cea3bdc8e5
The previous implementation was correct only for real elements. The Cholesky decomposition is `L L^H`, so the determinant is `det(L) * det(L^H)`. Since `L` is a triangular matrix, `det(L)` is the product of the diagonal elements of `L`. Since `L^H` is triangular and its diagonal elements are the conjugates of the diagonal elements of `L`, `det(L^H)` is the conjugate of `det(L)`. So, the overall determinant is the product of the diagonal elements of `L` times its conjugate.
164 lines
7.2 KiB
Rust
164 lines
7.2 KiB
Rust
#![cfg(all(feature = "proptest-support", feature = "debug"))]
|
|
|
|
macro_rules! gen_tests(
|
|
($module: ident, $scalar: ty) => {
|
|
mod $module {
|
|
use na::debug::RandomSDP;
|
|
use na::dimension::{U4, Dynamic};
|
|
use na::{DMatrix, DVector, Matrix4x3, Vector4};
|
|
use rand::random;
|
|
use simba::scalar::ComplexField;
|
|
#[allow(unused_imports)]
|
|
use crate::core::helper::{RandScalar, RandComplex};
|
|
|
|
use crate::proptest::*;
|
|
use proptest::{prop_assert, proptest};
|
|
|
|
proptest! {
|
|
#[test]
|
|
fn cholesky(n in PROPTEST_MATRIX_DIM) {
|
|
let m = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap();
|
|
let l = m.clone().cholesky().unwrap().unpack();
|
|
prop_assert!(relative_eq!(m, &l * l.adjoint(), epsilon = 1.0e-7));
|
|
}
|
|
|
|
#[test]
|
|
fn cholesky_static(_n in PROPTEST_MATRIX_DIM) {
|
|
let m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap();
|
|
let chol = m.cholesky().unwrap();
|
|
let l = chol.unpack();
|
|
|
|
prop_assert!(relative_eq!(m, &l * l.adjoint(), epsilon = 1.0e-7));
|
|
}
|
|
|
|
#[test]
|
|
fn cholesky_solve(n in PROPTEST_MATRIX_DIM, nb in PROPTEST_MATRIX_DIM) {
|
|
let m = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap();
|
|
|
|
let chol = m.clone().cholesky().unwrap();
|
|
let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0);
|
|
let b2 = DMatrix::<$scalar>::new_random(n, nb).map(|e| e.0);
|
|
|
|
let sol1 = chol.solve(&b1);
|
|
let sol2 = chol.solve(&b2);
|
|
|
|
prop_assert!(relative_eq!(&m * &sol1, b1, epsilon = 1.0e-7));
|
|
prop_assert!(relative_eq!(&m * &sol2, b2, epsilon = 1.0e-7));
|
|
}
|
|
|
|
#[test]
|
|
fn cholesky_solve_static(_n in PROPTEST_MATRIX_DIM) {
|
|
let m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap();
|
|
let chol = m.clone().cholesky().unwrap();
|
|
let b1 = Vector4::<$scalar>::new_random().map(|e| e.0);
|
|
let b2 = Matrix4x3::<$scalar>::new_random().map(|e| e.0);
|
|
|
|
let sol1 = chol.solve(&b1);
|
|
let sol2 = chol.solve(&b2);
|
|
|
|
prop_assert!(relative_eq!(m * sol1, b1, epsilon = 1.0e-7));
|
|
prop_assert!(relative_eq!(m * sol2, b2, epsilon = 1.0e-7));
|
|
}
|
|
|
|
#[test]
|
|
fn cholesky_inverse(n in PROPTEST_MATRIX_DIM) {
|
|
let m = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap();
|
|
let m1 = m.clone().cholesky().unwrap().inverse();
|
|
let id1 = &m * &m1;
|
|
let id2 = &m1 * &m;
|
|
|
|
prop_assert!(id1.is_identity(1.0e-7) && id2.is_identity(1.0e-7));
|
|
}
|
|
|
|
#[test]
|
|
fn cholesky_inverse_static(_n in PROPTEST_MATRIX_DIM) {
|
|
let m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap();
|
|
