nalgebra/tests/linalg/full_piv_lu.rs
2019-03-23 14:33:47 +01:00

481 lines
14 KiB
Rust

#![cfg_attr(rustfmt, rustfmt_skip)]
use na::Matrix3;
#[test]
fn full_piv_lu_simple() {
let m = Matrix3::new(
2.0, -1.0, 0.0,
-1.0, 2.0, -1.0,
0.0, -1.0, 2.0);
let lu = m.full_piv_lu();
assert_eq!(lu.determinant(), 4.0);
let (p, l, u, q) = lu.unpack();
let mut lu = l * u;
p.inv_permute_rows(&mut lu);
q.inv_permute_columns(&mut lu);
assert!(relative_eq!(m, lu, epsilon = 1.0e-7));
}
#[test]
fn full_piv_lu_simple_with_pivot() {
let m = Matrix3::new(
0.0, -1.0, 2.0,
-1.0, 2.0, -1.0,
2.0, -1.0, 0.0);
let lu = m.full_piv_lu();
assert_eq!(lu.determinant(), -4.0);
let (p, l, u, q) = lu.unpack();
let mut lu = l * u;
p.inv_permute_rows(&mut lu);
q.inv_permute_columns(&mut lu);
assert!(relative_eq!(m, lu, epsilon = 1.0e-7));
}
#[cfg(feature = "arbitrary")]
mod quickcheck_tests {
macro_rules! gen_tests(
($module: ident, $scalar: ty) => {
mod $module {
use std::cmp;
use num::One;
use na::{DMatrix, Matrix4, Matrix4x3, Matrix5x3, Matrix3x5, DVector, Vector4};
#[allow(unused_imports)]
use crate::core::helper::{RandScalar, RandComplex};
quickcheck! {
fn full_piv_lu(m: DMatrix<$scalar>) -> bool {
let mut m = m.map(|e| e.0);
if m.len() == 0 {
m = DMatrix::<$scalar>::new_random(1, 1).map(|e| e.0);
}
let lu = m.clone().full_piv_lu();
let (p, l, u, q) = lu.unpack();
let mut lu = l * u;
p.inv_permute_rows(&mut lu);
q.inv_permute_columns(&mut lu);
relative_eq!(m, lu, epsilon = 1.0e-7)
}
fn full_piv_lu_static_3_5(m: Matrix3x5<$scalar>) -> bool {
let m = m.map(|e| e.0);
let lu = m.full_piv_lu();
let (p, l, u, q) = lu.unpack();
let mut lu = l * u;
p.inv_permute_rows(&mut lu);
q.inv_permute_columns(&mut lu);
relative_eq!(m, lu, epsilon = 1.0e-7)
}
fn full_piv_lu_static_5_3(m: Matrix5x3<$scalar>) -> bool {
let m = m.map(|e| e.0);
let lu = m.full_piv_lu();
let (p, l, u, q) = lu.unpack();
let mut lu = l * u;
p.inv_permute_rows(&mut lu);
q.inv_permute_columns(&mut lu);
relative_eq!(m, lu, epsilon = 1.0e-7)
}
fn full_piv_lu_static_square(m: Matrix4<$scalar>) -> bool {
let m = m.map(|e| e.0);
let lu = m.full_piv_lu();
let (p, l, u, q) = lu.unpack();
let mut lu = l * u;
p.inv_permute_rows(&mut lu);
q.inv_permute_columns(&mut lu);
relative_eq!(m, lu, epsilon = 1.0e-7)
}
fn full_piv_lu_solve(n: usize, nb: usize) -> bool {
if n != 0 && nb != 0 {
let n = cmp::min(n, 50); // To avoid slowing down the test too much.
let nb = cmp::min(nb, 50); // To avoid slowing down the test too much.
let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0);
let lu = m.clone().full_piv_lu();
let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0);
let b2 = DMatrix::<$scalar>::new_random(n, nb).map(|e| e.0);
let sol1 = lu.solve(&b1);
let sol2 = lu.solve(&b2);
return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) &&
(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6))
}
return true;
}
fn full_piv_lu_solve_static(m: Matrix4<$scalar>) -> bool {
let m = m.map(|e| e.0);
let lu = m.full_piv_lu();
let b1 = Vector4::<$scalar>::new_random().map(|e| e.0);
let b2 = Matrix4x3::<$scalar>::new_random().map(|e| e.0);
let sol1 = lu.solve(&b1);
let sol2 = lu.solve(&b2);
return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) &&
(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6))
}
fn full_piv_lu_inverse(n: usize) -> bool {
let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much.
let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0);
let mut l = m.lower_triangle();
let mut u = m.upper_triangle();
// Ensure the matrix is well conditioned for inversion.
