nalgebra/src/tests/vec.rs

324 lines
6.8 KiB
Rust

use std::rand::{random};
use std::cmp::ApproxEq;
use na::{Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6};
use na::{Iterable, IterableMut}; // FIXME: get rid of that
use na;
macro_rules! test_iterator_impl(
($t: ty, $n: ty) => (
do 10000.times {
let v: $t = random();
let mut mv: $t = v.clone();
let n: $n = random();
let nv: $t = v.iter().map(|e| e * n).collect();
for e in mv.mut_iter() {
*e = *e * n
}
assert!(nv == mv && nv == v * n);
}
)
)
macro_rules! test_commut_dot_impl(
($t: ty) => (
do 10000.times {
let v1 : $t = random();
let v2 : $t = random();
assert!(na::dot(&v1, &v2).approx_eq(&na::dot(&v2, &v1)));
}
);
)
macro_rules! test_scalar_op_impl(
($t: ty, $n: ty) => (
do 10000.times {
let v1 : $t = random();
let n : $n = random();
assert!(((v1 * n) / n).approx_eq(&v1));
assert!(((v1 / n) * n).approx_eq(&v1));
assert!(((v1 - n) + n).approx_eq(&v1));
assert!(((v1 + n) - n).approx_eq(&v1));
let mut v1 : $t = random();
let v0 : $t = v1.clone();
let n : $n = random();
v1 = v1 * n;
v1 = v1 / n;
assert!(v1.approx_eq(&v0));
}
);
)
macro_rules! test_basis_impl(
($t: ty) => (
do 10000.times {
do na::canonical_basis |e1: $t| {
do na::canonical_basis |e2: $t| {
assert!(e1 == e2 || na::dot(&e1, &e2).approx_eq(&na::zero()));
true
}
assert!(na::norm(&e1).approx_eq(&na::one()));
true
}
}
);
)
macro_rules! test_subspace_basis_impl(
($t: ty) => (
do 10000.times {
let v : $t = random();
let v1 = na::normalize(&v);
do na::orthonormal_subspace_basis(&v1) |e1| {
// check vectors are orthogonal to v1
assert!(na::dot(&v1, &e1).approx_eq(&na::zero()));
// check vectors form an orthonormal basis
assert!(na::norm(&e1).approx_eq(&na::one()));
// check vectors form an ortogonal basis
do na::orthonormal_subspace_basis(&v1) |e2| {
assert!(e1 == e2 || na::dot(&e1, &e2).approx_eq(&na::zero()));
true
}
true
}
}
);
)
#[test]
fn test_cross_vec3() {
do 10000.times {
let v1 : Vec3<f64> = random();
let v2 : Vec3<f64> = random();
let v3 : Vec3<f64> = na::cross(&v1, &v2);
assert!(na::dot(&v3, &v2).approx_eq(&na::zero()));
assert!(na::dot(&v3, &v1).approx_eq(&na::zero()));
}
}
#[test]
fn test_commut_dot_vec0() {
test_commut_dot_impl!(Vec0<f64>);
}
#[test]
fn test_commut_dot_vec1() {
test_commut_dot_impl!(Vec1<f64>);
}
#[test]
fn test_commut_dot_vec2() {
test_commut_dot_impl!(Vec2<f64>);
}
#[test]
fn test_commut_dot_vec3() {
test_commut_dot_impl!(Vec3<f64>);
}
#[test]
fn test_commut_dot_vec4() {
test_commut_dot_impl!(Vec4<f64>);
}
#[test]
fn test_commut_dot_vec5() {
test_commut_dot_impl!(Vec5<f64>);
}
#[test]
fn test_commut_dot_vec6() {
test_commut_dot_impl!(Vec6<f64>);
}
#[test]
fn test_basis_vec0() {
test_basis_impl!(Vec0<f64>);
}
#[test]
fn test_basis_vec1() {
test_basis_impl!(Vec1<f64>);
}
#[test]
fn test_basis_vec2() {
test_basis_impl!(Vec2<f64>);
}
#[test]
fn test_basis_vec3() {
test_basis_impl!(Vec3<f64>);
}
#[test]
fn test_basis_vec4() {
