581 lines
20 KiB
Rust
Executable File
581 lines
20 KiB
Rust
Executable File
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
|
|
use num::{One, Zero};
|
|
use std::fmt;
|
|
use std::hash;
|
|
|
|
#[cfg(feature = "serde-serialize-no-std")]
|
|
use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
|
|
|
#[cfg(feature = "serde-serialize-no-std")]
|
|
use crate::base::storage::Owned;
|
|
|
|
use simba::scalar::RealField;
|
|
use simba::simd::SimdRealField;
|
|
|
|
use crate::base::allocator::Allocator;
|
|
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
|
|
use crate::base::{Const, DefaultAllocator, OMatrix, SMatrix, SVector, Scalar, Unit};
|
|
use crate::geometry::Point;
|
|
|
|
/// A rotation matrix.
|
|
///
|
|
/// This is also known as an element of a Special Orthogonal (SO) group.
|
|
/// The `Rotation` type can either represent a 2D or 3D rotation, represented as a matrix.
|
|
/// For a rotation based on quaternions, see [`UnitQuaternion`](crate::UnitQuaternion) instead.
|
|
///
|
|
/// Note that instead of using the [`Rotation`](crate::Rotation) type in your code directly, you should use one
|
|
/// of its aliases: [`Rotation2`](crate::Rotation2), or [`Rotation3`](crate::Rotation3). Though
|
|
/// keep in mind that all the documentation of all the methods of these aliases will also appears on
|
|
/// this page.
|
|
///
|
|
/// # Construction
|
|
/// * [Identity <span style="float:right;">`identity`</span>](#identity)
|
|
/// * [From a 2D rotation angle <span style="float:right;">`new`…</span>](#construction-from-a-2d-rotation-angle)
|
|
/// * [From an existing 2D matrix or rotations <span style="float:right;">`from_matrix`, `rotation_between`, `powf`…</span>](#construction-from-an-existing-2d-matrix-or-rotations)
|
|
/// * [From a 3D axis and/or angles <span style="float:right;">`new`, `from_euler_angles`, `from_axis_angle`…</span>](#construction-from-a-3d-axis-andor-angles)
|
|
/// * [From a 3D eye position and target point <span style="float:right;">`look_at`, `look_at_lh`, `rotation_between`…</span>](#construction-from-a-3d-eye-position-and-target-point)
|
|
/// * [From an existing 3D matrix or rotations <span style="float:right;">`from_matrix`, `rotation_between`, `powf`…</span>](#construction-from-an-existing-3d-matrix-or-rotations)
|
|
///
|
|
/// # Transformation and composition
|
|
/// Note that transforming vectors and points can be done by multiplication, e.g., `rotation * point`.
|
|
/// Composing an rotation with another transformation can also be done by multiplication or division.
|
|
/// * [3D axis and angle extraction <span style="float:right;">`angle`, `euler_angles`, `scaled_axis`, `angle_to`…</span>](#3d-axis-and-angle-extraction)
|
|
/// * [2D angle extraction <span style="float:right;">`angle`, `angle_to`…</span>](#2d-angle-extraction)
|
|
/// * [Transformation of a vector or a point <span style="float:right;">`transform_vector`, `inverse_transform_point`…</span>](#transformation-of-a-vector-or-a-point)
|
|
/// * [Transposition and inversion <span style="float:right;">`transpose`, `inverse`…</span>](#transposition-and-inversion)
|
|
/// * [Interpolation <span style="float:right;">`slerp`…</span>](#interpolation)
|
|
///
|
|
/// # Conversion
|
|
/// * [Conversion to a matrix <span style="float:right;">`matrix`, `to_homogeneous`…</span>](#conversion-to-a-matrix)
|
|
///
|
|
#[repr(C)]
|
|
#[cfg_attr(
|
|
feature = "rkyv-serialize-no-std",
|
|
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize),
|
|
archive(
|
|
as = "Rotation<T::Archived, D>",
|
|
bound(archive = "
|
|
T: rkyv::Archive,
|
|
