nalgebra/src/geometry/rotation.rs

297 lines
7.4 KiB
Rust

use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::{One, Zero};
use std::fmt;
use std::hash;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
#[cfg(feature = "serde-serialize")]
use serde::{Serialize, Deserialize, Serializer, Deserializer};
#[cfg(feature = "serde-serialize")]
use base::storage::Owned;
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::Real;
use base::allocator::Allocator;
use base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use base::{DefaultAllocator, MatrixN, Scalar};
/// A rotation matrix.
#[repr(C)]
#[derive(Debug)]
pub struct Rotation<N: Scalar, D: DimName>
where
DefaultAllocator: Allocator<N, D, D>,
{
matrix: MatrixN<N, D>,
}
impl<N: Scalar + hash::Hash, D: DimName + hash::Hash> hash::Hash for Rotation<N, D>
where
DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: hash::Hash,
{
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.matrix.hash(state)
}
}
impl<N: Scalar, D: DimName> Copy for Rotation<N, D>
where
DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Copy,
{
}
impl<N: Scalar, D: DimName> Clone for Rotation<N, D>
where
DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Clone,
{
#[inline]
fn clone(&self) -> Self {
Rotation::from_matrix_unchecked(self.matrix.clone())
}
}
#[cfg(feature = "abomonation-serialize")]
impl<N, D> Abomonation for Rotation<N, D>
where
N: Scalar,
D: DimName,
MatrixN<N, D>: Abomonation,
DefaultAllocator: Allocator<N, D, D>,
{
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
self.matrix.entomb(writer)
}
fn extent(&self) -> usize {
self.matrix.extent()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.matrix.exhume(bytes)
}
}
#[cfg(feature = "serde-serialize")]
impl<N: Scalar, D: DimName> Serialize for Rotation<N, D>
where
DefaultAllocator: Allocator<N, D, D>,
Owned<N, D, D>: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.matrix.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize")]
impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Rotation<N, D>
where
DefaultAllocator: Allocator<N, D, D>,
Owned<N, D, D>: Deserialize<'a>,
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where
Des: Deserializer<'a>,
{
let matrix = MatrixN::<N, D>::deserialize(deserializer)?;
Ok(Rotation::from_matrix_unchecked(matrix))
}
}
impl<N: Scalar, D: DimName> Rotation<N, D>
where
DefaultAllocator: Allocator<N, D, D>,
{
/// A reference to the underlying matrix representation of this rotation.
#[inline]
pub fn matrix(&self) -> &MatrixN<N, D> {
&self.matrix
}
/// A mutable reference to the underlying matrix representation of this rotation.
///
/// This is unsafe because this allows the user to replace the matrix by another one that is
/// non-square, non-inversible, or non-orthonormal. If one of those properties is broken,
/// subsequent method calls may be UB.
#[inline]
pub unsafe fn matrix_mut(&mut self) -> &mut MatrixN<N, D> {
&mut self.matrix
}
/// Unwraps the underlying matrix.
#[inline]
pub fn unwrap(self) -> MatrixN<N, D> {
self.matrix
}
/// Converts this rotation into its equivalent homogeneous transformation matrix.
#[inline]
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>>
where
N: Zero + One,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
let mut res = MatrixN::<N, DimNameSum<D, U1>>::identity();
res.fixed_slice_mut::<D, D>(0, 0).copy_from(&self.matrix);
res
}
/// Creates a new rotation from the given square matrix.
///
/// The matrix squareness is checked but not its orthonormality.
#[inline]
pub fn from_matrix_unchecked(matrix: MatrixN<N, D>) -> Rotation<N, D> {
assert!(
matrix.is_square(),
"Unable to create a rotation from a non-square matrix."
);
Rotation { matrix: matrix }
}
/// Transposes `self`.
#[inline]
pub fn transpose(&self) -> Rotation<N, D> {
Rotation::from_matrix_unchecked(self.matrix.transpose())
}
/// Inverts `self`.
#[inline]
pub fn inverse(&self) -> Rotation<N, D> {
self.transpose()
}
/// Transposes `self` in-place.
#[inline]
pub fn transpose_mut(&mut self) {
self.matrix.transpose_mut()
}
/// Inverts `self` in-place.
#[inline]
pub fn inverse_mut(&mut self) {
self.transpose_mut()
}
}
impl<N: Scalar + Eq, D: DimName> Eq for Rotation<N, D>
where
DefaultAllocator: Allocator<N, D, D>,
{
}
impl<N: Scalar + PartialEq, D: DimName> PartialEq for Rotation<N, D>
where
DefaultAllocator: Allocator<N, D, D>,
{
#[inline]
fn eq(&self, right: &Rotation<N, D>) -> bool {
self.matrix == right.matrix
}
}
impl<N, D: DimName> AbsDiffEq for Rotation<N, D>
where
N: Scalar + AbsDiffEq,
DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy,
{
type Epsilon = N::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.matrix.abs_diff_eq(&other.matrix, epsilon)
}
}
impl<N, D: DimName> RelativeEq for Rotation<N, D>
where
N: Scalar + RelativeEq,
DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.matrix
.relative_eq(&other.matrix, epsilon, max_relative)
}
}
impl<N, D: DimName> UlpsEq for Rotation<N, D>
where
N: Scalar + UlpsEq,
DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy,
{
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.matrix.ulps_eq(&other.matrix, epsilon, max_ulps)
}
}
/*
*
* Display
*
*/
impl<N, D: DimName> fmt::Display for Rotation<N, D>
where
N: Real + fmt::Display,
DefaultAllocator: Allocator<N, D, D> + Allocator<usize, D, D>,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
try!(writeln!(f, "Rotation matrix {{"));
try!(write!(f, "{:.*}", precision, self.matrix));
writeln!(f, "}}")
}
}
// // /*
// // *
// // * Absolute
// // *
// // */
// // impl<N: Absolute> Absolute for $t<N> {
// // type AbsoluteValue = $submatrix<N::AbsoluteValue>;
// //
// // #[inline]
// // fn abs(m: &$t<N>) -> $submatrix<N::AbsoluteValue> {
// // Absolute::abs(&m.submatrix)
// // }
// // }