nalgebra/src/base/norm.rs

603 lines
18 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::vec::Vec;
use num::Zero;
use std::ops::Neg;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Dim, DimName, Matrix, MatrixMN, Normed, VectorN};
use crate::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
use crate::storage::{Storage, StorageMut};
use crate::{ComplexField, Scalar, SimdComplexField, Unit};
use simba::scalar::ClosedNeg;
use simba::simd::{SimdOption, SimdPartialOrd};
// TODO: this should be be a trait on alga?
/// A trait for abstract matrix norms.
///
/// This may be moved to the alga crate in the future.
pub trait Norm<N: SimdComplexField> {
/// Apply this norm to the given matrix.
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::SimdRealField
where
R: Dim,
C: Dim,
S: Storage<N, R, C>;
/// Use the metric induced by this norm to compute the metric distance between the two given matrices.
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>,
) -> N::SimdRealField
where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>;
}
/// Euclidean norm.
pub struct EuclideanNorm;
/// Lp norm.
pub struct LpNorm(pub i32);
/// L-infinite norm aka. Chebytchev norm aka. uniform norm aka. suppremum norm.
pub struct UniformNorm;
impl<N: SimdComplexField> Norm<N> for EuclideanNorm {
#[inline]
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::SimdRealField
where
R: Dim,
C: Dim,
S: Storage<N, R, C>,
{
m.norm_squared().simd_sqrt()
}
#[inline]
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>,
) -> N::SimdRealField
where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
{
m1.zip_fold(m2, N::SimdRealField::zero(), |acc, a, b| {
let diff = a - b;
acc + diff.simd_modulus_squared()
})
.simd_sqrt()
}
}
impl<N: SimdComplexField> Norm<N> for LpNorm {
#[inline]
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::SimdRealField
where
R: Dim,
C: Dim,
S: Storage<N, R, C>,
{
m.fold(N::SimdRealField::zero(), |a, b| {
a + b.simd_modulus().simd_powi(self.0)
})
.simd_powf(crate::convert(1.0 / (self.0 as f64)))
}
#[inline]
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>,
) -> N::SimdRealField
where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
{
m1.zip_fold(m2, N::SimdRealField::zero(), |acc, a, b| {
let diff = a - b;
acc + diff.simd_modulus().simd_powi(self.0)
})
.simd_powf(crate::convert(1.0 / (self.0 as f64)))
}
}
impl<N: SimdComplexField> Norm<N> for UniformNorm {
#[inline]
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::SimdRealField
where
R: Dim,
C: Dim,
S: Storage<N, R, C>,
{
// NOTE: we don't use `m.amax()` here because for the complex
// numbers this will return the max norm1 instead of the modulus.
m.fold(N::SimdRealField::zero(), |acc, a| {
acc.simd_max(a.simd_modulus())
})
}
#[inline]
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>,
) -> N::SimdRealField
where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
{
m1.zip_fold(m2, N::SimdRealField::zero(), |acc, a, b| {
let val = (a - b).simd_modulus();
acc.simd_max(val)
})
}
}
/// # Magnitude and norms
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// The squared L2 norm of this vector.
#[inline]
pub fn norm_squared(&self) -> N::SimdRealField
where
N: SimdComplexField,
{
let mut res = N::SimdRealField::zero();
for i in 0..self.ncols() {
let col = self.column(i);
res += col.dotc(&col).simd_real()
}
res
}
/// The L2 norm of this matrix.
///
/// Use `.apply_norm` to apply a custom norm.
#[inline]
pub fn norm(&self) -> N::SimdRealField
where
N: SimdComplexField,
{
self.norm_squared().simd_sqrt()
}
/// Compute the distance between `self` and `rhs` using the metric induced by the euclidean norm.
///
/// Use `.apply_metric_distance` to apply a custom norm.
#[inline]
pub fn metric_distance<R2, C2, S2>(&self, rhs: &Matrix<N, R2, C2, S2>) -> N::SimdRealField
where
N: SimdComplexField,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
self.apply_metric_distance(rhs, &EuclideanNorm)
}
/// Uses the given `norm` to compute the norm of `self`.
///
/// # Example
///
/// ```
/// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm};
///
/// let v = Vector3::new(1.0, 2.0, 3.0);
/// assert_eq!(v.apply_norm(&UniformNorm), 3.0);
/// assert_eq!(v.apply_norm(&LpNorm(1)), 6.0);
/// assert_eq!(v.apply_norm(&EuclideanNorm), v.norm());
/// ```
#[inline]
pub fn apply_norm(&self, norm: &impl Norm<N>) -> N::SimdRealField
where
N: SimdComplexField,
{
norm.norm(self)
}
/// Uses the metric induced by the given `norm` to compute the metric distance between `self` and `rhs`.