SMatrix<T, D, D>: rkyv::Archive<Archived = SMatrix<T::Archived, D, D>>
|
|
")
|
|
)
|
|
)]
|
|
#[cfg_attr(feature = "rkyv-serialize", derive(bytecheck::CheckBytes))]
|
|
#[cfg_attr(feature = "cuda", derive(cust_core::DeviceCopy))]
|
|
#[derive(Copy, Clone)]
|
|
pub struct Rotation<T, const D: usize> {
|
|
matrix: SMatrix<T, D, D>,
|
|
}
|
|
|
|
impl<T: fmt::Debug, const D: usize> fmt::Debug for Rotation<T, D> {
|
|
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
|
|
self.matrix.fmt(formatter)
|
|
}
|
|
}
|
|
|
|
impl<T: Scalar + hash::Hash, const D: usize> hash::Hash for Rotation<T, D>
|
|
where
|
|
<DefaultAllocator as Allocator<T, Const<D>, Const<D>>>::Buffer: hash::Hash,
|
|
{
|
|
fn hash<H: hash::Hasher>(&self, state: &mut H) {
|
|
self.matrix.hash(state)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "bytemuck")]
|
|
unsafe impl<T, const D: usize> bytemuck::Zeroable for Rotation<T, D>
|
|
where
|
|
T: Scalar + bytemuck::Zeroable,
|
|
SMatrix<T, D, D>: bytemuck::Zeroable,
|
|
{
|
|
}
|
|
|
|
#[cfg(feature = "bytemuck")]
|
|
unsafe impl<T, const D: usize> bytemuck::Pod for Rotation<T, D>
|
|
where
|
|
T: Scalar + bytemuck::Pod,
|
|
SMatrix<T, D, D>: bytemuck::Pod,
|
|
{
|
|
}
|
|
|
|
#[cfg(feature = "serde-serialize-no-std")]
|
|
impl<T: Scalar, const D: usize> Serialize for Rotation<T, D>
|
|
where
|
|
Owned<T, Const<D>, Const<D>>: Serialize,
|
|
{
|
|
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
|
where
|
|
S: Serializer,
|
|
{
|
|
self.matrix.serialize(serializer)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "serde-serialize-no-std")]
|
|
impl<'a, T: Scalar, const D: usize> Deserialize<'a> for Rotation<T, D>
|
|
where
|
|
Owned<T, Const<D>, Const<D>>: Deserialize<'a>,
|
|
{
|
|
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
|
|
where
|
|
Des: Deserializer<'a>,
|
|
{
|
|
let matrix = SMatrix::<T, D, D>::deserialize(deserializer)?;
|
|
|
|
Ok(Self::from_matrix_unchecked(matrix))
|
|
}
|
|
}
|
|
|
|
impl<T, const D: usize> Rotation<T, D> {
|
|
/// Creates a new rotation from the given square matrix.
|
|
///
|
|
/// The matrix orthonormality is not checked.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Rotation2, Rotation3, Matrix2, Matrix3};
|
|
/// # use std::f32;
|
|
/// let mat = Matrix3::new(0.8660254, -0.5, 0.0,
|
|
/// 0.5, 0.8660254, 0.0,
|
|
/// 0.0, 0.0, 1.0);
|
|
/// let rot = Rotation3::from_matrix_unchecked(mat);
|
|
///
|
|
/// assert_eq!(*rot.matrix(), mat);
|
|
///
|
|
///
|
|
/// let mat = Matrix2::new(0.8660254, -0.5,
|
|
/// 0.5, 0.8660254);
|
|
/// let rot = Rotation2::from_matrix_unchecked(mat);
|
|
///
|
|
/// assert_eq!(*rot.matrix(), mat);
|
|
/// ```
|
|
#[inline]
|
|
pub const fn from_matrix_unchecked(matrix: SMatrix<T, D, D>) -> Self {
|
|
Self { matrix }
|
|
}
|
|
}
|
|
|
|
/// # Conversion to a matrix
|
|
impl<T: Scalar, const D: usize> Rotation<T, D> {
|
|
/// A reference to the underlying matrix representation of this rotation.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix2, Matrix3};
|
|
/// # use std::f32;
|
|
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
|
|
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
|
|
/// 0.5, 0.8660254, 0.0,
|
|
/// 0.0, 0.0, 1.0);
|
|
/// assert_eq!(*rot.matrix(), expected);
|
|
///
|
|
///
|
|
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
|
|
/// let expected = Matrix2::new(0.8660254, -0.5,
|
|
/// 0.5, 0.8660254);
|
|
/// assert_eq!(*rot.matrix(), expected);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn matrix(&self) -> &SMatrix<T, D, D> {
|
|
&self.matrix
|
|
}
|
|
|
|
/// A mutable reference to the underlying matrix representation of this rotation.
