riscv-formal-nmigen/nmigen/back/pysim.py

1129 lines
40 KiB
Python
Raw Normal View History

2020-08-19 14:56:26 +08:00
import os
import tempfile
import warnings
import inspect
from contextlib import contextmanager
import itertools
from vcd import VCDWriter
from vcd.gtkw import GTKWSave
from .._utils import deprecated
from ..hdl.ast import *
from ..hdl.cd import *
from ..hdl.ir import *
from ..hdl.xfrm import ValueVisitor, StatementVisitor, LHSGroupFilter
class Command:
pass
class Settle(Command):
def __repr__(self):
return "(settle)"
class Delay(Command):
def __init__(self, interval=None):
self.interval = None if interval is None else float(interval)
def __repr__(self):
if self.interval is None:
return "(delay ε)"
else:
return "(delay {:.3}us)".format(self.interval * 1e6)
class Tick(Command):
def __init__(self, domain="sync"):
if not isinstance(domain, (str, ClockDomain)):
raise TypeError("Domain must be a string or a ClockDomain instance, not {!r}"
.format(domain))
assert domain != "comb"
self.domain = domain
def __repr__(self):
return "(tick {})".format(self.domain)
class Passive(Command):
def __repr__(self):
return "(passive)"
class Active(Command):
def __repr__(self):
return "(active)"
class _WaveformWriter:
def update(self, timestamp, signal, value):
raise NotImplementedError # :nocov:
def close(self, timestamp):
raise NotImplementedError # :nocov:
class _VCDWaveformWriter(_WaveformWriter):
@staticmethod
def timestamp_to_vcd(timestamp):
return timestamp * (10 ** 10) # 1/(100 ps)
@staticmethod
def decode_to_vcd(signal, value):
return signal.decoder(value).expandtabs().replace(" ", "_")
def __init__(self, signal_names, *, vcd_file, gtkw_file=None, traces=()):
if isinstance(vcd_file, str):
vcd_file = open(vcd_file, "wt")
if isinstance(gtkw_file, str):
gtkw_file = open(gtkw_file, "wt")
self.vcd_vars = SignalDict()
self.vcd_file = vcd_file
self.vcd_writer = vcd_file and VCDWriter(self.vcd_file,
timescale="100 ps", comment="Generated by nMigen")
self.gtkw_names = SignalDict()
self.gtkw_file = gtkw_file
self.gtkw_save = gtkw_file and GTKWSave(self.gtkw_file)
self.traces = []
trace_names = SignalDict()
for trace in traces:
if trace not in signal_names:
trace_names[trace] = trace.name
self.traces.append(trace)
if self.vcd_writer is None:
return
for signal, names in itertools.chain(signal_names.items(), trace_names.items()):
if signal.decoder:
var_type = "string"
var_size = 1
var_init = self.decode_to_vcd(signal, signal.reset)
else:
var_type = "wire"
var_size = signal.width
var_init = signal.reset
for (*var_scope, var_name) in names:
suffix = None
while True:
try:
if suffix is None:
var_name_suffix = var_name
else:
var_name_suffix = "{}${}".format(var_name, suffix)
vcd_var = self.vcd_writer.register_var(
scope=var_scope, name=var_name_suffix,
var_type=var_type, size=var_size, init=var_init)
break
except KeyError:
suffix = (suffix or 0) + 1
if signal not in self.vcd_vars:
self.vcd_vars[signal] = set()
self.vcd_vars[signal].add(vcd_var)
if signal not in self.gtkw_names:
self.gtkw_names[signal] = (*var_scope, var_name_suffix)
def update(self, timestamp, signal, value):
if signal not in self.vcd_vars:
return
vcd_timestamp = self.timestamp_to_vcd(timestamp)
if signal.decoder:
var_value = self.decode_to_vcd(signal, value)
else:
var_value = value
for vcd_var in self.vcd_vars[signal]:
self.vcd_writer.change(vcd_var, vcd_timestamp, var_value)
def close(self, timestamp):
if self.vcd_writer is not None:
self.vcd_writer.close(self.timestamp_to_vcd(timestamp))
if self.gtkw_save is not None:
self.gtkw_save.dumpfile(self.vcd_file.name)
self.gtkw_save.dumpfile_size(self.vcd_file.tell())
self.gtkw_save.treeopen("top")
for signal in self.traces:
if len(signal) > 1 and not signal.decoder:
suffix = "[{}:0]".format(len(signal) - 1)
else:
suffix = ""
