nalgebra/src/geometry/unit_complex_conversion.rs

192 lines
4.9 KiB
Rust

use num::Zero;
use num_complex::Complex;
use simba::scalar::{RealField, SubsetOf, SupersetOf};
use simba::simd::SimdRealField;
use crate::base::dimension::U2;
use crate::base::{Matrix2, Matrix3};
use crate::geometry::{
AbstractRotation, Isometry, Rotation2, Similarity, SuperTCategoryOf, TAffine, Transform,
Translation, UnitComplex,
};
/*
* This file provides the following conversions:
* =============================================
*
* UnitComplex -> UnitComplex
* UnitComplex -> Rotation<U1>
* UnitComplex -> Isometry<U2>
* UnitComplex -> Similarity<U2>
* UnitComplex -> Transform<U2>
* UnitComplex -> Matrix<U3> (homogeneous)
*
* NOTE:
* UnitComplex -> Complex is already provided by: Unit<T> -> T
*/
impl<N1, N2> SubsetOf<UnitComplex<N2>> for UnitComplex<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
{
#[inline]
fn to_superset(&self) -> UnitComplex<N2> {
UnitComplex::new_unchecked(self.as_ref().to_superset())
}
#[inline]
fn is_in_subset(uq: &UnitComplex<N2>) -> bool {
crate::is_convertible::<_, Complex<N1>>(uq.as_ref())
}
#[inline]
fn from_superset_unchecked(uq: &UnitComplex<N2>) -> Self {
Self::new_unchecked(crate::convert_ref_unchecked(uq.as_ref()))
}
}
impl<N1, N2> SubsetOf<Rotation2<N2>> for UnitComplex<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
{
#[inline]
fn to_superset(&self) -> Rotation2<N2> {
let q: UnitComplex<N2> = self.to_superset();
q.to_rotation_matrix().to_superset()
}
#[inline]
fn is_in_subset(rot: &Rotation2<N2>) -> bool {
crate::is_convertible::<_, Rotation2<N1>>(rot)
}
#[inline]
fn from_superset_unchecked(rot: &Rotation2<N2>) -> Self {
let q = UnitComplex::<N2>::from_rotation_matrix(rot);
crate::convert_unchecked(q)
}
}
impl<N1, N2, R> SubsetOf<Isometry<N2, U2, R>> for UnitComplex<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AbstractRotation<N2, U2> + SupersetOf<Self>,
{
#[inline]
fn to_superset(&self) -> Isometry<N2, U2, R> {
Isometry::from_parts(Translation::identity(), crate::convert_ref(self))
}
#[inline]
fn is_in_subset(iso: &Isometry<N2, U2, R>) -> bool {
iso.translation.vector.is_zero()
}
#[inline]
fn from_superset_unchecked(iso: &Isometry<N2, U2, R>) -> Self {
crate::convert_ref_unchecked(&iso.rotation)
}
}
impl<N1, N2, R> SubsetOf<Similarity<N2, U2, R>> for UnitComplex<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AbstractRotation<N2, U2> + SupersetOf<Self>,
{
#[inline]
fn to_superset(&self) -> Similarity<N2, U2, R> {
Similarity::from_isometry(crate::convert_ref(self), N2::one())
}
#[inline]
fn is_in_subset(sim: &Similarity<N2, U2, R>) -> bool {
sim.isometry.translation.vector.is_zero() && sim.scaling() == N2::one()
}
#[inline]
fn from_superset_unchecked(sim: &Similarity<N2, U2, R>) -> Self {
crate::convert_ref_unchecked(&sim.isometry)
}
}
impl<N1, N2, C> SubsetOf<Transform<N2, U2, C>> for UnitComplex<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
{
#[inline]
fn to_superset(&self) -> Transform<N2, U2, C> {
Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
}
#[inline]
fn is_in_subset(t: &Transform<N2, U2, C>) -> bool {
<Self as SubsetOf<_>>::is_in_subset(t.matrix())
}
#[inline]
fn from_superset_unchecked(t: &Transform<N2, U2, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
impl<N1: RealField, N2: RealField + SupersetOf<N1>> SubsetOf<Matrix3<N2>> for UnitComplex<N1> {
#[inline]
fn to_superset(&self) -> Matrix3<N2> {
self.to_homogeneous().to_superset()
}
#[inline]
fn is_in_subset(m: &Matrix3<N2>) -> bool {
crate::is_convertible::<_, Rotation2<N1>>(m)
}
#[inline]
fn from_superset_unchecked(m: &Matrix3<N2>) -> Self {
let rot: Rotation2<N1> = crate::convert_ref_unchecked(m);
Self::from_rotation_matrix(&rot)
}
}
impl<N: SimdRealField> From<UnitComplex<N>> for Rotation2<N>
where N::Element: SimdRealField
{
#[inline]
fn from(q: UnitComplex<N>) -> Self {
q.to_rotation_matrix()
}
}
impl<N: SimdRealField> From<Rotation2<N>> for UnitComplex<N>
where N::Element: SimdRealField
{
#[inline]
fn from(q: Rotation2<N>) -> Self {
Self::from_rotation_matrix(&q)
}
}
impl<N: SimdRealField> From<UnitComplex<N>> for Matrix3<N>
where N::Element: SimdRealField
{
#[inline]
fn from(q: UnitComplex<N>) -> Matrix3<N> {
q.to_homogeneous()
}
}
impl<N: SimdRealField> From<UnitComplex<N>> for Matrix2<N>
where N::Element: SimdRealField
{
#[inline]
fn from(q: UnitComplex<N>) -> Self {
q.to_rotation_matrix().into_inner()
}
}