|
|
#[inline]
|
|
#[deprecated(note = "Use `.matrix_mut_unchecked()` instead.")]
|
|
pub unsafe fn matrix_mut(&mut self) -> &mut SMatrix<T, D, D> {
|
|
&mut self.matrix
|
|
}
|
|
|
|
/// A mutable reference to the underlying matrix representation of this rotation.
|
|
///
|
|
/// This is suffixed by "_unchecked" because this allows the user to replace the
|
|
/// matrix by another one that is non-inversible or non-orthonormal. If one of
|
|
/// those properties is broken, subsequent method calls may return bogus results.
|
|
#[inline]
|
|
pub fn matrix_mut_unchecked(&mut self) -> &mut SMatrix<T, D, D> {
|
|
&mut self.matrix
|
|
}
|
|
|
|
/// Unwraps the underlying matrix.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix2, Matrix3};
|
|
/// # use std::f32;
|
|
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
|
|
/// let mat = rot.into_inner();
|
|
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
|
|
/// 0.5, 0.8660254, 0.0,
|
|
/// 0.0, 0.0, 1.0);
|
|
/// assert_eq!(mat, expected);
|
|
///
|
|
///
|
|
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
|
|
/// let mat = rot.into_inner();
|
|
/// let expected = Matrix2::new(0.8660254, -0.5,
|
|
/// 0.5, 0.8660254);
|
|
/// assert_eq!(mat, expected);
|
|
/// ```
|
|
#[inline]
|
|
pub fn into_inner(self) -> SMatrix<T, D, D> {
|
|
self.matrix
|
|
}
|
|
|
|
/// Unwraps the underlying matrix.
|
|
/// Deprecated: Use [`Rotation::into_inner`] instead.
|
|
#[deprecated(note = "use `.into_inner()` instead")]
|
|
#[inline]
|
|
pub fn unwrap(self) -> SMatrix<T, D, D> {
|
|
self.matrix
|
|
}
|
|
|
|
/// Converts this rotation into its equivalent homogeneous transformation matrix.
|
|
///
|
|
/// This is the same as `self.into()`.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix3, Matrix4};
|
|
/// # use std::f32;
|
|
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
|
|
/// let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0,
|
|
/// 0.5, 0.8660254, 0.0, 0.0,
|
|
/// 0.0, 0.0, 1.0, 0.0,
|
|
/// 0.0, 0.0, 0.0, 1.0);
|
|
/// assert_eq!(rot.to_homogeneous(), expected);
|
|
///
|
|
///
|
|
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
|
|
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
|
|
/// 0.5, 0.8660254, 0.0,
|
|
/// 0.0, 0.0, 1.0);
|
|
/// assert_eq!(rot.to_homogeneous(), expected);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn to_homogeneous(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
|
|
where
|
|
T: Zero + One,
|
|
Const<D>: DimNameAdd<U1>,
|
|
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
|
|
{
|
|
// We could use `SMatrix::to_homogeneous()` here, but that would imply
|
|
// adding the additional traits `DimAdd` and `IsNotStaticOne`. Maybe
|
|
// these things will get nicer once specialization lands in Rust.
