535 lines
20 KiB
Rust
535 lines
20 KiB
Rust
use num::{One, Zero};
|
||
use std::ops::{Div, DivAssign, Mul, MulAssign};
|
||
|
||
use simba::scalar::{ClosedAdd, ClosedMul};
|
||
use simba::simd::SimdRealField;
|
||
|
||
use crate::base::allocator::Allocator;
|
||
use crate::base::dimension::{DimName, U1, U2, U3, U4};
|
||
use crate::base::{DefaultAllocator, Unit, VectorN};
|
||
use crate::Scalar;
|
||
|
||
use crate::geometry::{
|
||
AbstractRotation, Isometry, Point, Rotation, Translation, UnitComplex, UnitQuaternion,
|
||
};
|
||
|
||
// TODO: there are several cloning of rotations that we could probably get rid of (but we didn't
|
||
// yet because that would require to add a bound like `where for<'a, 'b> &'a R: Mul<&'b R, Output = R>`
|
||
// which is quite ugly.
|
||
|
||
/*
|
||
*
|
||
* In this file, we provide:
|
||
* =========================
|
||
*
|
||
*
|
||
* (Operators)
|
||
*
|
||
* Isometry × Isometry
|
||
* Isometry × R
|
||
*
|
||
*
|
||
* Isometry ÷ Isometry
|
||
* Isometry ÷ R
|
||
*
|
||
* Isometry × Point
|
||
* Isometry × Vector
|
||
* Isometry × Unit<Vector>
|
||
*
|
||
*
|
||
* Isometry × Translation
|
||
* Translation × Isometry
|
||
* Translation × R -> Isometry<R>
|
||
*
|
||
* NOTE: The following are provided explicitly because we can't have R × Isometry.
|
||
* Rotation × Isometry<Rotation>
|
||
* UnitQuaternion × Isometry<UnitQuaternion>
|
||
*
|
||
* Rotation ÷ Isometry<Rotation>
|
||
* UnitQuaternion ÷ Isometry<UnitQuaternion>
|
||
*
|
||
* Rotation × Translation -> Isometry<Rotation>
|
||
* UnitQuaternion × Translation -> Isometry<UnitQuaternion>
|
||
*
|
||
*
|
||
* (Assignment Operators)
|
||
*
|
||
* Isometry ×= Translation
|
||
*
|
||
* Isometry ×= Isometry
|
||
* Isometry ×= R
|
||
*
|
||
* Isometry ÷= Isometry
|
||
* Isometry ÷= R
|
||
*
|
||
*/
|
||
|
||
macro_rules! isometry_binop_impl(
|
||
($Op: ident, $op: ident;
|
||
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Output: ty;
|
||
$action: expr; $($lives: tt),*) => {
|
||
impl<$($lives ,)* N: SimdRealField, D: DimName, R> $Op<$Rhs> for $Lhs
|
||
where N::Element: SimdRealField,
|
||
R: AbstractRotation<N, D>,
|
||
DefaultAllocator: Allocator<N, D> {
|
||
type Output = $Output;
|
||
|
||
#[inline]
|
||
fn $op($lhs, $rhs: $Rhs) -> Self::Output {
|
||
$action
|
||
}
|
||
}
|
||
}
|
||
);
|
||
|
||
macro_rules! isometry_binop_impl_all(
|
||
($Op: ident, $op: ident;
|
||
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Output: ty;
|
||
[val val] => $action_val_val: expr;
|
||
[ref val] => $action_ref_val: expr;
|
||
[val ref] => $action_val_ref: expr;
|
||
[ref ref] => $action_ref_ref: expr;) => {
|
||
isometry_binop_impl!(
|
||
$Op, $op;
|
||
$lhs: $Lhs, $rhs: $Rhs, Output = $Output;
|
||
$action_val_val; );
|
||
|
||
isometry_binop_impl!(
|
||
$Op, $op;
|
||
$lhs: &'a $Lhs, $rhs: $Rhs, Output = $Output;
|
||
$action_ref_val; 'a);
|
||
|
||
isometry_binop_impl!(
|
||
$Op, $op;
|
||
$lhs: $Lhs, $rhs: &'b $Rhs, Output = $Output;
|
||
$action_val_ref; 'b);
|
||
|
||
isometry_binop_impl!(
|
||
$Op, $op;
|
||
$lhs: &'a $Lhs, $rhs: &'b $Rhs, Output = $Output;
|
||
$action_ref_ref; 'a, 'b);
|
||
}
|
||
);
|
||
|
||
macro_rules! isometry_binop_assign_impl_all(
|
||
($OpAssign: ident, $op_assign: ident;
|
||
