nalgebra/tests/geometry/rotation.rs

328 lines
12 KiB
Rust

use std::f64::consts::PI;
use na::{Matrix3, Quaternion, RealField, Rotation3, UnitQuaternion, UnitVector3, Vector2, Vector3};
#[test]
fn angle_2() {
let a = Vector2::new(4.0, 0.0);
let b = Vector2::new(9.0, 0.0);
assert_eq!(a.angle(&b), 0.0);
}
#[test]
fn angle_3() {
let a = Vector3::new(4.0, 0.0, 0.5);
let b = Vector3::new(8.0, 0.0, 1.0);
assert_eq!(a.angle(&b), 0.0);
}
#[test]
fn from_rotation_matrix() {
// Test degenerate case when from_matrix gets stuck in Identity rotation
let identity = Rotation3::from_matrix(&Matrix3::new(
1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0,
));
assert_relative_eq!(identity, &Rotation3::identity(), epsilon = 0.001);
let rotated_z = Rotation3::from_matrix(&Matrix3::new(
1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0,
));
assert_relative_eq!(rotated_z, &Rotation3::from_axis_angle(&UnitVector3::new_unchecked(Vector3::new(1.0, 0.0, 0.0)), PI), epsilon = 0.001);
// Test that issue 628 is fixed
let m_628 = nalgebra::Matrix3::<f64>::new(-1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0);
assert_relative_ne!(identity, nalgebra::Rotation3::from_matrix(&m_628), epsilon = 0.01);
assert_relative_eq!(nalgebra::Rotation3::from_matrix_unchecked(m_628.clone()), nalgebra::Rotation3::from_matrix(&m_628), epsilon = 0.001);
// Test that issue 1078 is fixed
let m_1078 = nalgebra::Matrix3::<f64>::new(0.0, 0.0, 1.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0);
assert_relative_ne!(identity, nalgebra::Rotation3::from_matrix(&m_1078), epsilon = 0.01);
assert_relative_eq!(nalgebra::Rotation3::from_matrix_unchecked(m_1078.clone()), nalgebra::Rotation3::from_matrix(&m_1078), epsilon = 0.001);
}
#[test]
fn quaternion_euler_angles_issue_494() {
let quat = UnitQuaternion::from_quaternion(Quaternion::new(
-0.10405792,
-0.6993922f32,
-0.10406871,
0.69942284,
));
let angs = quat.euler_angles();
assert_eq!(angs.0, 2.8461843);
assert_eq!(angs.1, f32::frac_pi_2());
assert_eq!(angs.2, 0.0);
}
#[cfg(feature = "proptest-support")]
mod proptest_tests {
use approx::AbsDiffEq;
use na::{self, Rotation2, Rotation3, Unit};
use na::{UnitComplex, UnitQuaternion};
use simba::scalar::RealField;
use std::f64;
use crate::proptest::*;
use proptest::{prop_assert, prop_assert_eq, proptest};
proptest! {
/*
*
* Euler angles.
*
*/
#[test]
fn from_euler_angles(r in PROPTEST_F64, p in PROPTEST_F64, y in PROPTEST_F64) {
let roll = Rotation3::from_euler_angles(r, 0.0, 0.0);
let pitch = Rotation3::from_euler_angles(0.0, p, 0.0);
let yaw = Rotation3::from_euler_angles(0.0, 0.0, y);
let rpy = Rotation3::from_euler_angles(r, p, y);
prop_assert_eq!(roll[(0, 0)], 1.0); // rotation wrt. x axis.
prop_assert_eq!(pitch[(1, 1)], 1.0); // rotation wrt. y axis.
prop_assert_eq!(yaw[(2, 2)], 1.0); // rotation wrt. z axis.
prop_assert_eq!(yaw * pitch * roll, rpy);
}
#[test]
fn euler_angles(r in PROPTEST_F64, p in PROPTEST_F64, y in PROPTEST_F64) {
let rpy = Rotation3::from_euler_angles(r, p, y);
let (roll, pitch, yaw) = rpy.euler_angles();
prop_assert!(relative_eq!(Rotation3::from_euler_angles(roll, pitch, yaw), rpy, epsilon = 1.0e-7));
}
#[test]
fn euler_angles_gimble_lock(r in PROPTEST_F64, y in PROPTEST_F64) {
let pos = Rotation3::from_euler_angles(r, f64::frac_pi_2(), y);
let neg = Rotation3::from_euler_angles(r, -f64::frac_pi_2(), y);
let (pos_r, pos_p, pos_y) = pos.euler_angles();
let (neg_r, neg_p, neg_y) = neg.euler_angles();
prop_assert!(relative_eq!(Rotation3::from_euler_angles(pos_r, pos_p, pos_y), pos, epsilon = 1.0e-7));
prop_assert!(relative_eq!(Rotation3::from_euler_angles(neg_r, neg_p, neg_y), neg, epsilon = 1.0e-7));
}
/*
*
* Inversion is transposition.