self.gtkw_save.trace(".".join(self.gtkw_names[signal]) + suffix)
if self.vcd_file is not None:
self.vcd_file.close()
if self.gtkw_file is not None:
self.gtkw_file.close()
class _Process:
__slots__ = ("runnable", "passive")
def reset(self):
raise NotImplementedError # :nocov:
def run(self):
raise NotImplementedError # :nocov:
@property
def name(self):
raise NotImplementedError # :nocov:
class _SignalState:
__slots__ = ("signal", "curr", "next", "waiters", "pending")
def __init__(self, signal, pending):
self.signal = signal
self.pending = pending
self.waiters = dict()
self.reset()
def reset(self):
self.curr = self.next = self.signal.reset
def set(self, value):
if self.next == value:
return
self.next = value
self.pending.add(self)
def wait(self, task, *, trigger=None):
assert task not in self.waiters
self.waiters[task] = trigger
def commit(self):
if self.curr == self.next:
return False
self.curr = self.next
return True
def wakeup(self):
awoken_any = False
for process, trigger in self.waiters.items():
if trigger is None or trigger == self.curr:
process.runnable = awoken_any = True
return awoken_any
class _SimulatorState:
def __init__(self):
self.signals = SignalDict()
self.pending = set()
self.timestamp = 0.0
self.deadlines = dict()
self.waveform_writer = None
def reset(self):
for signal_state in self.signals.values():
signal_state.reset()
self.pending.clear()
self.timestamp = 0.0
self.deadlines.clear()
def for_signal(self, signal):
try:
return self.signals[signal]
except KeyError:
signal_state = _SignalState(signal, self.pending)
self.signals[signal] = signal_state
return signal_state
def commit(self):
awoken_any = False
for signal_state in self.pending:
if signal_state.commit():
if signal_state.wakeup():
awoken_any = True
if self.waveform_writer is not None:
self.waveform_writer.update(self.timestamp,
signal_state.signal, signal_state.curr)
return awoken_any
def advance(self):
nearest_processes = set()
nearest_deadline = None
for process, deadline in self.deadlines.items():
if deadline is None:
if nearest_deadline is not None:
nearest_processes.clear()
nearest_processes.add(process)
nearest_deadline = self.timestamp
break
elif nearest_deadline is None or deadline <= nearest_deadline:
assert deadline >= self.timestamp
if nearest_deadline is not None and deadline < nearest_deadline:
nearest_processes.clear()
nearest_processes.add(process)
nearest_deadline = deadline
if not nearest_processes:
return False
for process in nearest_processes:
process.runnable = True
del self.deadlines[process]
self.timestamp = nearest_deadline
return True
def start_waveform(self, waveform_writer):
if self.timestamp != 0.0:
raise ValueError("Cannot start writing waveforms after advancing simulation time")
if self.waveform_writer is not None:
raise ValueError("Already writing waveforms to {!r}"
.format(self.waveform_writer))
self.waveform_writer = waveform_writer
def finish_waveform(self):
if self.waveform_writer is None:
return
self.waveform_writer.close(self.timestamp)
self.waveform_writer = None
class _EvalContext:
__slots__ = ("state", "indexes", "slots")
def __init__(self, state):
self.state = state
self.indexes = SignalDict()
self.slots = []
def get_signal(self, signal):
try:
return self.indexes[signal]
except KeyError:
index = len(self.slots)
self.slots.append(self.state.for_signal(signal))
self.indexes[signal] = index
return index
def get_in_signal(self, signal, *, trigger=None):
index = self.get_signal(signal)
self.slots[index].waiters[self] = trigger
return index
def get_out_signal(self, signal):
return self.get_signal(signal)
class _Emitter:
def __init__(self):
self._buffer = []
self._suffix = 0
self._level = 0
def append(self, code):
self._buffer.append(" " * self._level)
self._buffer.append(code)
self._buffer.append("\n")
@contextmanager
def indent(self):
self._level += 1