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty;
|
||
[val] => $action_val: expr;
|
||
[ref] => $action_ref: expr;) => {
|
||
impl<N: SimdRealField, D: DimName, R> $OpAssign<$Rhs> for $Lhs
|
||
where N::Element: SimdRealField,
|
||
R: AbstractRotation<N, D>,
|
||
DefaultAllocator: Allocator<N, D> {
|
||
#[inline]
|
||
fn $op_assign(&mut $lhs, $rhs: $Rhs) {
|
||
$action_val
|
||
}
|
||
}
|
||
|
||
impl<'b, N: SimdRealField, D: DimName, R> $OpAssign<&'b $Rhs> for $Lhs
|
||
where N::Element: SimdRealField,
|
||
R: AbstractRotation<N, D>,
|
||
DefaultAllocator: Allocator<N, D> {
|
||
#[inline]
|
||
fn $op_assign(&mut $lhs, $rhs: &'b $Rhs) {
|
||
$action_ref
|
||
}
|
||
}
|
||
}
|
||
);
|
||
|
||
// Isometry × Isometry
|
||
// Isometry ÷ Isometry
|
||
isometry_binop_impl_all!(
|
||
Mul, mul;
|
||
self: Isometry<N, D, R>, rhs: Isometry<N, D, R>, Output = Isometry<N, D, R>;
|
||
[val val] => &self * &rhs;
|
||
[ref val] => self * &rhs;
|
||
[val ref] => &self * rhs;
|
||
[ref ref] => {
|
||
let shift = self.rotation.transform_vector(&rhs.translation.vector);
|
||
|
||
#[allow(clippy::suspicious_arithmetic_impl)]
|
||
Isometry::from_parts(Translation::from(&self.translation.vector + shift),
|
||
self.rotation.clone() * rhs.rotation.clone()) // TODO: too bad we have to clone.
|
||
};
|
||
);
|
||
|
||
isometry_binop_impl_all!(
|
||
Div, div;
|
||
self: Isometry<N, D, R>, rhs: Isometry<N, D, R>, Output = Isometry<N, D, R>;
|
||
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
|
||
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
|
||
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
|
||
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
|
||
);
|
||
|
||
// Isometry ×= Translation
|
||
isometry_binop_assign_impl_all!(
|
||
MulAssign, mul_assign;
|
||
self: Isometry<N, D, R>, rhs: Translation<N, D>;
|
||
[val] => *self *= &rhs;
|
||
[ref] => #[allow(clippy::suspicious_op_assign_impl)] {
|
||
let shift = self.rotation.transform_vector(&rhs.vector);
|
||
self.translation.vector += shift;
|
||
};
|
||
);
|
||
|
||
// Isometry ×= Isometry
|
||
// Isometry ÷= Isometry
|
||
isometry_binop_assign_impl_all!(
|
||
MulAssign, mul_assign;
|
||
self: Isometry<N, D, R>, rhs: Isometry<N, D, R>;
|
||
[val] => *self *= &rhs;
|
||
[ref] => {
|
||
let shift = self.rotation.transform_vector(&rhs.translation.vector);
|
||
self.translation.vector += shift;
|
||
self.rotation *= rhs.rotation.clone();
|
||
};
|
||
);
|
||
|
||
isometry_binop_assign_impl_all!(
|
||
DivAssign, div_assign;
|
||
self: Isometry<N, D, R>, rhs: Isometry<N, D, R>;
|
||
[val] => *self /= &rhs;
|
||
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||
);
|
||
|
||
// Isometry ×= R
|
||
// Isometry ÷= R
|
||
md_assign_impl_all!(
|
||
MulAssign, mul_assign where N: SimdRealField for N::Element: SimdRealField;
|
||
(D, U1), (D, D) for D: DimName;
|
||
self: Isometry<N, D, Rotation<N, D>>, rhs: Rotation<N, D>;
|
||
[val] => self.rotation *= rhs;
|
||
[ref] => self.rotation *= rhs.clone();
|
||
);
|
||
|
||
md_assign_impl_all!(
|
||
DivAssign, div_assign where N: SimdRealField for N::Element: SimdRealField;
|
||
(D, U1), (D, D) for D: DimName;
|
||
self: Isometry<N, D, Rotation<N, D>>, rhs: Rotation<N, D>;
|
||
// TODO: don't invert explicitly?