|
|
let mut res = OMatrix::<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>::identity();
|
|
res.fixed_view_mut::<D, D>(0, 0).copy_from(&self.matrix);
|
|
|
|
res
|
|
}
|
|
}
|
|
|
|
/// # Transposition and inversion
|
|
impl<T: Scalar, const D: usize> Rotation<T, D> {
|
|
/// Transposes `self`.
|
|
///
|
|
/// Same as `.inverse()` because the inverse of a rotation matrix is its transform.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
|
|
/// let tr_rot = rot.transpose();
|
|
/// assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6);
|
|
///
|
|
/// let rot = Rotation2::new(1.2);
|
|
/// let tr_rot = rot.transpose();
|
|
/// assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use = "Did you mean to use transpose_mut()?"]
|
|
pub fn transpose(&self) -> Self {
|
|
Self::from_matrix_unchecked(self.matrix.transpose())
|
|
}
|
|
|
|
/// Inverts `self`.
|
|
///
|
|
/// Same as `.transpose()` because the inverse of a rotation matrix is its transform.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
|
|
/// let inv = rot.inverse();
|
|
/// assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);
|
|
///
|
|
/// let rot = Rotation2::new(1.2);
|
|
/// let inv = rot.inverse();
|
|
/// assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use = "Did you mean to use inverse_mut()?"]
|
|
pub fn inverse(&self) -> Self {
|
|
self.transpose()
|
|
}
|
|
|
|
/// Transposes `self` in-place.
|
|
///
|
|
/// Same as `.inverse_mut()` because the inverse of a rotation matrix is its transform.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
|
|
/// let mut tr_rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
|
|
/// tr_rot.transpose_mut();
|
|
///
|
|
/// assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6);
|
|
///
|
|
/// let rot = Rotation2::new(1.2);
|
|
/// let mut tr_rot = Rotation2::new(1.2);
|
|
/// tr_rot.transpose_mut();
|
|
///
|
|
/// assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn transpose_mut(&mut self) {
|
|
self.matrix.transpose_mut()
|
|
}
|
|
|
|
/// Inverts `self` in-place.
|
|
///
|
|
/// Same as `.transpose_mut()` because the inverse of a rotation matrix is its transform.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
|
|
/// let mut inv = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
|
|
/// inv.inverse_mut();
|
|
///
|
|
/// assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);
|
|
///
|
|
/// let rot = Rotation2::new(1.2);
|
|
/// let mut inv = Rotation2::new(1.2);
|
|
/// inv.inverse_mut();
|
|
///
|
|
/// assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn inverse_mut(&mut self) {
|
|
self.transpose_mut()
|
|
}
|
|
}
|
|
|
|
/// # Transformation of a vector or a point
|
|
impl<T: SimdRealField, const D: usize> Rotation<T, D>
|
|
where
|
|
T::Element: SimdRealField,
|
|
{
|
|
/// Rotate the given point.
|
|
///
|
|
/// This is the same as the multiplication `self * pt`.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Point3, Rotation2, Rotation3, UnitQuaternion, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
|
|
/// let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0));
|
|
///
|
|
/// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
|
|
self * pt
|
|
}
|
|
|
|
/// Rotate the given vector.