test_basis_impl!(Vec4<f64>);
}
#[test]
fn test_basis_vec5() {
test_basis_impl!(Vec5<f64>);
}
#[test]
fn test_basis_vec6() {
test_basis_impl!(Vec6<f64>);
}
#[test]
fn test_subspace_basis_vec0() {
test_subspace_basis_impl!(Vec0<f64>);
}
#[test]
fn test_subspace_basis_vec1() {
test_subspace_basis_impl!(Vec1<f64>);
}
#[test]
fn test_subspace_basis_vec2() {
test_subspace_basis_impl!(Vec2<f64>);
}
#[test]
fn test_subspace_basis_vec3() {
test_subspace_basis_impl!(Vec3<f64>);
}
#[test]
fn test_subspace_basis_vec4() {
test_subspace_basis_impl!(Vec4<f64>);
}
#[test]
fn test_subspace_basis_vec5() {
test_subspace_basis_impl!(Vec5<f64>);
}
#[test]
fn test_subspace_basis_vec6() {
test_subspace_basis_impl!(Vec6<f64>);
}
#[test]
fn test_scalar_op_vec0() {
test_scalar_op_impl!(Vec0<f64>, f64);
}
#[test]
fn test_scalar_op_vec1() {
test_scalar_op_impl!(Vec1<f64>, f64);
}
#[test]
fn test_scalar_op_vec2() {
test_scalar_op_impl!(Vec2<f64>, f64);
}
#[test]
fn test_scalar_op_vec3() {
test_scalar_op_impl!(Vec3<f64>, f64);
}
#[test]
fn test_scalar_op_vec4() {
test_scalar_op_impl!(Vec4<f64>, f64);
}
#[test]
fn test_scalar_op_vec5() {
test_scalar_op_impl!(Vec5<f64>, f64);
}
#[test]
fn test_scalar_op_vec6() {
test_scalar_op_impl!(Vec6<f64>, f64);
}
#[test]
fn test_iterator_vec0() {
test_iterator_impl!(Vec0<f64>, f64);
}
#[test]
fn test_iterator_vec1() {
test_iterator_impl!(Vec1<f64>, f64);
}
#[test]
fn test_iterator_vec2() {
test_iterator_impl!(Vec2<f64>, f64);
}
#[test]
fn test_iterator_vec3() {
test_iterator_impl!(Vec3<f64>, f64);
}
#[test]
fn test_iterator_vec4() {
test_iterator_impl!(Vec4<f64>, f64);
}
#[test]
fn test_iterator_vec5() {
test_iterator_impl!(Vec5<f64>, f64);
}
#[test]
fn test_iterator_vec6() {
test_iterator_impl!(Vec6<f64>, f64);
}
#[test]
fn test_ord_vec3() {
// equality
assert!(na::vec3(0.5, 0.5, 0.5) == na::vec3(0.5, 0.5, 0.5));
assert!(!(na::vec3(1.5, 0.5, 0.5) == na::vec3(0.5, 0.5, 0.5)));
assert!(na::vec3(1.5, 0.5, 0.5) != na::vec3(0.5, 0.5, 0.5));
// comparable
assert!(na::vec3(0.5, 0.3, 0.3) < na::vec3(1.0, 2.0, 1.0));
assert!(na::vec3(0.5, 0.3, 0.3) <= na::vec3(1.0, 2.0, 1.0));
assert!(na::vec3(2.0, 4.0, 2.0) > na::vec3(1.0, 2.0, 1.0));
assert!(na::vec3(2.0, 4.0, 2.0) >= na::vec3(1.0, 2.0, 1.0));
// not comparable
assert!(!(na::vec3(0.0, 3.0, 0.0) < na::vec3(1.0, 2.0, 1.0)));
assert!(!(na::vec3(0.0, 3.0, 0.0) > na::vec3(1.0, 2.0, 1.0)));
assert!(!(na::vec3(0.0, 3.0, 0.0) <= na::vec3(1.0, 2.0, 1.0)));
assert!(!(na::vec3(0.0, 3.0, 0.0) >= na::vec3(1.0, 2.0, 1.0)));
}
#[test]
fn test_min_max_vec3() {
assert_eq!(na::vec3(1, 2, 3).max(&na::vec3(3, 2, 1)), na::vec3(3, 2, 3));
assert_eq!(na::vec3(1, 2, 3).min(&na::vec3(3, 2, 1)), na::vec3(1, 2, 1));
assert_eq!(na::vec3(0, 2, 4).clamp(&na::vec3(1, 1, 1), &na::vec3(3, 3, 3)), na::vec3(1, 2, 3));
}
#[test]
fn test_outer_vec3() {
assert_eq!(
na::outer(&na::vec3(1, 2, 3), &na::vec3(4, 5, 6)),
na::mat3(
4, 5, 6,
8, 10, 12,
12, 15, 18));
}