nalgebra/src/linalg/svd2.rs
2021-12-09 11:52:37 +01:00

51 lines
1.8 KiB
Rust

use crate::{Matrix2, RealField, Vector2, SVD, U2};
// Implementation of the 2D SVD from https://ieeexplore.ieee.org/document/486688
// See also https://scicomp.stackexchange.com/questions/8899/robust-algorithm-for-2-times-2-svd
pub fn svd_ordered2<T: RealField>(
m: &Matrix2<T>,
compute_u: bool,
compute_v: bool,
) -> SVD<T, U2, U2> {
let half: T = crate::convert(0.5);
let one: T = crate::convert(1.0);
let e = (m.m11.clone() + m.m22.clone()) * half.clone();
let f = (m.m11.clone() - m.m22.clone()) * half.clone();
let g = (m.m21.clone() + m.m12.clone()) * half.clone();
let h = (m.m21.clone() - m.m12.clone()) * half.clone();
let q = (e.clone() * e.clone() + h.clone() * h.clone()).sqrt();
let r = (f.clone() * f.clone() + g.clone() * g.clone()).sqrt();
// Note that the singular values are always sorted because sx >= sy
// because q >= 0 and r >= 0.
let sx = q.clone() + r.clone();
let sy = q - r;
let sy_sign = if sy < T::zero() { -one.clone() } else { one };
let singular_values = Vector2::new(sx, sy * sy_sign.clone());
if compute_u || compute_v {
let a1 = g.atan2(f);
let a2 = h.atan2(e);
let theta = (a2.clone() - a1.clone()) * half.clone();
let phi = (a2 + a1) * half;
let (st, ct) = theta.sin_cos();
let (sp, cp) = phi.sin_cos();
let u = Matrix2::new(cp.clone(), -sp.clone(), sp, cp);
let v_t = Matrix2::new(ct.clone(), -st.clone(), st * sy_sign.clone(), ct * sy_sign);
SVD {
u: if compute_u { Some(u) } else { None },
singular_values,
v_t: if compute_v { Some(v_t) } else { None },
}
} else {
SVD {
u: None,
singular_values,
v_t: None,
}
}
}