|
|
///
|
|
/// This is the same as the multiplication `self * v`.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Rotation2, Rotation3, UnitQuaternion, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
|
|
/// let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
|
|
///
|
|
/// assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
|
|
self * v
|
|
}
|
|
|
|
/// Rotate the given point by the inverse of this rotation. This may be
|
|
/// cheaper than inverting the rotation and then transforming the given
|
|
/// point.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Point3, Rotation2, Rotation3, UnitQuaternion, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
|
|
/// let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
|
|
///
|
|
/// assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
|
|
Point::from(self.inverse_transform_vector(&pt.coords))
|
|
}
|
|
|
|
/// Rotate the given vector by the inverse of this rotation. This may be
|
|
/// cheaper than inverting the rotation and then transforming the given
|
|
/// vector.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Rotation2, Rotation3, UnitQuaternion, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
|
|
/// let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
|
|
///
|
|
/// assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
|
|
self.matrix().tr_mul(v)
|
|
}
|
|
|
|
/// Rotate the given vector by the inverse of this rotation. This may be
|
|
/// cheaper than inverting the rotation and then transforming the given
|
|
/// vector.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Rotation2, Rotation3, UnitQuaternion, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::z() * f32::consts::FRAC_PI_2);
|
|
/// let transformed_vector = rot.inverse_transform_unit_vector(&Vector3::x_axis());
|
|
///
|
|
/// assert_relative_eq!(transformed_vector, -Vector3::y_axis(), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn inverse_transform_unit_vector(&self, v: &Unit<SVector<T, D>>) -> Unit<SVector<T, D>> {
|
|
Unit::new_unchecked(self.inverse_transform_vector(&**v))
|
|
}
|
|
}
|
|
|
|
impl<T: Scalar + Eq, const D: usize> Eq for Rotation<T, D> {}
|
|
|
|
impl<T: Scalar + PartialEq, const D: usize> PartialEq for Rotation<T, D> {
|
|
#[inline]
|
|
fn eq(&self, right: &Self) -> bool {
|
|
self.matrix == right.matrix
|
|
}
|
|
}
|
|
|
|
impl<T, const D: usize> AbsDiffEq for Rotation<T, D>
|
|
where
|
|
T: Scalar + AbsDiffEq,
|
|
T::Epsilon: Clone,
|
|
{
|
|
type Epsilon = T::Epsilon;
|
|
|
|
#[inline]
|
|
fn default_epsilon() -> Self::Epsilon {
|
|
T::default_epsilon()
|
|
}
|
|
|
|
#[inline]
|
|
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
|
self.matrix.abs_diff_eq(&other.matrix, epsilon)
|
|
}
|
|
}
|
|
|
|
impl<T, const D: usize> RelativeEq for Rotation<T, D>
|
|
where
|
|
T: Scalar + RelativeEq,
|
|
T::Epsilon: Clone,
|
|
{
|
|
#[inline]
|
|
fn default_max_relative() -> Self::Epsilon {
|
|
T::default_max_relative()
|
|
}
|
|
|
|
#[inline]
|
|
fn relative_eq(
|
|
&self,
|
|
other: &Self,
|
|
epsilon: Self::Epsilon,
|
|
max_relative: Self::Epsilon,
|
|
) -> bool {
|
|
self.matrix
|
|
.relative_eq(&other.matrix, epsilon, max_relative)
|
|
}
|
|
}
|
|
|
|
impl<T, const D: usize> UlpsEq for Rotation<T, D>
|
|
where
|
|
T: Scalar + UlpsEq,
|
|
T::Epsilon: Clone,
|
|
{
|
|
#[inline]
|
|
fn default_max_ulps() -> u32 {
|
|
T::default_max_ulps()
|
|
}
|
|
|
|
#[inline]
|
|
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
|
self.matrix.ulps_eq(&other.matrix, epsilon, max_ulps)
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Display
|
|
*
|
|
*/
|
|
impl<T, const D: usize> fmt::Display for Rotation<T, D>
|
|
where
|
|
T: RealField + fmt::Display,
|
|
{
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
let precision = f.precision().unwrap_or(3);
|
|
|
|
writeln!(f, "Rotation matrix {{")?;
|
|
write!(f, "{:.*}", precision, self.matrix)?;
|
|
writeln!(f, "}}")
|
|
}
|
|
}
|
|
|
|
// // /*
|
|
// // *
|
|
// // * Absolute
|
|
// // *
|
|
// // */
|
|
// // impl<T: Absolute> Absolute for $t<T> {
|
|
// // type AbsoluteValue = $submatrix<T::AbsoluteValue>;
|
|
// //
|
|
// // #[inline]
|
|
// // fn abs(m: &$t<T>) -> $submatrix<T::AbsoluteValue> {
|
|
// // Absolute::abs(&m.submatrix)
|
|
// // }
|
|
// // }
|