|
||
[val] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||
);
|
||
|
||
md_assign_impl_all!(
|
||
MulAssign, mul_assign where N: SimdRealField for N::Element: SimdRealField;
|
||
(U3, U3), (U3, U3) for;
|
||
self: Isometry<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>;
|
||
[val] => self.rotation *= rhs;
|
||
[ref] => self.rotation *= rhs.clone();
|
||
);
|
||
|
||
md_assign_impl_all!(
|
||
DivAssign, div_assign where N: SimdRealField for N::Element: SimdRealField;
|
||
(U3, U3), (U3, U3) for;
|
||
self: Isometry<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>;
|
||
// TODO: don't invert explicitly?
|
||
[val] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||
);
|
||
|
||
md_assign_impl_all!(
|
||
MulAssign, mul_assign where N: SimdRealField for N::Element: SimdRealField;
|
||
(U2, U2), (U2, U2) for;
|
||
self: Isometry<N, U2, UnitComplex<N>>, rhs: UnitComplex<N>;
|
||
[val] => self.rotation *= rhs;
|
||
[ref] => self.rotation *= rhs.clone();
|
||
);
|
||
|
||
md_assign_impl_all!(
|
||
DivAssign, div_assign where N: SimdRealField for N::Element: SimdRealField;
|
||
(U2, U2), (U2, U2) for;
|
||
self: Isometry<N, U2, UnitComplex<N>>, rhs: UnitComplex<N>;
|
||
// TODO: don't invert explicitly?
|
||
[val] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||
);
|
||
|
||
// Isometry × Point
|
||
isometry_binop_impl_all!(
|
||
Mul, mul;
|
||
self: Isometry<N, D, R>, right: Point<N, D>, Output = Point<N, D>;
|
||
[val val] => self.translation * self.rotation.transform_point(&right);
|
||
[ref val] => &self.translation * self.rotation.transform_point(&right);
|
||
[val ref] => self.translation * self.rotation.transform_point(right);
|
||
[ref ref] => &self.translation * self.rotation.transform_point(right);
|
||
);
|
||
|
||
// Isometry × Vector
|
||
isometry_binop_impl_all!(
|
||
Mul, mul;
|
||
// TODO: because of `transform_vector`, we cant use a generic storage type for the rhs vector,
|
||
// i.e., right: Vector<N, D, S> where S: Storage<N, D>.
|
||
self: Isometry<N, D, R>, right: VectorN<N, D>, Output = VectorN<N, D>;
|
||
[val val] => self.rotation.transform_vector(&right);
|
||
[ref val] => self.rotation.transform_vector(&right);
|
||
[val ref] => self.rotation.transform_vector(right);
|
||
[ref ref] => self.rotation.transform_vector(right);
|
||
);
|
||
|
||
// Isometry × Unit<Vector>
|
||
isometry_binop_impl_all!(
|
||
Mul, mul;
|
||
// TODO: because of `transform_vector`, we cant use a generic storage type for the rhs vector,
|
||
// i.e., right: Vector<N, D, S> where S: Storage<N, D>.
