131 lines
4.2 KiB
Rust
131 lines
4.2 KiB
Rust
use std::cmp;
|
||
|
||
use crate::base::allocator::Allocator;
|
||
use crate::base::default_allocator::DefaultAllocator;
|
||
use crate::base::dimension::{Dim, DimAdd, DimDiff, DimMax, DimMaximum, DimSub, DimSum};
|
||
use crate::storage::Storage;
|
||
use crate::{zero, RealField, Vector, VectorN, U1};
|
||
|
||
impl<N: RealField, D1: Dim, S1: Storage<N, D1>> Vector<N, D1, S1> {
|
||
/// Returns the convolution of the target vector and a kernel
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `kernel` - A Vector with size > 0
|
||
///
|
||
/// # Errors
|
||
/// Inputs must statisfy `vector.len() >= kernel.len() > 0`.
|
||
///
|
||
pub fn convolve_full<D2, S2>(
|
||
&self,
|
||
kernel: Vector<N, D2, S2>,
|
||
) -> VectorN<N, DimDiff<DimSum<D1, D2>, U1>>
|
||
where
|
||
D1: DimAdd<D2>,
|
||
D2: DimAdd<D1, Output = DimSum<D1, D2>>,
|
||
DimSum<D1, D2>: DimSub<U1>,
|
||
S2: Storage<N, D2>,
|
||
DefaultAllocator: Allocator<N, DimDiff<DimSum<D1, D2>, U1>>,
|
||
{
|
||
let vec = self.len();
|
||
let ker = kernel.len();
|
||
|
||
if ker == 0 || ker > vec {
|
||
panic!("convolve_full expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
|
||
}
|
||
|
||
let result_len = self.data.shape().0.add(kernel.data.shape().0).sub(U1);
|
||
let mut conv = VectorN::zeros_generic(result_len, U1);
|
||
|
||
for i in 0..(vec + ker - 1) {
|
||
let u_i = if i > vec { i - ker } else { 0 };
|
||
let u_f = cmp::min(i, vec - 1);
|
||
|
||
if u_i == u_f {
|
||
conv[i] += self[u_i] * kernel[(i - u_i)];
|
||
} else {
|
||
for u in u_i..(u_f + 1) {
|
||
if i - u < ker {
|
||
conv[i] += self[u] * kernel[(i - u)];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
conv
|
||
}
|
||
/// Returns the convolution of the target vector and a kernel
|
||
/// The output convolution consists only of those elements that do not rely on the zero-padding.
|
||
/// # Arguments
|
||
///
|
||
/// * `kernel` - A Vector with size > 0
|
||
///
|
||
///
|
||
/// # Errors
|
||
/// Inputs must statisfy `self.len() >= kernel.len() > 0`.
|
||
///
|
||
pub fn convolve_valid<D2, S2>(&self, kernel: Vector<N, D2, S2>,
|
||
) -> VectorN<N, DimDiff<DimSum<D1, U1>, D2>>
|
||
where
|
||
D1: DimAdd<U1>,
|
||
D2: Dim,
|
||
DimSum<D1, U1>: DimSub<D2>,
|
||
S2: Storage<N, D2>,
|
||
DefaultAllocator: Allocator<N, DimDiff<DimSum<D1, U1>, D2>>,
|
||
{
|
||
let vec = self.len();
|
||
let ker = kernel.len();
|
||
|
||
if ker == 0 || ker > vec {
|
||
panic!("convolve_valid expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
|
||
}
|
||
|
||
let result_len = self.data.shape().0.add(U1).sub(kernel.data.shape().0);
|
||
let mut conv = VectorN::zeros_generic(result_len, U1);
|
||
|
||
for i in 0..(vec - ker + 1) {
|
||
for j in 0..ker {
|
||
conv[i] += self[i + j] * kernel[ker - j - 1];
|
||
}
|
||
}
|
||
conv
|
||
}
|
||
|
||
/// Returns the convolution of the targetvector and a kernel
|
||
/// The output convolution is the same size as vector, centered with respect to the ‘full’ output.
|
||
/// # Arguments
|
||
///
|
||
/// * `kernel` - A Vector with size > 0
|
||
///
|
||
/// # Errors
|
||
/// Inputs must statisfy `self.len() >= kernel.len() > 0`.
|
||
pub fn convolve_same<D2, S2>(&self, kernel: Vector<N, D2, S2>) -> VectorN<N, DimMaximum<D1, D2>>
|
||
where
|
||
D1: DimMax<D2>,
|
||
D2: DimMax<D1, Output = DimMaximum<D1, D2>>,
|
||
S2: Storage<N, D2>,
|
||
DefaultAllocator: Allocator<N, DimMaximum<D1, D2>>,
|
||
{
|
||
let vec = self.len();
|
||
let ker = kernel.len();
|
||
|
||
if ker == 0 || ker > vec {
|
||
panic!("convolve_same expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
|
||
}
|
||
|
||
let result_len = self.data.shape().0.max(kernel.data.shape().0);
|
||
let mut conv = VectorN::zeros_generic(result_len, U1);
|
||
|
||
for i in 0..vec {
|
||
for j in 0..ker {
|
||
let val = if i + j < 1 || i + j >= vec + 1 {
|
||
zero::<N>()
|
||
} else {
|
||
self[i + j - 1]
|
||
};
|
||
conv[i] += val * kernel[ker - j - 1];
|
||
}
|
||
}
|
||
conv
|
||
}
|
||
}
|