nalgebra/tests/linalg/bidiagonal.rs

89 lines
2.7 KiB
Rust

#![cfg(feature = "arbitrary")]
use na::{DMatrix, Matrix2, Matrix3x5, Matrix4, Matrix5x3};
use core::helper::{RandScalar, RandComplex};
quickcheck! {
fn bidiagonal(m: DMatrix<RandComplex<f64>>) -> bool {
let m = m.map(|e| e.0);
if m.len() == 0 {
return true;
}
let bidiagonal = m.clone().bidiagonalize();
let (u, d, v_t) = bidiagonal.unpack();
println!("{}{}{}", &u, &d, &v_t);
println!("{:.7}{:.7}", &u * &d * &v_t, m);
relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)
}
fn bidiagonal_static_5_3(m: Matrix5x3<RandComplex<f64>>) -> bool {
let m = m.map(|e| e.0);
let bidiagonal = m.bidiagonalize();
let (u, d, v_t) = bidiagonal.unpack();
println!("{}{}{}", &u, &d, &v_t);
println!("{:.7}{:.7}", &u * &d * &v_t, m);
relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)
}
fn bidiagonal_static_3_5(m: Matrix3x5<RandComplex<f64>>) -> bool {
let m = m.map(|e| e.0);
let bidiagonal = m.bidiagonalize();
let (u, d, v_t) = bidiagonal.unpack();
println!("{}{}{}", &u, &d, &v_t);
println!("{:.7}{:.7}", &u * &d * &v_t, m);
relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)
}
fn bidiagonal_static_square(m: Matrix4<RandComplex<f64>>) -> bool {
let m = m.map(|e| e.0);
let bidiagonal = m.bidiagonalize();
let (u, d, v_t) = bidiagonal.unpack();
println!("{}{}{}", &u, &d, &v_t);
println!("{:.7}{:.7}", &u * &d * &v_t, m);
relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)
}
fn bidiagonal_static_square_2x2(m: Matrix2<RandComplex<f64>>) -> bool {
let m = m.map(|e| e.0);
let bidiagonal = m.bidiagonalize();
let (u, d, v_t) = bidiagonal.unpack();
println!("{}{}{}", &u, &d, &v_t);
println!("{:.7}{:.7}", &u * &d * &v_t, m);
relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)
}
}
#[test]
fn bidiagonal_identity() {
let m = DMatrix::<f64>::identity(10, 10);
let bidiagonal = m.clone().bidiagonalize();
let (u, d, v_t) = bidiagonal.unpack();
println!("u, s, v_t: {}{}{}", u, d, v_t);
println!("recomp: {}", &u * &d * &v_t);
assert_eq!(m, &u * d * &v_t);
let m = DMatrix::<f64>::identity(10, 15);
let bidiagonal = m.clone().bidiagonalize();
let (u, d, v_t) = bidiagonal.unpack();
println!("u, s, v_t: {}{}{}", u, d, v_t);
assert_eq!(m, &u * d * &v_t);
let m = DMatrix::<f64>::identity(15, 10);
let bidiagonal = m.clone().bidiagonalize();
let (u, d, v_t) = bidiagonal.unpack();
println!("u, s, v_t: {}{}{}", u, d, v_t);
assert_eq!(m, &u * d * &v_t);
}