nalgebra/tests/linalg/solve.rs
2019-03-23 14:33:47 +01:00

66 lines
2.4 KiB
Rust

#![cfg(feature = "arbitrary")]
macro_rules! gen_tests(
($module: ident, $scalar: ty) => {
mod $module {
use na::{Matrix4, Matrix4x5, Complex};
#[allow(unused_imports)]
use crate::core::helper::{RandScalar, RandComplex};
fn unzero_diagonal<N: Complex>(a: &mut Matrix4<N>) {
for i in 0..4 {
if a[(i, i)].norm1() < na::convert(1.0e-7) {
a[(i, i)] = N::one();
}
}
}
quickcheck! {
fn solve_lower_triangular(a: Matrix4<$scalar>, b: Matrix4x5<$scalar>) -> bool {
let b = b.map(|e| e.0);
let mut a = a.map(|e| e.0);
unzero_diagonal(&mut a);
let tri = a.lower_triangle();
let x = a.solve_lower_triangular(&b).unwrap();
relative_eq!(tri * x, b, epsilon = 1.0e-7)
}
fn solve_upper_triangular(a: Matrix4<$scalar>, b: Matrix4x5<$scalar>) -> bool {
let b = b.map(|e| e.0);
let mut a = a.map(|e| e.0);
unzero_diagonal(&mut a);
let tri = a.upper_triangle();
let x = a.solve_upper_triangular(&b).unwrap();
relative_eq!(tri * x, b, epsilon = 1.0e-7)
}
fn tr_solve_lower_triangular(a: Matrix4<$scalar>, b: Matrix4x5<$scalar>) -> bool {
let b = b.map(|e| e.0);
let mut a = a.map(|e| e.0);
unzero_diagonal(&mut a);
let tri = a.lower_triangle();
let x = a.tr_solve_lower_triangular(&b).unwrap();
relative_eq!(tri.transpose() * x, b, epsilon = 1.0e-7)
}
fn tr_solve_upper_triangular(a: Matrix4<$scalar>, b: Matrix4x5<$scalar>) -> bool {
let b = b.map(|e| e.0);
let mut a = a.map(|e| e.0);
unzero_diagonal(&mut a);
let tri = a.upper_triangle();
let x = a.tr_solve_upper_triangular(&b).unwrap();
relative_eq!(tri.transpose() * x, b, epsilon = 1.0e-7)
}
}
}
}
);
gen_tests!(complex, RandComplex<f64>);
gen_tests!(f64, RandScalar<f64>);