nalgebra/src/base/cg.rs

386 lines
13 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
*
* Computer-graphics specific implementations.
* Currently, it is mostly implemented for homogeneous matrices in 2- and 3-space.
*
*/
use num::One;
use base::allocator::Allocator;
use base::dimension::{DimName, DimNameDiff, DimNameSub, U1};
use base::storage::{Storage, StorageMut};
use base::{
DefaultAllocator, Matrix3, Matrix4, MatrixN, Scalar, SquareMatrix, Unit, Vector, Vector3,
VectorN,
};
use geometry::{
Isometry, IsometryMatrix3, Orthographic3, Perspective3, Point, Point3, Rotation2, Rotation3,
};
use alga::general::{Real, Ring};
use alga::linear::Transformation;
impl<N, D: DimName> MatrixN<N, D>
where
N: Scalar + Ring,
DefaultAllocator: Allocator<N, D, D>,
{
/// Creates a new homogeneous matrix that applies the same scaling factor on each dimension.
#[inline]
pub fn new_scaling(scaling: N) -> Self {
let mut res = Self::from_diagonal_element(scaling);
res[(D::dim() - 1, D::dim() - 1)] = N::one();
res
}
/// Creates a new homogeneous matrix that applies a distinct scaling factor for each dimension.
#[inline]
pub fn new_nonuniform_scaling<SB>(scaling: &Vector<N, DimNameDiff<D, U1>, SB>) -> Self
where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
{
let mut res = Self::one();
for i in 0..scaling.len() {
res[(i, i)] = scaling[i];
}
res
}
/// Creates a new homogeneous matrix that applies a pure translation.
#[inline]
pub fn new_translation<SB>(translation: &Vector<N, DimNameDiff<D, U1>, SB>) -> Self
where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
{
let mut res = Self::one();
res.fixed_slice_mut::<DimNameDiff<D, U1>, U1>(0, D::dim() - 1)
.copy_from(translation);
res
}
}
impl<N: Real> Matrix3<N> {
/// Builds a 2 dimensional homogeneous rotation matrix from an angle in radian.
#[inline]
pub fn new_rotation(angle: N) -> Self {
Rotation2::new(angle).to_homogeneous()
}
}
impl<N: Real> Matrix4<N> {
/// Builds a 3D homogeneous rotation matrix from an axis and an angle (multiplied together).
///
/// Returns the identity matrix if the given argument is zero.
#[inline]
pub fn new_rotation(axisangle: Vector3<N>) -> Self {
Rotation3::new(axisangle).to_homogeneous()
}
/// Builds a 3D homogeneous rotation matrix from an axis and an angle (multiplied together).
///
/// Returns the identity matrix if the given argument is zero.
#[inline]
pub fn new_rotation_wrt_point(axisangle: Vector3<N>, pt: Point3<N>) -> Self {
let rot = Rotation3::from_scaled_axis(axisangle);
Isometry::rotation_wrt_point(rot, pt).to_homogeneous()
}
/// Builds a 3D homogeneous rotation matrix from an axis and an angle (multiplied together).
///
/// Returns the identity matrix if the given argument is zero.
/// This is identical to `Self::new_rotation`.
#[inline]
pub fn from_scaled_axis(axisangle: Vector3<N>) -> Self {
Rotation3::from_scaled_axis(axisangle).to_homogeneous()
}
/// Creates a new rotation from Euler angles.
///
/// The primitive rotations are applied in order: 1 roll 2 pitch 3 yaw.
pub fn from_euler_angles(roll: N, pitch: N, yaw: N) -> Self {
Rotation3::from_euler_angles(roll, pitch, yaw).to_homogeneous()
}
/// Builds a 3D homogeneous rotation matrix from an axis and a rotation angle.
pub fn from_axis_angle(axis: &Unit<Vector3<N>>, angle: N) -> Self {
Rotation3::from_axis_angle(axis, angle).to_homogeneous()
}
/// Creates a new homogeneous matrix for an orthographic projection.
#[inline]
pub fn new_orthographic(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> Self {
Orthographic3::new(left, right, bottom, top, znear, zfar).into_inner()
}
/// Creates a new homogeneous matrix for a perspective projection.