yield
self._level -= 1
def flush(self, indent=""):
code = "".join(self._buffer)
self._buffer.clear()
return code
def gen_var(self, prefix):
name = f"{prefix}_{self._suffix}"
self._suffix += 1
return name
def def_var(self, prefix, value):
name = self.gen_var(prefix)
self.append(f"{name} = {value}")
return name
class _Compiler:
def __init__(self, context, emitter):
self.context = context
self.emitter = emitter
class _ValueCompiler(ValueVisitor, _Compiler):
helpers = {
"sign": lambda value, sign: value | sign if value & sign else value,
"zdiv": lambda lhs, rhs: 0 if rhs == 0 else lhs // rhs,
}
def on_ClockSignal(self, value):
raise NotImplementedError # :nocov:
def on_ResetSignal(self, value):
raise NotImplementedError # :nocov:
def on_Record(self, value):
return self(Cat(value.fields.values()))
def on_AnyConst(self, value):
raise NotImplementedError # :nocov:
def on_AnySeq(self, value):
raise NotImplementedError # :nocov:
def on_Sample(self, value):
raise NotImplementedError # :nocov:
def on_Initial(self, value):
raise NotImplementedError # :nocov:
class _RHSValueCompiler(_ValueCompiler):
def __init__(self, context, emitter, *, mode, inputs=None):
super().__init__(context, emitter)
assert mode in ("curr", "next")
self.mode = mode
# If not None, `inputs` gets populated with RHS signals.
self.inputs = inputs
def on_Const(self, value):
return f"{value.value}"
def on_Signal(self, value):
if self.inputs is not None:
self.inputs.add(value)
if self.mode == "curr":
return f"slots[{self.context.get_signal(value)}].{self.mode}"
else:
return f"next_{self.context.get_signal(value)}"
def on_Operator(self, value):
def mask(value):
value_mask = (1 << len(value)) - 1
return f"({self(value)} & {value_mask})"
def sign(value):
if value.shape().signed:
return f"sign({mask(value)}, {-1 << (len(value) - 1)})"
else: # unsigned
return mask(value)
if len(value.operands) == 1:
arg, = value.operands
if value.operator == "~":
return f"(~{self(arg)})"
if value.operator == "-":
return f"(-{self(arg)})"
if value.operator == "b":
return f"bool({mask(arg)})"
if value.operator == "r|":
return f"({mask(arg)} != 0)"
if value.operator == "r&":
return f"({mask(arg)} == {(1 << len(arg)) - 1})"
if value.operator == "r^":
# Believe it or not, this is the fastest way to compute a sideways XOR in Python.
return f"(format({mask(arg)}, 'b').count('1') % 2)"
if value.operator in ("u", "s"):
# These operators don't change the bit pattern, only its interpretation.
return self(arg)
elif len(value.operands) == 2:
lhs, rhs = value.operands
lhs_mask = (1 << len(lhs)) - 1
rhs_mask = (1 << len(rhs)) - 1
if value.operator == "+":
return f"({sign(lhs)} + {sign(rhs)})"
if value.operator == "-":
return f"({sign(lhs)} - {sign(rhs)})"
if value.operator == "*":
return f"({sign(lhs)} * {sign(rhs)})"
if value.operator == "//":
return f"zdiv({sign(lhs)}, {sign(rhs)})"
if value.operator == "&":
return f"({self(lhs)} & {self(rhs)})"
if value.operator == "|":
return f"({self(lhs)} | {self(rhs)})"
if value.operator == "^":
return f"({self(lhs)} ^ {self(rhs)})"
if value.operator == "<<":
return f"({sign(lhs)} << {sign(rhs)})"
if value.operator == ">>":
return f"({sign(lhs)} >> {sign(rhs)})"
if value.operator == "==":
return f"({sign(lhs)} == {sign(rhs)})"
if value.operator == "!=":
return f"({sign(lhs)} != {sign(rhs)})"
if value.operator == "<":
return f"({sign(lhs)} < {sign(rhs)})"
if value.operator == "<=":
return f"({sign(lhs)} <= {sign(rhs)})"
if value.operator == ">":
return f"({sign(lhs)} > {sign(rhs)})"
if value.operator == ">=":
return f"({sign(lhs)} >= {sign(rhs)})"
elif len(value.operands) == 3:
if value.operator == "m":
sel, val1, val0 = value.operands
return f"({self(val1)} if {self(sel)} else {self(val0)})"
raise NotImplementedError("Operator '{}' not implemented".format(value.operator)) # :nocov:
def on_Slice(self, value):
return f"(({self(value.value)} >> {value.start}) & {(1 << len(value)) - 1})"
def on_Part(self, value):
offset_mask = (1 << len(value.offset)) - 1
offset = f"(({self(value.offset)} & {offset_mask}) * {value.stride})"
return f"({self(value.value)} >> {offset} & " \
f"{(1 << value.width) - 1})"
def on_Cat(self, value):
gen_parts = []
offset = 0
for part in value.parts:
part_mask = (1 << len(part)) - 1
gen_parts.append(f"(({self(part)} & {part_mask}) << {offset})")
offset += len(part)
if gen_parts:
return f"({' | '.join(gen_parts)})"
return f"0"
def on_Repl(self, value):
part_mask = (1 << len(value.value)) - 1
gen_part = self.emitter.def_var("repl", f"{self(value.value)} & {part_mask}")
gen_parts = []
offset = 0
for _ in range(value.count):
gen_parts.append(f"({gen_part} << {offset})")
offset += len(value.value)
if gen_parts:
return f"({' | '.join(gen_parts)})"
return f"0"
def on_ArrayProxy(self, value):
index_mask = (1 << len(value.index)) - 1
gen_index = self.emitter.def_var("rhs_index", f"{self(value.index)} & {index_mask}")
gen_value = self.emitter.gen_var("rhs_proxy")
if value.elems:
gen_elems = []
for index, elem in enumerate(value.elems):
if index == 0:
self.emitter.append(f"if {gen_index} == {index}:")
else:
self.emitter.append(f"elif {gen_index} == {index}:")
with self.emitter.indent():
self.emitter.append(f"{gen_value} = {self(elem)}")
self.emitter.append(f"else:")
with self.emitter.indent():
self.emitter.append(f"{gen_value} = {self(value.elems[-1])}")
return gen_value
else:
return f"0"
@classmethod
def compile(cls, context, value, *, mode, inputs=None):
emitter = _Emitter()
compiler = cls(context, emitter, mode=mode, inputs=inputs)
emitter.append(f"result = {compiler(value)}")
return emitter.flush()
class _LHSValueCompiler(_ValueCompiler):
def __init__(self, context, emitter, *, rhs, outputs=None):
super().__init__(context, emitter)
# `rrhs` is used to translate rvalues that are syntactically a part of an lvalue, e.g.
# the offset of a Part.
self.rrhs = rhs
# `lrhs` is used to translate the read part of a read-modify-write cycle during partial
# update of an lvalue.
self.lrhs = _RHSValueCompiler(context, emitter, mode="next", inputs=None)
# If not None, `outputs` gets populated with signals on LHS.
self.outputs = outputs
def on_Const(self, value):
raise TypeError # :nocov:
def on_Signal(self, value):
if self.outputs is not None:
self.outputs.add(value)
def gen(arg):
value_mask = (1 << len(value)) - 1
if value.shape().signed:
value_sign = f"sign({arg} & {value_mask}, {-1 << (len(value) - 1)})"
else: # unsigned
value_sign = f"{arg} & {value_mask}"
self.emitter.append(f"next_{self.context.get_out_signal(value)} = {value_sign}")
return gen
def on_Operator(self, value):
raise TypeError # :nocov:
def on_Slice(self, value):
def gen(arg):
width_mask = (1 << (value.stop - value.start)) - 1
self(value.value)(f"({self.lrhs(value.value)} & " \
f"{~(width_mask << value.start)} | " \
f"(({arg} & {width_mask}) << {value.start}))")
return gen
def on_Part(self, value):
def gen(arg):
width_mask = (1 << value.width) - 1
offset_mask = (1 << len(value.offset)) - 1
offset = f"(({self.rrhs(value.offset)} & {offset_mask}) * {value.stride})"
self(value.value)(f"({self.lrhs(value.value)} & " \
f"~({width_mask} << {offset}) | " \
f"(({arg} & {width_mask}) << {offset}))")
return gen
def on_Cat(self, value):
def gen(arg):
gen_arg = self.emitter.def_var("cat", arg)
gen_parts = []
offset = 0
for part in value.parts:
part_mask = (1 << len(part)) - 1
self(part)(f"(({gen_arg} >> {offset}) & {part_mask})")
offset += len(part)
return gen
def on_Repl(self, value):
raise TypeError # :nocov:
def on_ArrayProxy(self, value):
def gen(arg):
index_mask = (1 << len(value.index)) - 1
gen_index = self.emitter.def_var("index", f"{self.rrhs(value.index)} & {index_mask}")