///
/// # Example
///
/// ```
/// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm};
///
/// let v1 = Vector3::new(1.0, 2.0, 3.0);
/// let v2 = Vector3::new(10.0, 20.0, 30.0);
///
/// assert_eq!(v1.apply_metric_distance(&v2, &UniformNorm), 27.0);
/// assert_eq!(v1.apply_metric_distance(&v2, &LpNorm(1)), 27.0 + 18.0 + 9.0);
/// assert_eq!(v1.apply_metric_distance(&v2, &EuclideanNorm), (v1 - v2).norm());
/// ```
#[inline]
pub fn apply_metric_distance<R2, C2, S2>(
&self,
rhs: &Matrix<N, R2, C2, S2>,
norm: &impl Norm<N>,
) -> N::SimdRealField
where
N: SimdComplexField,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
norm.metric_distance(self, rhs)
}
/// A synonym for the norm of this matrix.
///
/// Aka the length.
///
/// This function is simply implemented as a call to `norm()`
#[inline]
pub fn magnitude(&self) -> N::SimdRealField
where
N: SimdComplexField,
{
self.norm()
}
/// A synonym for the squared norm of this matrix.
///
/// Aka the squared length.
///
/// This function is simply implemented as a call to `norm_squared()`
#[inline]
pub fn magnitude_squared(&self) -> N::SimdRealField
where
N: SimdComplexField,
{
self.norm_squared()
}
/// Sets the magnitude of this vector.
#[inline]
pub fn set_magnitude(&mut self, magnitude: N::SimdRealField)
where
N: SimdComplexField,
S: StorageMut<N, R, C>,
{
let n = self.norm();
self.scale_mut(magnitude / n)
}
/// Returns a normalized version of this matrix.
#[inline]
#[must_use = "Did you mean to use normalize_mut()?"]
pub fn normalize(&self) -> MatrixMN<N, R, C>
where
N: SimdComplexField,
DefaultAllocator: Allocator<N, R, C>,
{
self.unscale(self.norm())
}
/// The Lp norm of this matrix.
#[inline]
pub fn lp_norm(&self, p: i32) -> N::SimdRealField
where
N: SimdComplexField,
{
self.apply_norm(&LpNorm(p))
}
/// Attempts to normalize `self`.
///
/// The components of this matrix can be SIMD types.
#[inline]
#[must_use = "Did you mean to use simd_try_normalize_mut()?"]
pub fn simd_try_normalize(&self, min_norm: N::SimdRealField) -> SimdOption<MatrixMN<N, R, C>>
where
N: SimdComplexField,
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
{
let n = self.norm();
let le = n.simd_le(min_norm);
let val = self.unscale(n);
SimdOption::new(val, le)
}
/// Sets the magnitude of this vector unless it is smaller than `min_magnitude`.
///
/// If `self.magnitude()` is smaller than `min_magnitude`, it will be left unchanged.
/// Otherwise this is equivalent to: `*self = self.normalize() * magnitude.
#[inline]
pub fn try_set_magnitude(&mut self, magnitude: N::RealField, min_magnitude: N::RealField)
where
N: ComplexField,
S: StorageMut<N, R, C>,
{
let n = self.norm();
if n >= min_magnitude {
self.scale_mut(magnitude / n)
}
}
/// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`.
///
/// The components of this matrix cannot be SIMD types (see `simd_try_normalize`) instead.
#[inline]
#[must_use = "Did you mean to use try_normalize_mut()?"]
pub fn try_normalize(&self, min_norm: N::RealField) -> Option<MatrixMN<N, R, C>>
where
N: ComplexField,
DefaultAllocator: Allocator<N, R, C>,
{
let n = self.norm();
if n <= min_norm {
None
} else {
Some(self.unscale(n))
}
}
}
/// # In-place normalization
impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
/// Normalizes this matrix in-place and returns its norm.
///
/// The components of the matrix cannot be SIMD types (see `simd_try_normalize_mut` instead).
#[inline]
pub fn normalize_mut(&mut self) -> N::SimdRealField
where
N: SimdComplexField,
{
let n = self.norm();
self.unscale_mut(n);
n
}
/// Normalizes this matrix in-place and return its norm.
///
/// The components of the matrix can be SIMD types.
#[inline]
#[must_use = "Did you mean to use simd_try_normalize_mut()?"]
pub fn simd_try_normalize_mut(
&mut self,
min_norm: N::SimdRealField,
) -> SimdOption<N::SimdRealField>
where
N: SimdComplexField,
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
{
let n = self.norm();
let le = n.simd_le(min_norm);
self.apply(|e| e.simd_unscale(n).select(le, e));
SimdOption::new(n, le)
}
/// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`.
///
/// If the normalization succeeded, returns the old norm of this matrix.
