nalgebra/src/geometry/isometry_construction.rs

187 lines
6.4 KiB
Rust

#[cfg(feature = "arbitrary")]
use base::storage::Owned;
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
use num::One;
use rand::distributions::{Distribution, Standard};
use rand::Rng;
use alga::general::Real;
use alga::linear::Rotation as AlgaRotation;
use base::allocator::Allocator;
use base::dimension::{DimName, U2, U3};
use base::{DefaultAllocator, Vector2, Vector3};
use geometry::{
Isometry, Point, Point3, Rotation, Rotation2, Rotation3, Translation, UnitComplex,
UnitQuaternion,
};
impl<N: Real, D: DimName, R: AlgaRotation<Point<N, D>>> Isometry<N, D, R>
where
DefaultAllocator: Allocator<N, D>,
{
/// Creates a new identity isometry.
#[inline]
pub fn identity() -> Self {
Self::from_parts(Translation::identity(), R::identity())
}
/// The isometry that applies the rotation `r` with its axis passing through the point `p`.
/// This effectively lets `p` invariant.
#[inline]
pub fn rotation_wrt_point(r: R, p: Point<N, D>) -> Self {
let shift = r.transform_vector(&-&p.coords);
Self::from_parts(Translation::from_vector(shift + p.coords), r)
}
}
impl<N: Real, D: DimName, R: AlgaRotation<Point<N, D>>> One for Isometry<N, D, R>
where
DefaultAllocator: Allocator<N, D>,
{
/// Creates a new identity isometry.
#[inline]
fn one() -> Self {
Self::identity()
}
}
impl<N: Real, D: DimName, R> Distribution<Isometry<N, D, R>> for Standard
where
R: AlgaRotation<Point<N, D>>,
Standard: Distribution<N> + Distribution<R>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> Isometry<N, D, R> {
Isometry::from_parts(rng.gen(), rng.gen())
}
}
#[cfg(feature = "arbitrary")]
impl<N, D: DimName, R> Arbitrary for Isometry<N, D, R>
where
N: Real + Arbitrary + Send,
R: AlgaRotation<Point<N, D>> + Arbitrary + Send,
Owned<N, D>: Send,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn arbitrary<G: Gen>(rng: &mut G) -> Self {
Self::from_parts(Arbitrary::arbitrary(rng), Arbitrary::arbitrary(rng))
}
}
/*
*
* Constructors for various static dimensions.
*
*/
// 2D rotation.
impl<N: Real> Isometry<N, U2, Rotation2<N>> {
/// Creates a new isometry from a translation and a rotation angle.
#[inline]
pub fn new(translation: Vector2<N>, angle: N) -> Self {
Self::from_parts(
Translation::from_vector(translation),
Rotation::<N, U2>::new(angle),
)
}
}
impl<N: Real> Isometry<N, U2, UnitComplex<N>> {
/// Creates a new isometry from a translation and a rotation angle.
#[inline]
pub fn new(translation: Vector2<N>, angle: N) -> Self {
Self::from_parts(
Translation::from_vector(translation),
UnitComplex::from_angle(angle),
)
}
}
// 3D rotation.
macro_rules! isometry_construction_impl(
($RotId: ident < $($RotParams: ident),*>, $RRDim: ty, $RCDim: ty) => {
impl<N: Real> Isometry<N, U3, $RotId<$($RotParams),*>> {
/// Creates a new isometry from a translation and a rotation axis-angle.
#[inline]
pub fn new(translation: Vector3<N>, axisangle: Vector3<N>) -> Self {
Self::from_parts(
Translation::from_vector(translation),
$RotId::<$($RotParams),*>::from_scaled_axis(axisangle))
}
/// Creates an isometry that corresponds to the local frame of an observer standing at the
/// point `eye` and looking toward `target`.
///
/// It maps the view direction `target - eye` to the positive `z` axis and the origin to the
/// `eye`.
///
/// # Arguments
/// * eye - The observer position.
/// * target - The target position.
/// * up - Vertical direction. The only requirement of this parameter is to not be collinear
/// to `eye - at`. Non-collinearity is not checked.
#[inline]
pub fn new_observer_frame(eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>)
-> Self {
Self::from_parts(
Translation::from_vector(eye.coords.clone()),
$RotId::new_observer_frame(&(target - eye), up))
}
/// Builds a right-handed look-at view matrix.
///
/// This conforms to the common notion of right handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * eye - The eye position.
/// * target - The target position.
/// * up - A vector approximately aligned with required the vertical axis. The only
/// requirement of this parameter is to not be collinear to `target - eye`.
#[inline]
pub fn look_at_rh(eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>)
-> Self {
let rotation = $RotId::look_at_rh(&(target - eye), up);
let trans = &rotation * (-eye);
Self::from_parts(Translation::from_vector(trans.coords), rotation)
}
/// Builds a left-handed look-at view matrix.
///
/// This conforms to the common notion of left handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * eye - The eye position.
/// * target - The target position.
/// * up - A vector approximately aligned with required the vertical axis. The only
/// requirement of this parameter is to not be collinear to `target - eye`.
#[inline]
pub fn look_at_lh(eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>)
-> Self {
let rotation = $RotId::look_at_lh(&(target - eye), up);
let trans = &rotation * (-eye);
Self::from_parts(Translation::from_vector(trans.coords), rotation)
}
}
}
);
isometry_construction_impl!(Rotation3<N>, U3, U3);
isometry_construction_impl!(UnitQuaternion<N>, U4, U1);