if value.elems:
gen_elems = []
for index, elem in enumerate(value.elems):
if index == 0:
self.emitter.append(f"if {gen_index} == {index}:")
else:
self.emitter.append(f"elif {gen_index} == {index}:")
with self.emitter.indent():
self(elem)(arg)
self.emitter.append(f"else:")
with self.emitter.indent():
self(value.elems[-1])(arg)
else:
self.emitter.append(f"pass")
return gen
@classmethod
def compile(cls, context, stmt, *, inputs=None, outputs=None):
emitter = _Emitter()
compiler = cls(context, emitter, inputs=inputs, outputs=outputs)
compiler(stmt)
return emitter.flush()
class _StatementCompiler(StatementVisitor, _Compiler):
def __init__(self, context, emitter, *, inputs=None, outputs=None):
super().__init__(context, emitter)
self.rhs = _RHSValueCompiler(context, emitter, mode="curr", inputs=inputs)
self.lhs = _LHSValueCompiler(context, emitter, rhs=self.rhs, outputs=outputs)
def on_statements(self, stmts):
for stmt in stmts:
self(stmt)
if not stmts:
self.emitter.append("pass")
def on_Assign(self, stmt):
return self.lhs(stmt.lhs)(self.rhs(stmt.rhs))
def on_Switch(self, stmt):
gen_test = self.emitter.def_var("test",
f"{self.rhs(stmt.test)} & {(1 << len(stmt.test)) - 1}")
for index, (patterns, stmts) in enumerate(stmt.cases.items()):
gen_checks = []
if not patterns:
gen_checks.append(f"True")
else:
for pattern in patterns:
if "-" in pattern:
mask = int("".join("0" if b == "-" else "1" for b in pattern), 2)
value = int("".join("0" if b == "-" else b for b in pattern), 2)
gen_checks.append(f"({gen_test} & {mask}) == {value}")
else:
value = int(pattern, 2)
gen_checks.append(f"{gen_test} == {value}")
if index == 0:
self.emitter.append(f"if {' or '.join(gen_checks)}:")
else:
self.emitter.append(f"elif {' or '.join(gen_checks)}:")
with self.emitter.indent():
self(stmts)
def on_Assert(self, stmt):
raise NotImplementedError # :nocov:
def on_Assume(self, stmt):
raise NotImplementedError # :nocov:
def on_Cover(self, stmt):
raise NotImplementedError # :nocov:
@classmethod
def compile(cls, context, stmt, *, inputs=None, outputs=None):
output_indexes = [context.get_signal(signal) for signal in stmt._lhs_signals()]
emitter = _Emitter()
for signal_index in output_indexes:
emitter.append(f"next_{signal_index} = slots[{signal_index}].next")
compiler = cls(context, emitter, inputs=inputs, outputs=outputs)
compiler(stmt)
for signal_index in output_indexes:
emitter.append(f"slots[{signal_index}].set(next_{signal_index})")
return emitter.flush()
class _CompiledProcess(_Process):
__slots__ = ("context", "comb", "name", "run")
def __init__(self, state, *, comb, name):
self.context = _EvalContext(state)
self.comb = comb
self.name = name
self.run = None # set by _FragmentCompiler
self.reset()
def reset(self):
self.runnable = self.comb
self.passive = True
class _FragmentCompiler:
def __init__(self, state, signal_names):
self.state = state
self.signal_names = signal_names
def __call__(self, fragment, *, hierarchy=("top",)):
processes = set()
def add_signal_name(signal):
hierarchical_signal_name = (*hierarchy, signal.name)
if signal not in self.signal_names:
self.signal_names[signal] = {hierarchical_signal_name}
else:
self.signal_names[signal].add(hierarchical_signal_name)
for domain_name, domain_signals in fragment.drivers.items():
domain_stmts = LHSGroupFilter(domain_signals)(fragment.statements)
domain_process = _CompiledProcess(self.state, comb=domain_name is None,
name=".".join((*hierarchy, "<{}>".format(domain_name or "comb"))))
emitter = _Emitter()
emitter.append(f"def run():")
emitter._level += 1
if domain_name is None:
for signal in domain_signals:
signal_index = domain_process.context.get_signal(signal)
emitter.append(f"next_{signal_index} = {signal.reset}")
inputs = SignalSet()
_StatementCompiler(domain_process.context, emitter, inputs=inputs)(domain_stmts)