let m1 = m.clone().cholesky().unwrap().inverse();
|
|
let id1 = &m * &m1;
|
|
let id2 = &m1 * &m;
|
|
|
|
prop_assert!(id1.is_identity(1.0e-7) && id2.is_identity(1.0e-7));
|
|
}
|
|
|
|
#[test]
|
|
fn cholesky_determinant(n in PROPTEST_MATRIX_DIM) {
|
|
let m = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap();
|
|
let lu_det = m.clone().lu().determinant();
|
|
assert_relative_eq!(lu_det.imaginary(), 0., epsilon = 1.0e-7);
|
|
let chol_det = m.cholesky().unwrap().determinant();
|
|
|
|
prop_assert!(relative_eq!(lu_det.real(), chol_det, epsilon = 1.0e-7));
|
|
}
|
|
|
|
#[test]
|
|
fn cholesky_determinant_static(_n in PROPTEST_MATRIX_DIM) {
|
|
let m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap();
|
|
let lu_det = m.clone().lu().determinant();
|
|
assert_relative_eq!(lu_det.imaginary(), 0., epsilon = 1.0e-7);
|
|
let chol_det = m.cholesky().unwrap().determinant();
|
|
|
|
prop_assert!(relative_eq!(lu_det.real(), chol_det, epsilon = 1.0e-7));
|
|
}
|
|
|
|
#[test]
|
|
fn cholesky_rank_one_update(_n in PROPTEST_MATRIX_DIM) {
|
|
let mut m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap();
|
|
let x = Vector4::<$scalar>::new_random().map(|e| e.0);
|
|
|
|
// this is dirty but $scalar is not a scalar type (its a Rand) in this file
|
|
let zero = random::<$scalar>().0 * 0.;
|
|
let one = zero + 1.;
|
|
let sigma = random::<f64>(); // needs to be a real
|
|
let sigma_scalar = zero + sigma;
|
|
|
|
// updates cholesky decomposition and reconstructs m updated
|
|
let mut chol = m.clone().cholesky().unwrap();
|
|
chol.rank_one_update(&x, sigma);
|
|
let m_chol_updated = chol.l() * chol.l().adjoint();
|
|
|
|
// updates m manually
|
|
m.gerc(sigma_scalar, &x, &x, one); // m += sigma * x * x.adjoint()
|
|
|
|
prop_assert!(relative_eq!(m, m_chol_updated, epsilon = 1.0e-7));
|
|
}
|
|
|
|
#[test]
|
|
fn cholesky_insert_column(n in PROPTEST_MATRIX_DIM) {
|
|
let n = n.max(1).min(10);
|
|
let j = random::<usize>() % n;
|
|
let m_updated = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap();
|
|
|
|
// build m and col from m_updated
|
|
let col = m_updated.column(j);
|
|
let m = m_updated.clone().remove_column(j).remove_row(j);
|
|
|
|
// remove column from cholesky decomposition and rebuild m
|
|
let chol = m.clone().cholesky().unwrap().insert_column(j, col);
|
|
let m_chol_updated = chol.l() * chol.l().adjoint();
|
|
|
|
prop_assert!(relative_eq!(m_updated, m_chol_updated, epsilon = 1.0e-7));
|
|
}
|
|
|
|
#[test]
|
|
fn cholesky_remove_column(n in PROPTEST_MATRIX_DIM) {
|
|
let n = n.max(1).min(10);
|
|
let j = random::<usize>() % n;
|
|
let m = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap();
|
|
|
|
// remove column from cholesky decomposition and rebuild m
|
|
let chol = m.clone().cholesky().unwrap().remove_column(j);
|
|
let m_chol_updated = chol.l() * chol.l().adjoint();
|
|
|
|
// remove column from m
|
|
let m_updated = m.remove_column(j).remove_row(j);
|
|
|
|
prop_assert!(relative_eq!(m_updated, m_chol_updated, epsilon = 1.0e-7));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
);
|
|
|
|
gen_tests!(complex, RandComplex<f64>);
|
|
gen_tests!(f64, RandScalar<f64>);
|