*
*/
#[test]
fn rotation_inv_3(a in rotation3()) {
let ta = a.transpose();
let ia = a.inverse();
prop_assert_eq!(ta, ia);
prop_assert!(relative_eq!(&ta * &a, Rotation3::identity(), epsilon = 1.0e-7));
prop_assert!(relative_eq!(&ia * a, Rotation3::identity(), epsilon = 1.0e-7));
prop_assert!(relative_eq!( a * &ta, Rotation3::identity(), epsilon = 1.0e-7));
prop_assert!(relative_eq!( a * ia, Rotation3::identity(), epsilon = 1.0e-7));
}
#[test]
fn rotation_inv_2(a in rotation2()) {
let ta = a.transpose();
let ia = a.inverse();
prop_assert_eq!(ta, ia);
prop_assert!(relative_eq!(&ta * &a, Rotation2::identity(), epsilon = 1.0e-7));
prop_assert!(relative_eq!(&ia * a, Rotation2::identity(), epsilon = 1.0e-7));
prop_assert!(relative_eq!( a * &ta, Rotation2::identity(), epsilon = 1.0e-7));
prop_assert!(relative_eq!( a * ia, Rotation2::identity(), epsilon = 1.0e-7));
}
/*
*
* Angle between vectors.
*
*/
#[test]
fn angle_is_commutative_2(a in vector2(), b in vector2()) {
prop_assert_eq!(a.angle(&b), b.angle(&a))
}
#[test]
fn angle_is_commutative_3(a in vector3(), b in vector3()) {
prop_assert_eq!(a.angle(&b), b.angle(&a))
}
/*
*
* Rotation matrix between vectors.
*
*/
#[test]
fn rotation_between_is_anticommutative_2(a in vector2(), b in vector2()) {
let rab = Rotation2::rotation_between(&a, &b);
let rba = Rotation2::rotation_between(&b, &a);
prop_assert!(relative_eq!(rab * rba, Rotation2::identity()));
}
#[test]
fn rotation_between_is_anticommutative_3(a in vector3(), b in vector3()) {
let rots = (Rotation3::rotation_between(&a, &b), Rotation3::rotation_between(&b, &a));
if let (Some(rab), Some(rba)) = rots {
prop_assert!(relative_eq!(rab * rba, Rotation3::identity(), epsilon = 1.0e-7));
}
}
#[test]
fn rotation_between_is_identity(v2 in vector2(), v3 in vector3()) {
let vv2 = 3.42 * v2;
let vv3 = 4.23 * v3;
prop_assert!(relative_eq!(v2.angle(&vv2), 0.0, epsilon = 1.0e-7));
prop_assert!(relative_eq!(v3.angle(&vv3), 0.0, epsilon = 1.0e-7));
prop_assert!(relative_eq!(Rotation2::rotation_between(&v2, &vv2), Rotation2::identity()));
prop_assert_eq!(Rotation3::rotation_between(&v3, &vv3).unwrap(), Rotation3::identity());
}
#[test]
fn rotation_between_2(a in vector2(), b in vector2()) {
if !relative_eq!(a.angle(&b), 0.0, epsilon = 1.0e-7) {
let r = Rotation2::rotation_between(&a, &b);
prop_assert!(relative_eq!((r * a).angle(&b), 0.0, epsilon = 1.0e-7))
}
}
#[test]
fn rotation_between_3(a in vector3(), b in vector3()) {
if !relative_eq!(a.angle(&b), 0.0, epsilon = 1.0e-7) {
let r = Rotation3::rotation_between(&a, &b).unwrap();
prop_assert!(relative_eq!((r * a).angle(&b), 0.0, epsilon = 1.0e-7))
}
}
/*
*
* Rotation construction.