for input in inputs:
self.state.for_signal(input).wait(domain_process)
else:
domain = fragment.domains[domain_name]
add_signal_name(domain.clk)
if domain.rst is not None:
add_signal_name(domain.rst)
clk_trigger = 1 if domain.clk_edge == "pos" else 0
self.state.for_signal(domain.clk).wait(domain_process, trigger=clk_trigger)
if domain.rst is not None and domain.async_reset:
rst_trigger = 1
self.state.for_signal(domain.rst).wait(domain_process, trigger=rst_trigger)
gen_asserts = []
clk_index = domain_process.context.get_signal(domain.clk)
gen_asserts.append(f"slots[{clk_index}].curr == {clk_trigger}")
if domain.rst is not None and domain.async_reset:
rst_index = domain_process.context.get_signal(domain.rst)
gen_asserts.append(f"slots[{rst_index}].curr == {rst_trigger}")
emitter.append(f"assert {' or '.join(gen_asserts)}")
for signal in domain_signals:
signal_index = domain_process.context.get_signal(signal)
emitter.append(f"next_{signal_index} = slots[{signal_index}].next")
_StatementCompiler(domain_process.context, emitter)(domain_stmts)
for signal in domain_signals:
signal_index = domain_process.context.get_signal(signal)
emitter.append(f"slots[{signal_index}].set(next_{signal_index})")
# There shouldn't be any exceptions raised by the generated code, but if there are
# (almost certainly due to a bug in the code generator), use this environment variable
# to make backtraces useful.
code = emitter.flush()
if os.getenv("NMIGEN_pysim_dump"):
file = tempfile.NamedTemporaryFile("w", prefix="nmigen_pysim_", delete=False)
file.write(code)
filename = file.name
else:
filename = "<string>"
exec_locals = {"slots": domain_process.context.slots, **_ValueCompiler.helpers}
exec(compile(code, filename, "exec"), exec_locals)
domain_process.run = exec_locals["run"]
processes.add(domain_process)
for used_signal in domain_process.context.indexes:
add_signal_name(used_signal)
for subfragment_index, (subfragment, subfragment_name) in enumerate(fragment.subfragments):
if subfragment_name is None:
subfragment_name = "U${}".format(subfragment_index)
processes.update(self(subfragment, hierarchy=(*hierarchy, subfragment_name)))
return processes
class _CoroutineProcess(_Process):
def __init__(self, state, domains, constructor, *, default_cmd=None):
self.state = state
self.domains = domains
self.constructor = constructor
self.default_cmd = default_cmd
self.reset()
def reset(self):
self.runnable = True
self.passive = False
self.coroutine = self.constructor()
self.eval_context = _EvalContext(self.state)
self.exec_locals = {
"slots": self.eval_context.slots,
"result": None,
**_ValueCompiler.helpers
}
self.waits_on = set()
@property
def name(self):
coroutine = self.coroutine
while coroutine.gi_yieldfrom is not None:
coroutine = coroutine.gi_yieldfrom
if inspect.isgenerator(coroutine):
frame = coroutine.gi_frame
if inspect.iscoroutine(coroutine):
frame = coroutine.cr_frame
return "{}:{}".format(inspect.getfile(frame), inspect.getlineno(frame))
def get_in_signal(self, signal, *, trigger=None):
signal_state = self.state.for_signal(signal)
assert self not in signal_state.waiters
signal_state.waiters[self] = trigger
self.waits_on.add(signal_state)
return signal_state
def run(self):
if self.coroutine is None:
return
if self.waits_on:
for signal_state in self.waits_on:
del signal_state.waiters[self]
self.waits_on.clear()
response = None
while True:
try:
command = self.coroutine.send(response)
if command is None:
command = self.default_cmd
response = None
if isinstance(command, Value):
exec(_RHSValueCompiler.compile(self.eval_context, command, mode="curr"),
self.exec_locals)
response = Const.normalize(self.exec_locals["result"], command.shape())
elif isinstance(command, Statement):
exec(_StatementCompiler.compile(self.eval_context, command),
self.exec_locals)
