): m.domains.foo = ClockDomain("bar") def test_lower(self): m1 = Module() m1.d.comb += self.c1.eq(self.s1) m2 = Module() m2.d.comb += self.c2.eq(self.s2) m2.d.sync += self.c3.eq(self.s3) m1.submodules.foo = m2 f1 = m1.elaborate(platform=None) self.assertRepr(f1.statements, """ ( (eq (sig c1) (sig s1)) ) """) self.assertEqual(f1.drivers, { None: SignalSet((self.c1,)) }) self.assertEqual(len(f1.subfragments), 1) (f2, f2_name), = f1.subfragments self.assertEqual(f2_name, "foo") self.assertRepr(f2.statements, """ ( (eq (sig c2) (sig s2)) (eq (sig c3) (sig s3)) ) """) self.assertEqual(f2.drivers, { None: SignalSet((self.c2,)), "sync": SignalSet((self.c3,)) }) self.assertEqual(len(f2.subfragments), 0)