l.fill_diagonal(One::one());
u.fill_diagonal(One::one());
let m = l * u;
let m1 = m.clone().full_piv_lu().try_inverse().unwrap();
let id1 = &m * &m1;
let id2 = &m1 * &m;
return id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5);
}
fn full_piv_lu_inverse_static(m: Matrix4<$scalar>) -> bool {
let m = m.map(|e| e.0);
let lu = m.full_piv_lu();
if let Some(m1) = lu.try_inverse() {
let id1 = &m * &m1;
let id2 = &m1 * &m;
id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5)
}
else {
true
}
}
}
}
}
);
gen_tests!(complex, RandComplex<f64>);
gen_tests!(f64, RandScalar<f64>);
}
/*
#[test]
fn swap_rows() {
let mut m = Matrix5x3::new(
11.0, 12.0, 13.0,
21.0, 22.0, 23.0,
31.0, 32.0, 33.0,
41.0, 42.0, 43.0,
51.0, 52.0, 53.0);
let expected = Matrix5x3::new(
11.0, 12.0, 13.0,
41.0, 42.0, 43.0,
31.0, 32.0, 33.0,
21.0, 22.0, 23.0,
51.0, 52.0, 53.0);
m.swap_rows(1, 3);
assert_eq!(m, expected);
}
#[test]
fn swap_columns() {
let mut m = Matrix3x5::new(
11.0, 12.0, 13.0, 14.0, 15.0,
21.0, 22.0, 23.0, 24.0, 25.0,
31.0, 32.0, 33.0, 34.0, 35.0);
let expected = Matrix3x5::new(
11.0, 14.0, 13.0, 12.0, 15.0,
21.0, 24.0, 23.0, 22.0, 25.0,
31.0, 34.0, 33.0, 32.0, 35.0);
m.swap_columns(1, 3);
assert_eq!(m, expected);
}
#[test]
fn remove_columns() {
let m = Matrix3x5::new(
11, 12, 13, 14, 15,
21, 22, 23, 24, 25,
31, 32, 33, 34, 35);
let expected1 = Matrix3x4::new(
12, 13, 14, 15,
22, 23, 24, 25,
32, 33, 34, 35);
let expected2 = Matrix3x4::new(
11, 12, 13, 14,
21, 22, 23, 24,
31, 32, 33, 34);
let expected3 = Matrix3x4::new(
11, 12, 14, 15,
21, 22, 24, 25,
31, 32, 34, 35);
assert_eq!(m.remove_column(0), expected1);
assert_eq!(m.remove_column(4), expected2);
assert_eq!(m.remove_column(2), expected3);
let expected1 = Matrix3::new(
13, 14, 15,
23, 24, 25,
33, 34, 35);
let expected2 = Matrix3::new(
11, 12, 13,
21, 22, 23,
31, 32, 33);
let expected3 = Matrix3::new(
11, 12, 15,
21, 22, 25,
31, 32, 35);
assert_eq!(m.remove_fixed_columns::<U2>(0), expected1);
assert_eq!(m.remove_fixed_columns::<U2>(3), expected2);
assert_eq!(m.remove_fixed_columns::<U2>(2), expected3);
// The following is just to verify that the return type dimensions is correctly inferred.
let computed: Matrix<_, U3, Dynamic, _> = m.remove_columns(3, 2);
assert!(computed.eq(&expected2));
}
#[test]
fn remove_rows() {
let m = Matrix5x3::new(
11, 12, 13,
21, 22, 23,
31, 32, 33,
41, 42, 43,
51, 52, 53);
let expected1 = Matrix4x3::new(
21, 22, 23,
31, 32, 33,
41, 42, 43,
51, 52, 53);
let expected2 = Matrix4x3::new(
11, 12, 13,
21, 22, 23,
31, 32, 33,
41, 42, 43);
let expected3 = Matrix4x3::new(
11, 12, 13,
21, 22, 23,
41, 42, 43,
51, 52, 53);
assert_eq!(m.remove_row(0), expected1);
assert_eq!(m.remove_row(4), expected2);
assert_eq!(m.remove_row(2), expected3);
let expected1 = Matrix3::new(
31, 32, 33,
41, 42, 43,
51, 52, 53);
let expected2 = Matrix3::new(
11, 12, 13,
21, 22, 23,
31, 32, 33);
let expected3 = Matrix3::new(
11, 12, 13,
21, 22, 23,
51, 52, 53);
assert_eq!(m.remove_fixed_rows::<U2>(0), expected1);
assert_eq!(m.remove_fixed_rows::<U2>(3), expected2);
assert_eq!(m.remove_fixed_rows::<U2>(2), expected3);
// The following is just to verify that the return type dimensions is correctly inferred.