elif type(command) is Tick:
domain = command.domain
if isinstance(domain, ClockDomain):
pass
elif domain in self.domains:
domain = self.domains[domain]
else:
raise NameError("Received command {!r} that refers to a nonexistent "
"domain {!r} from process {!r}"
.format(command, command.domain, self.name))
self.get_in_signal(domain.clk, trigger=1 if domain.clk_edge == "pos" else 0)
if domain.rst is not None and domain.async_reset:
self.get_in_signal(domain.rst, trigger=1)
return
elif type(command) is Settle:
self.state.deadlines[self] = None
return
elif type(command) is Delay:
if command.interval is None:
self.state.deadlines[self] = None
else:
self.state.deadlines[self] = self.state.timestamp + command.interval
return
elif type(command) is Passive:
self.passive = True
elif type(command) is Active:
self.passive = False
elif command is None: # only possible if self.default_cmd is None
raise TypeError("Received default command from process {!r} that was added "
"with add_process(); did you mean to add this process with "
"add_sync_process() instead?"
.format(self.name))
else:
raise TypeError("Received unsupported command {!r} from process {!r}"
.format(command, self.name))
except StopIteration:
self.passive = True
self.coroutine = None
return
except Exception as exn:
self.coroutine.throw(exn)
class _WaveformContextManager:
def __init__(self, state, waveform_writer):
self._state = state
self._waveform_writer = waveform_writer
def __enter__(self):
try:
self._state.start_waveform(self._waveform_writer)
except:
self._waveform_writer.close(0)
raise
def __exit__(self, *args):
self._state.finish_waveform()
class Simulator:
def __init__(self, fragment, **kwargs):
self._state = _SimulatorState()
self._signal_names = SignalDict()
self._fragment = Fragment.get(fragment, platform=None).prepare()
self._processes = _FragmentCompiler(self._state, self._signal_names)(self._fragment)
if kwargs: # :nocov:
# TODO(nmigen-0.3): remove
self._state.start_waveform(_VCDWaveformWriter(self._signal_names, **kwargs))
self._clocked = set()
def _check_process(self, process):
if not (inspect.isgeneratorfunction(process) or inspect.iscoroutinefunction(process)):
if inspect.isgenerator(process) or inspect.iscoroutine(process):
warnings.warn("instead of generators, use generator functions as processes; "
"this allows the simulator to be repeatedly reset",
DeprecationWarning, stacklevel=3)
def wrapper():
yield from process
return wrapper
else:
raise TypeError("Cannot add a process {!r} because it is not a generator function"
.format(process))
return process
def _add_coroutine_process(self, process, *, default_cmd):
self._processes.add(_CoroutineProcess(self._state, self._fragment.domains, process,
default_cmd=default_cmd))
def add_process(self, process):
process = self._check_process(process)
def wrapper():
# Only start a bench process after comb settling, so that the reset values are correct.
yield Settle()
yield from process()
self._add_coroutine_process(wrapper, default_cmd=None)
def add_sync_process(self, process, *, domain="sync"):
process = self._check_process(process)
def wrapper():
# Only start a sync process after the first clock edge (or reset edge, if the domain
# uses an asynchronous reset). This matches the behavior of synchronous FFs.
yield Tick(domain)
yield from process()
return self._add_coroutine_process(wrapper, default_cmd=Tick(domain))
def add_clock(self, period, *, phase=None, domain="sync", if_exists=False):
"""Add a clock process.
Adds a process that drives the clock signal of ``domain`` at a 50% duty cycle.
Arguments
---------
period : float
Clock period. The process will toggle the ``domain`` clock signal every ``period / 2``
seconds.
phase : None or float
Clock phase. The process will wait ``phase`` seconds before the first clock transition.