|
||
self: Isometry<N, D, R>, right: Unit<VectorN<N, D>>, Output = Unit<VectorN<N, D>>;
|
||
[val val] => Unit::new_unchecked(self.rotation.transform_vector(right.as_ref()));
|
||
[ref val] => Unit::new_unchecked(self.rotation.transform_vector(right.as_ref()));
|
||
[val ref] => Unit::new_unchecked(self.rotation.transform_vector(right.as_ref()));
|
||
[ref ref] => Unit::new_unchecked(self.rotation.transform_vector(right.as_ref()));
|
||
);
|
||
|
||
// Isometry × Translation
|
||
isometry_binop_impl_all!(
|
||
Mul, mul;
|
||
self: Isometry<N, D, R>, right: Translation<N, D>, Output = Isometry<N, D, R>;
|
||
[val val] => &self * &right;
|
||
[ref val] => self * &right;
|
||
[val ref] => &self * right;
|
||
[ref ref] => {
|
||
#[allow(clippy::suspicious_arithmetic_impl)]
|
||
let new_tr = &self.translation.vector + self.rotation.transform_vector(&right.vector);
|
||
Isometry::from_parts(Translation::from(new_tr), self.rotation.clone())
|
||
};
|
||
);
|
||
|
||
// Translation × Isometry
|
||
isometry_binop_impl_all!(
|
||
Mul, mul;
|
||
self: Translation<N, D>, right: Isometry<N, D, R>, Output = Isometry<N, D, R>;
|
||
[val val] => Isometry::from_parts(self * right.translation, right.rotation);
|
||
[ref val] => Isometry::from_parts(self * &right.translation, right.rotation);
|
||
[val ref] => Isometry::from_parts(self * &right.translation, right.rotation.clone());
|
||
[ref ref] => Isometry::from_parts(self * &right.translation, right.rotation.clone());
|
||
);
|
||
|
||
macro_rules! isometry_from_composition_impl(
|
||
($Op: ident, $op: ident;
|
||
($R1: ty, $C1: ty),($R2: ty, $C2: ty) $(for $Dims: ident: $DimsBound: ident),*;
|
||
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Output: ty;
|
||
$action: expr; $($lives: tt),*) => {
|
||
impl<$($lives ,)* N: SimdRealField $(, $Dims: $DimsBound)*> $Op<$Rhs> for $Lhs
|
||
where N::Element: SimdRealField,
|
||
DefaultAllocator: Allocator<N, $R1, $C1> +
|
||
Allocator<N, $R2, $C2> {
|
||
type Output = $Output;
|
||
|
||
#[inline]
|
||
fn $op($lhs, $rhs: $Rhs) -> Self::Output {
|
||
$action
|
||
}
|
||
}
|
||
}
|
||
);
|
||
|
||
macro_rules! isometry_from_composition_impl_all(
|
||
($Op: ident, $op: ident;
|
||
($R1: ty, $C1: ty),($R2: ty, $C2: ty) $(for $Dims: ident: $DimsBound: ident),*;
|
||
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Output: ty;
|
||
[val val] => $action_val_val: expr;
|
||
[ref val] => $action_ref_val: expr;
|
||
[val ref] => $action_val_ref: expr;
|
||
[ref ref] => $action_ref_ref: expr;) => {
|
||
|
||
isometry_from_composition_impl!(
|
||
$Op, $op;
|
||
($R1, $C1),($R2, $C2) $(for $Dims: $DimsBound),*;
|
||
$lhs: $Lhs, $rhs: $Rhs, Output = $Output;
|
||
$action_val_val; );
|
||
|
||
isometry_from_composition_impl!(
|
||
$Op, $op;
|
||
($R1, $C1),($R2, $C2) $(for $Dims: $DimsBound),*;
|
||
$lhs: &'a $Lhs, $rhs: $Rhs, Output = $Output;
|
||
$action_ref_val; 'a);
|
||
|
||
isometry_from_composition_impl!(
|
||
$Op, $op;
|
||
($R1, $C1),($R2, $C2) $(for $Dims: $DimsBound),*;
|
||
$lhs: $Lhs, $rhs: &'b $Rhs, Output = $Output;
|
||
$action_val_ref; 'b);
|
||
|
||
isometry_from_composition_impl!(
|
||
$Op, $op;
|
||