#[inline]
pub fn new_perspective(aspect: N, fovy: N, znear: N, zfar: N) -> Self {
Perspective3::new(aspect, fovy, znear, zfar).into_inner()
}
/// Creates an isometry that corresponds to the local frame of an observer standing at the
/// point `eye` and looking toward `target`.
///
/// It maps the view direction `target - eye` to the positive `z` axis and the origin to the
/// `eye`.
#[inline]
pub fn face_towards(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self {
IsometryMatrix3::face_towards(eye, target, up).to_homogeneous()
}
/// Deprecated: Use [Matrix4::face_towards] instead.
#[deprecated(note="renamed to `face_towards`")]
pub fn new_observer_frame(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self {
Matrix4::face_towards(eye, target, up)
}
/// Builds a right-handed look-at view matrix.
#[inline]
pub fn look_at_rh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self {
IsometryMatrix3::look_at_rh(eye, target, up).to_homogeneous()
}
/// Builds a left-handed look-at view matrix.
#[inline]
pub fn look_at_lh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self {
IsometryMatrix3::look_at_lh(eye, target, up).to_homogeneous()
}
}
impl<N: Scalar + Ring, D: DimName, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
/// Computes the transformation equal to `self` followed by an uniform scaling factor.
#[inline]
pub fn append_scaling(&self, scaling: N) -> MatrixN<N, D>
where
D: DimNameSub<U1>,
DefaultAllocator: Allocator<N, D, D>,
{
let mut res = self.clone_owned();
res.append_scaling_mut(scaling);
res
}
/// Computes the transformation equal to an uniform scaling factor followed by `self`.
#[inline]
pub fn prepend_scaling(&self, scaling: N) -> MatrixN<N, D>
where
D: DimNameSub<U1>,
DefaultAllocator: Allocator<N, D, D>,
{
let mut res = self.clone_owned();
res.prepend_scaling_mut(scaling);
res
}
/// Computes the transformation equal to `self` followed by a non-uniform scaling factor.
#[inline]
pub fn append_nonuniform_scaling<SB>(
&self,
scaling: &Vector<N, DimNameDiff<D, U1>, SB>,
) -> MatrixN<N, D>
where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
DefaultAllocator: Allocator<N, D, D>,
{
let mut res = self.clone_owned();
res.append_nonuniform_scaling_mut(scaling);
res
}
/// Computes the transformation equal to a non-uniform scaling factor followed by `self`.
#[inline]
pub fn prepend_nonuniform_scaling<SB>(
&self,
scaling: &Vector<N, DimNameDiff<D, U1>, SB>,
) -> MatrixN<N, D>
where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
DefaultAllocator: Allocator<N, D, D>,
{
let mut res = self.clone_owned();
res.prepend_nonuniform_scaling_mut(scaling);
res
}
/// Computes the transformation equal to `self` followed by a translation.
#[inline]
pub fn append_translation<SB>(&self, shift: &Vector<N, DimNameDiff<D, U1>, SB>) -> MatrixN<N, D>
where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
DefaultAllocator: Allocator<N, D, D>,
{
let mut res = self.clone_owned();
res.append_translation_mut(shift);
res
}
/// Computes the transformation equal to a translation followed by `self`.
#[inline]
pub fn prepend_translation<SB>(
&self,
shift: &Vector<N, DimNameDiff<D, U1>, SB>,
) -> MatrixN<N, D>
where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameDiff<D, U1>>,
{
let mut res = self.clone_owned();
res.prepend_translation_mut(shift);
res
}
}
impl<N: Scalar + Ring, D: DimName, S: StorageMut<N, D, D>> SquareMatrix<N, D, S> {
/// Computes in-place the transformation equal to `self` followed by an uniform scaling factor.
#[inline]
pub fn append_scaling_mut(&mut self, scaling: N)
where D: DimNameSub<U1> {
let mut to_scale = self.fixed_rows_mut::<DimNameDiff<D, U1>>(0);
to_scale *= scaling;
}
/// Computes in-place the transformation equal to an uniform scaling factor followed by `self`.
#[inline]
pub fn prepend_scaling_mut(&mut self, scaling: N)
where D: DimNameSub<U1> {
let mut to_scale = self.fixed_columns_mut::<DimNameDiff<D, U1>>(0);
to_scale *= scaling;
}
/// Computes in-place the transformation equal to `self` followed by a non-uniform scaling factor.