If not specified, defaults to ``period / 2``.
domain : str or ClockDomain
Driven clock domain. If specified as a string, the domain with that name is looked up
in the root fragment of the simulation.
if_exists : bool
If ``False`` (the default), raise an error if the driven domain is specified as
a string and the root fragment does not have such a domain. If ``True``, do nothing
in this case.
"""
if isinstance(domain, ClockDomain):
pass
elif domain in self._fragment.domains:
domain = self._fragment.domains[domain]
elif if_exists:
return
else:
raise ValueError("Domain {!r} is not present in simulation"
.format(domain))
if domain in self._clocked:
raise ValueError("Domain {!r} already has a clock driving it"
.format(domain.name))
half_period = period / 2
if phase is None:
# By default, delay the first edge by half period. This causes any synchronous activity
# to happen at a non-zero time, distinguishing it from the reset values in the waveform
# viewer.
phase = half_period
def clk_process():
yield Passive()
yield Delay(phase)
# Behave correctly if the process is added after the clock signal is manipulated, or if
# its reset state is high.
initial = (yield domain.clk)
while True:
yield domain.clk.eq(~initial)
yield Delay(half_period)
yield domain.clk.eq(initial)
yield Delay(half_period)
self._add_coroutine_process(clk_process, default_cmd=None)
self._clocked.add(domain)
def reset(self):
"""Reset the simulation.
Assign the reset value to every signal in the simulation, and restart every user process.
"""
self._state.reset()
for process in self._processes:
process.reset()
def _delta(self):
"""Perform a delta cycle.
Performs the two phases of a delta cycle:
1. run and suspend every non-waiting process once, queueing signal changes;
2. commit every queued signal change, waking up any waiting process.
"""
for process in self._processes:
if process.runnable:
process.runnable = False
process.run()
return self._state.commit()
def _settle(self):
"""Settle the simulation.
Run every process and commit changes until a fixed point is reached. If there is
an unstable combinatorial loop, this function will never return.
"""
while self._delta():
pass
def step(self):
"""Step the simulation.
Run every process and commit changes until a fixed point is reached, then advance time
to the closest deadline (if any). If there is an unstable combinatorial loop,
this function will never return.
Returns ``True`` if there are any active processes, ``False`` otherwise.
"""
self._settle()
self._state.advance()
return any(not process.passive for process in self._processes)
def run(self):
"""Run the simulation while any processes are active.
Processes added with :meth:`add_process` and :meth:`add_sync_process` are initially active,
and may change their status using the ``yield Passive()`` and ``yield Active()`` commands.
Processes compiled from HDL and added with :meth:`add_clock` are always passive.
"""
while self.step():
pass
def run_until(self, deadline, *, run_passive=False):
"""Run the simulation until it advances to ``deadline``.
If ``run_passive`` is ``False``, the simulation also stops when there are no active
processes, similar to :meth:`run`. Otherwise, the simulation will stop only after it
advances to or past ``deadline``.
If the simulation stops advancing, this function will never return.
"""
assert self._state.timestamp <= deadline
while (self.step() or run_passive) and self._state.timestamp < deadline:
pass
def write_vcd(self, vcd_file, gtkw_file=None, *, traces=()):
"""Write waveforms to a Value Change Dump file, optionally populating a GTKWave save file.
This method returns a context manager. It can be used as: ::
sim = Simulator(frag)
sim.add_clock(1e-6)
with sim.write_vcd("dump.vcd", "dump.gtkw"):
sim.run_until(1e-3)
Arguments
---------
vcd_file : str or file-like object
Verilog Value Change Dump file or filename.
gtkw_file : str or file-like object
GTKWave save file or filename.
traces : iterable of Signal
Signals to display traces for.
"""
waveform_writer = _VCDWaveformWriter(self._signal_names,
vcd_file=vcd_file, gtkw_file=gtkw_file, traces=traces)
return _WaveformContextManager(self._state, waveform_writer)
# TODO(nmigen-0.3): remove
@deprecated("instead of `with Simulator(fragment, ...) as sim:`, use "
"`sim = Simulator(fragment); with sim.write_vcd(...):`")
def __enter__(self): # :nocov:
return self
# TODO(nmigen-0.3): remove
def __exit__(self, *args): # :nocov:
self._state.finish_waveform()