($R1, $C1),($R2, $C2) $(for $Dims: $DimsBound),*;
|
||
$lhs: &'a $Lhs, $rhs: &'b $Rhs, Output = $Output;
|
||
$action_ref_ref; 'a, 'b);
|
||
}
|
||
);
|
||
|
||
// Rotation × Translation
|
||
isometry_from_composition_impl_all!(
|
||
Mul, mul;
|
||
(D, D), (D, U1) for D: DimName;
|
||
self: Rotation<N, D>, right: Translation<N, D>, Output = Isometry<N, D, Rotation<N, D>>;
|
||
[val val] => Isometry::from_parts(Translation::from(&self * right.vector), self);
|
||
[ref val] => Isometry::from_parts(Translation::from(self * right.vector), self.clone());
|
||
[val ref] => Isometry::from_parts(Translation::from(&self * &right.vector), self);
|
||
[ref ref] => Isometry::from_parts(Translation::from(self * &right.vector), self.clone());
|
||
);
|
||
|
||
// UnitQuaternion × Translation
|
||
isometry_from_composition_impl_all!(
|
||
Mul, mul;
|
||
(U4, U1), (U3, U1);
|
||
self: UnitQuaternion<N>, right: Translation<N, U3>,
|
||
Output = Isometry<N, U3, UnitQuaternion<N>>;
|
||
[val val] => Isometry::from_parts(Translation::from(&self * right.vector), self);
|
||
[ref val] => Isometry::from_parts(Translation::from( self * right.vector), self.clone());
|
||
[val ref] => Isometry::from_parts(Translation::from(&self * &right.vector), self);
|
||
[ref ref] => Isometry::from_parts(Translation::from( self * &right.vector), self.clone());
|
||
);
|
||
|
||
// Isometry × Rotation
|
||
isometry_from_composition_impl_all!(
|
||
Mul, mul;
|
||
(D, D), (D, U1) for D: DimName;
|
||
self: Isometry<N, D, Rotation<N, D>>, rhs: Rotation<N, D>,
|
||
Output = Isometry<N, D, Rotation<N, D>>;
|
||
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
|
||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs); // TODO: do not clone.
|
||
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
|
||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
|
||
);
|
||
|
||
// Rotation × Isometry
|
||
isometry_from_composition_impl_all!(
|
||
Mul, mul;
|
||
(D, D), (D, U1) for D: DimName;
|
||
self: Rotation<N, D>, right: Isometry<N, D, Rotation<N, D>>,
|
||
Output = Isometry<N, D, Rotation<N, D>>;
|
||
[val val] => &self * &right;
|
||
[ref val] => self * &right;
|
||
[val ref] => &self * right;
|
||
[ref ref] => {
|
||
let shift = self * &right.translation.vector;
|
||
Isometry::from_parts(Translation::from(shift), self * &right.rotation)
|
||
};
|
||
);
|
||
|
||
// Isometry ÷ Rotation
|
||
isometry_from_composition_impl_all!(
|
||
Div, div;
|
||
(D, D), (D, U1) for D: DimName;
|
||
self: Isometry<N, D, Rotation<N, D>>, rhs: Rotation<N, D>,
|
||
Output = Isometry<N, D, Rotation<N, D>>;
|
||
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
|
||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs); // TODO: do not clone.
|
||
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
|
||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
|
||
);
|
||
|
||
// Rotation ÷ Isometry
|
||
isometry_from_composition_impl_all!(
|
||
Div, div;
|
||
(D, D), (D, U1) for D: DimName;
|
||
self: Rotation<N, D>, right: Isometry<N, D, Rotation<N, D>>,
|
||
Output = Isometry<N, D, Rotation<N, D>>;
|
||
// TODO: don't call inverse explicitly?