let computed: Matrix<_, Dynamic, U3, _> = m.remove_rows(3, 2);
assert!(computed.eq(&expected2));
}
#[test]
fn insert_columns() {
let m = Matrix5x3::new(
11, 12, 13,
21, 22, 23,
31, 32, 33,
41, 42, 43,
51, 52, 53);
let expected1 = Matrix5x4::new(
0, 11, 12, 13,
0, 21, 22, 23,
0, 31, 32, 33,
0, 41, 42, 43,
0, 51, 52, 53);
let expected2 = Matrix5x4::new(
11, 12, 13, 0,
21, 22, 23, 0,
31, 32, 33, 0,
41, 42, 43, 0,
51, 52, 53, 0);
let expected3 = Matrix5x4::new(
11, 12, 0, 13,
21, 22, 0, 23,
31, 32, 0, 33,
41, 42, 0, 43,
51, 52, 0, 53);
assert_eq!(m.insert_column(0, 0), expected1);
assert_eq!(m.insert_column(3, 0), expected2);
assert_eq!(m.insert_column(2, 0), expected3);
let expected1 = Matrix5::new(
0, 0, 11, 12, 13,
0, 0, 21, 22, 23,
0, 0, 31, 32, 33,
0, 0, 41, 42, 43,
0, 0, 51, 52, 53);
let expected2 = Matrix5::new(
11, 12, 13, 0, 0,
21, 22, 23, 0, 0,
31, 32, 33, 0, 0,
41, 42, 43, 0, 0,
51, 52, 53, 0, 0);
let expected3 = Matrix5::new(
11, 12, 0, 0, 13,
21, 22, 0, 0, 23,
31, 32, 0, 0, 33,
41, 42, 0, 0, 43,
51, 52, 0, 0, 53);
assert_eq!(m.insert_fixed_columns::<U2>(0, 0), expected1);
assert_eq!(m.insert_fixed_columns::<U2>(3, 0), expected2);
assert_eq!(m.insert_fixed_columns::<U2>(2, 0), expected3);
// The following is just to verify that the return type dimensions is correctly inferred.
let computed: Matrix<_, U5, Dynamic, _> = m.insert_columns(3, 2, 0);
assert!(computed.eq(&expected2));
}
#[test]
fn insert_rows() {
let m = Matrix3x5::new(
11, 12, 13, 14, 15,
21, 22, 23, 24, 25,
31, 32, 33, 34, 35);
let expected1 = Matrix4x5::new(
0, 0, 0, 0, 0,
11, 12, 13, 14, 15,
21, 22, 23, 24, 25,
31, 32, 33, 34, 35);
let expected2 = Matrix4x5::new(
11, 12, 13, 14, 15,
21, 22, 23, 24, 25,
31, 32, 33, 34, 35,
0, 0, 0, 0, 0);
let expected3 = Matrix4x5::new(
11, 12, 13, 14, 15,
21, 22, 23, 24, 25,
0, 0, 0, 0, 0,
31, 32, 33, 34, 35);
assert_eq!(m.insert_row(0, 0), expected1);
assert_eq!(m.insert_row(3, 0), expected2);
assert_eq!(m.insert_row(2, 0), expected3);
let expected1 = Matrix5::new(
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
11, 12, 13, 14, 15,
21, 22, 23, 24, 25,
31, 32, 33, 34, 35);
let expected2 = Matrix5::new(
11, 12, 13, 14, 15,
21, 22, 23, 24, 25,
31, 32, 33, 34, 35,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0);
let expected3 = Matrix5::new(
11, 12, 13, 14, 15,
21, 22, 23, 24, 25,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
31, 32, 33, 34, 35);
assert_eq!(m.insert_fixed_rows::<U2>(0, 0), expected1);
assert_eq!(m.insert_fixed_rows::<U2>(3, 0), expected2);
assert_eq!(m.insert_fixed_rows::<U2>(2, 0), expected3);
// The following is just to verify that the return type dimensions is correctly inferred.
let computed: Matrix<_, Dynamic, U5, _> = m.insert_rows(3, 2, 0);
assert!(computed.eq(&expected2));
}
#[test]
fn resize() {
let m = Matrix3x5::new(
11, 12, 13, 14, 15,
21, 22, 23, 24, 25,
31, 32, 33, 34, 35);
let add_add = DMatrix::from_row_slice(5, 6, &[
11, 12, 13, 14, 15, 42,
21, 22, 23, 24, 25, 42,
31, 32, 33, 34, 35, 42,
42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42]);
let del_del = DMatrix::from_row_slice(1, 2, &[11, 12]);
let add_del = DMatrix::from_row_slice(5, 2, &[
11, 12,
21, 22,
31, 32,
42, 42,
42, 42]);
let del_add = DMatrix::from_row_slice(1, 8, &[
11, 12, 13, 14, 15, 42, 42, 42]);
assert_eq!(del_del, m.resize(1, 2, 42));
assert_eq!(add_add, m.resize(5, 6, 42));
assert_eq!(add_del, m.resize(5, 2, 42));
assert_eq!(del_add, m.resize(1, 8, 42));
}
*/