#[inline]
pub fn append_nonuniform_scaling_mut<SB>(&mut self, scaling: &Vector<N, DimNameDiff<D, U1>, SB>)
where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
{
for i in 0..scaling.len() {
let mut to_scale = self.fixed_rows_mut::<U1>(i);
to_scale *= scaling[i];
}
}
/// Computes in-place the transformation equal to a non-uniform scaling factor followed by `self`.
#[inline]
pub fn prepend_nonuniform_scaling_mut<SB>(
&mut self,
scaling: &Vector<N, DimNameDiff<D, U1>, SB>,
) where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
{
for i in 0..scaling.len() {
let mut to_scale = self.fixed_columns_mut::<U1>(i);
to_scale *= scaling[i];
}
}
/// Computes the transformation equal to `self` followed by a translation.
#[inline]
pub fn append_translation_mut<SB>(&mut self, shift: &Vector<N, DimNameDiff<D, U1>, SB>)
where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
{
for i in 0..D::dim() {
for j in 0..D::dim() - 1 {
self[(j, i)] += shift[j] * self[(D::dim() - 1, i)];
}
}
}
/// Computes the transformation equal to a translation followed by `self`.
#[inline]
pub fn prepend_translation_mut<SB>(&mut self, shift: &Vector<N, DimNameDiff<D, U1>, SB>)
where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
DefaultAllocator: Allocator<N, DimNameDiff<D, U1>>,
{
let scale = self
.fixed_slice::<U1, DimNameDiff<D, U1>>(D::dim() - 1, 0)
.tr_dot(&shift);
let post_translation =
self.fixed_slice::<DimNameDiff<D, U1>, DimNameDiff<D, U1>>(0, 0) * shift;
self[(D::dim() - 1, D::dim() - 1)] += scale;
let mut translation = self.fixed_slice_mut::<DimNameDiff<D, U1>, U1>(0, D::dim() - 1);
translation += post_translation;
}
}
impl<N: Real, D: DimNameSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where DefaultAllocator: Allocator<N, D, D>
+ Allocator<N, DimNameDiff<D, U1>>
+ Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>
{
/// Transforms the given vector, assuming the matrix `self` uses homogeneous coordinates.
#[inline]
pub fn transform_vector(
&self,
v: &VectorN<N, DimNameDiff<D, U1>>,
) -> VectorN<N, DimNameDiff<D, U1>>
{
let transform = self.fixed_slice::<DimNameDiff<D, U1>, DimNameDiff<D, U1>>(0, 0);
let normalizer = self.fixed_slice::<U1, DimNameDiff<D, U1>>(D::dim() - 1, 0);
let n = normalizer.tr_dot(&v);
if !n.is_zero() {
return transform * (v / n);
}
transform * v
}
/// Transforms the given point, assuming the matrix `self` uses homogeneous coordinates.
#[inline]
pub fn transform_point(
&self,
pt: &Point<N, DimNameDiff<D, U1>>,
) -> Point<N, DimNameDiff<D, U1>>
{
let transform = self.fixed_slice::<DimNameDiff<D, U1>, DimNameDiff<D, U1>>(0, 0);
let translation = self.fixed_slice::<DimNameDiff<D, U1>, U1>(0, D::dim() - 1);
let normalizer = self.fixed_slice::<U1, DimNameDiff<D, U1>>(D::dim() - 1, 0);
let n = normalizer.tr_dot(&pt.coords)
+ unsafe { *self.get_unchecked((D::dim() - 1, D::dim() - 1)) };
if !n.is_zero() {
return transform * (pt / n) + translation;
}
transform * pt + translation
}
}
impl<N: Real, D: DimNameSub<U1>> Transformation<Point<N, DimNameDiff<D, U1>>> for MatrixN<N, D>
where DefaultAllocator: Allocator<N, D, D>
+ Allocator<N, DimNameDiff<D, U1>>
+ Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>
{
#[inline]
fn transform_vector(
&self,
v: &VectorN<N, DimNameDiff<D, U1>>,
) -> VectorN<N, DimNameDiff<D, U1>>
{
self.transform_vector(v)
}
#[inline]
fn transform_point(&self, pt: &Point<N, DimNameDiff<D, U1>>) -> Point<N, DimNameDiff<D, U1>> {
self.transform_point(pt)
}
}