|
||
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||
);
|
||
|
||
// Isometry × UnitQuaternion
|
||
isometry_from_composition_impl_all!(
|
||
Mul, mul;
|
||
(U4, U1), (U3, U1);
|
||
self: Isometry<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>,
|
||
Output = Isometry<N, U3, UnitQuaternion<N>>;
|
||
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
|
||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs); // TODO: do not clone.
|
||
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
|
||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
|
||
);
|
||
|
||
// UnitQuaternion × Isometry
|
||
isometry_from_composition_impl_all!(
|
||
Mul, mul;
|
||
(U4, U1), (U3, U1);
|
||
self: UnitQuaternion<N>, right: Isometry<N, U3, UnitQuaternion<N>>,
|
||
Output = Isometry<N, U3, UnitQuaternion<N>>;
|
||
[val val] => &self * &right;
|
||
[ref val] => self * &right;
|
||
[val ref] => &self * right;
|
||
[ref ref] => {
|
||
let shift = self * &right.translation.vector;
|
||
Isometry::from_parts(Translation::from(shift), self * &right.rotation)
|
||
};
|
||
);
|
||
|
||
// Isometry ÷ UnitQuaternion
|
||
isometry_from_composition_impl_all!(
|
||
Div, div;
|
||
(U4, U1), (U3, U1);
|
||
self: Isometry<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>,
|
||
Output = Isometry<N, U3, UnitQuaternion<N>>;
|
||
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
|
||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs); // TODO: do not clone.
|
||
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
|
||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
|
||
);
|
||
|
||
// UnitQuaternion ÷ Isometry
|
||
isometry_from_composition_impl_all!(
|
||
Div, div;
|
||
(U4, U1), (U3, U1);
|
||
self: UnitQuaternion<N>, right: Isometry<N, U3, UnitQuaternion<N>>,
|
||
Output = Isometry<N, U3, UnitQuaternion<N>>;
|
||
// TODO: don't call inverse explicitly?
|
||
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||
);
|
||
|
||
// Translation × Rotation
|
||
isometry_from_composition_impl_all!(
|
||
Mul, mul;
|
||
(D, D), (D, U1) for D: DimName;
|
||
self: Translation<N, D>, right: Rotation<N, D>, Output = Isometry<N, D, Rotation<N, D>>;
|
||
[val val] => Isometry::from_parts(self, right);
|
||
[ref val] => Isometry::from_parts(self.clone(), right);
|
||
[val ref] => Isometry::from_parts(self, right.clone());
|
||
[ref ref] => Isometry::from_parts(self.clone(), right.clone());
|
||
);
|
||
|
||
// Translation × UnitQuaternion
|
||
isometry_from_composition_impl_all!(
|
||
Mul, mul;
|
||
(U4, U1), (U3, U1);
|
||
self: Translation<N, U3>, right: UnitQuaternion<N>, Output = Isometry<N, U3, UnitQuaternion<N>>;
|
||
[val val] => Isometry::from_parts(self, right);
|
||
[ref val] => Isometry::from_parts(self.clone(), right);
|
||
[val ref] => Isometry::from_parts(self, right.clone());
|
||
[ref ref] => Isometry::from_parts(self.clone(), right.clone());
|
||
);
|
||
|
||
// Isometry × UnitComplex
|
||
isometry_from_composition_impl_all!(
|
||
Mul, mul;
|
||
(U2, U1), (U2, U1);
|
||
self: Isometry<N, U2, UnitComplex<N>>, rhs: UnitComplex<N>,
|
||
Output = Isometry<N, U2, UnitComplex<N>>;
|
||
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
|
||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs); // TODO: do not clone.
|
||
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
|
||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
|
||
);
|
||
|
||
// Isometry ÷ UnitComplex
|
||
isometry_from_composition_impl_all!(
|
||
Div, div;
|
||
(U2, U1), (U2, U1);
|
||
self: Isometry<N, U2, UnitComplex<N>>, rhs: UnitComplex<N>,
|
||
Output = Isometry<N, U2, UnitComplex<N>>;
|
||
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
|
||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs); // TODO: do not clone.
|
||
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
|
||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
|
||
);
|