#[inline]
pub fn try_normalize_mut(&mut self, min_norm: N::RealField) -> Option<N::RealField>
where
N: ComplexField,
{
let n = self.norm();
if n <= min_norm {
None
} else {
self.unscale_mut(n);
Some(n)
}
}
}
impl<N: SimdComplexField, R: Dim, C: Dim> Normed for MatrixMN<N, R, C>
where
DefaultAllocator: Allocator<N, R, C>,
{
type Norm = N::SimdRealField;
#[inline]
fn norm(&self) -> N::SimdRealField {
self.norm()
}
#[inline]
fn norm_squared(&self) -> N::SimdRealField {
self.norm_squared()
}
#[inline]
fn scale_mut(&mut self, n: Self::Norm) {
self.scale_mut(n)
}
#[inline]
fn unscale_mut(&mut self, n: Self::Norm) {
self.unscale_mut(n)
}
}
impl<N: Scalar + ClosedNeg, R: Dim, C: Dim> Neg for Unit<MatrixMN<N, R, C>>
where
DefaultAllocator: Allocator<N, R, C>,
{
type Output = Unit<MatrixMN<N, R, C>>;
#[inline]
fn neg(self) -> Self::Output {
Unit::new_unchecked(-self.value)
}
}
// TODO: specialization will greatly simplify this implementation in the future.
// In particular:
// use `x()` instead of `::canonical_basis_element`
// use `::new(x, y, z)` instead of `::from_slice`
/// # Basis and orthogonalization
impl<N: ComplexField, D: DimName> VectorN<N, D>
where
DefaultAllocator: Allocator<N, D>,
{
/// The i-the canonical basis element.
#[inline]
fn canonical_basis_element(i: usize) -> Self {
assert!(i < D::dim(), "Index out of bound.");
let mut res = Self::zero();
unsafe {
*res.data.get_unchecked_linear_mut(i) = N::one();
}
res
}
/// Orthonormalizes the given family of vectors. The largest free family of vectors is moved at
/// the beginning of the array and its size is returned. Vectors at an indices larger or equal to
/// this length can be modified to an arbitrary value.
#[inline]
pub fn orthonormalize(vs: &mut [Self]) -> usize {
let mut nbasis_elements = 0;
for i in 0..vs.len() {
{
let (elt, basis) = vs[..i + 1].split_last_mut().unwrap();
for basis_element in &basis[..nbasis_elements] {
*elt -= &*basis_element * elt.dot(basis_element)
}
}
if vs[i].try_normalize_mut(N::RealField::zero()).is_some() {
// TODO: this will be efficient on dynamically-allocated vectors but for
// statically-allocated ones, `.clone_from` would be better.
vs.swap(nbasis_elements, i);
nbasis_elements += 1;
// All the other vectors will be dependent.
if nbasis_elements == D::dim() {
break;
}
}
}
nbasis_elements
}
/// Applies the given closure to each element of the orthonormal basis of the subspace
/// orthogonal to free family of vectors `vs`. If `vs` is not a free family, the result is
/// unspecified.
// TODO: return an iterator instead when `-> impl Iterator` will be supported by Rust.
#[inline]
pub fn orthonormal_subspace_basis<F>(vs: &[Self], mut f: F)
where
F: FnMut(&Self) -> bool,
{
// TODO: is this necessary?
assert!(
vs.len() <= D::dim(),
"The given set of vectors has no chance of being a free family."
);
match D::dim() {
1 => {
if vs.len() == 0 {
let _ = f(&Self::canonical_basis_element(0));
}
}
2 => {
if vs.len() == 0 {
let _ = f(&Self::canonical_basis_element(0))
&& f(&Self::canonical_basis_element(1));
} else if vs.len() == 1 {
let v = &vs[0];
let res = Self::from_column_slice(&[-v[1], v[0]]);
let _ = f(&res.normalize());
}
// Otherwise, nothing.
}
3 => {
if vs.len() == 0 {
let _ = f(&Self::canonical_basis_element(0))
&& f(&Self::canonical_basis_element(1))
&& f(&Self::canonical_basis_element(2));
} else if vs.len() == 1 {
let v = &vs[0];
let mut a;
if v[0].norm1() > v[1].norm1() {
a = Self::from_column_slice(&[v[2], N::zero(), -v[0]]);
} else {
a = Self::from_column_slice(&[N::zero(), -v[2], v[1]]);
};
let _ = a.normalize_mut();
if f(&a.cross(v)) {
let _ = f(&a);
}
} else if vs.len() == 2 {
let _ = f(&vs[0].cross(&vs[1]).normalize());
}
}
_ => {
#[cfg(any(feature = "std", feature = "alloc"))]
{
// XXX: use a GenericArray instead.
let mut known_basis = Vec::new();
for v in vs.iter() {
known_basis.push(v.normalize())
}
for i in 0..D::dim() - vs.len() {
let mut elt = Self::canonical_basis_element(i);
for v in &known_basis {
elt -= v * elt.dot(v)
}
if let Some(subsp_elt) = elt.try_normalize(N::RealField::zero()) {
if !f(&subsp_elt) {
return;
};
known_basis.push(subsp_elt);
}
}
}
#[cfg(all(not(feature = "std"), not(feature = "alloc")))]
{
panic!("Cannot compute the orthogonal subspace basis of a vector with a dimension greater than 3 \
if #![no_std] is enabled and the 'alloc' feature is not enabled.")
}
}
}
}
}