*
*/
#[test]
fn new_rotation_2(angle in PROPTEST_F64) {
let r = Rotation2::new(angle);
let angle = na::wrap(angle, -f64::pi(), f64::pi());
prop_assert!(relative_eq!(r.angle(), angle, epsilon = 1.0e-7))
}
#[test]
fn new_rotation_3(axisangle in vector3()) {
let r = Rotation3::new(axisangle);
if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, 0.0) {
let angle = na::wrap(angle, -f64::pi(), f64::pi());
prop_assert!((relative_eq!(r.angle(), angle, epsilon = 1.0e-7) &&
relative_eq!(r.axis().unwrap(), axis, epsilon = 1.0e-7)) ||
(relative_eq!(r.angle(), -angle, epsilon = 1.0e-7) &&
relative_eq!(r.axis().unwrap(), -axis, epsilon = 1.0e-7)))
}
else {
prop_assert_eq!(r, Rotation3::identity())
}
}
/*
*
* Rotation pow.
*
*/
#[test]
fn powf_rotation_2(angle in PROPTEST_F64, pow in PROPTEST_F64) {
let r = Rotation2::new(angle).powf(pow);
let angle = na::wrap(angle, -f64::pi(), f64::pi());
let pangle = na::wrap(angle * pow, -f64::pi(), f64::pi());
prop_assert!(relative_eq!(r.angle(), pangle, epsilon = 1.0e-7));
}
#[test]
fn powf_rotation_3(axisangle in vector3(), pow in PROPTEST_F64) {
let r = Rotation3::new(axisangle).powf(pow);
if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, 0.0) {
let angle = na::wrap(angle, -f64::pi(), f64::pi());
let pangle = na::wrap(angle * pow, -f64::pi(), f64::pi());
prop_assert!((relative_eq!(r.angle(), pangle, epsilon = 1.0e-7) &&
relative_eq!(r.axis().unwrap(), axis, epsilon = 1.0e-7)) ||
(relative_eq!(r.angle(), -pangle, epsilon = 1.0e-7) &&
relative_eq!(r.axis().unwrap(), -axis, epsilon = 1.0e-7)));
}
else {
prop_assert_eq!(r, Rotation3::identity())
}
}
//
//In general, `slerp(a,b,t)` should equal `(b/a)^t * a` even though in practice,
//we may not use that formula directly for complex numbers or quaternions
//
#[test]
fn slerp_powf_agree_2(a in unit_complex(), b in unit_complex(), t in PROPTEST_F64) {
let z1 = a.slerp(&b, t);
let z2 = (b/a).powf(t) * a;
prop_assert!(relative_eq!(z1,z2,epsilon=1e-10));
}
#[test]
fn slerp_powf_agree_3(a in unit_quaternion(), b in unit_quaternion(), t in PROPTEST_F64) {
if let Some(z1) = a.try_slerp(&b, t, f64::default_epsilon()) {
let z2 = (b/a).powf(t) * a;
prop_assert!(relative_eq!(z1,z2,epsilon=1e-10));
}
}
//
//when not antipodal, slerp should always take the shortest path between two orientations
//
#[test]
fn slerp_takes_shortest_path_2(
z in unit_complex(), dtheta in -f64::pi()..f64::pi(), t in 0.0..1.0f64
) {
//ambiguous when at ends of angle range, so we don't really care here
if dtheta.abs() != f64::pi() {
//make two complex numbers separated by an angle between -pi and pi
let (z1, z2) = (z, z * UnitComplex::new(dtheta));
let z3 = z1.slerp(&z2, t);
//since the angle is no larger than a half-turn, and t is between 0 and 1,
//the shortest path just corresponds to adding the scaled angle
let a1 = z3.angle();
let a2 = na::wrap(z1.angle() + dtheta*t, -f64::pi(), f64::pi());
prop_assert!(relative_eq!(a1, a2, epsilon=1e-10));
}
}
#[test]
fn slerp_takes_shortest_path_3(
q in unit_quaternion(), dtheta in -f64::pi()..f64::pi(), t in 0.0..1.0f64
) {
//ambiguous when at ends of angle range, so we don't really care here
if let Some(axis) = q.axis() {
//make two quaternions separated by an angle between -pi and pi
let (q1, q2) = (q, q * UnitQuaternion::from_axis_angle(&axis, dtheta));
let q3 = q1.slerp(&q2, t);
//since the angle is no larger than a half-turn, and t is between 0 and 1,
//the shortest path just corresponds to adding the scaled angle
let q4 = q1 * UnitQuaternion::from_axis_angle(&axis, dtheta*t);
prop_assert!(relative_eq!(q3, q4, epsilon=1e-10));
}
}
}
}