nalgebra/src/linalg/convolution.rs

131 lines
4.2 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use std::cmp;
use crate::base::allocator::Allocator;
use crate::base::default_allocator::DefaultAllocator;
use crate::base::dimension::{Dim, DimAdd, DimDiff, DimMax, DimMaximum, DimSub, DimSum};
use crate::storage::Storage;
use crate::{zero, RealField, Vector, VectorN, U1};
impl<N: RealField, D1: Dim, S1: Storage<N, D1>> Vector<N, D1, S1> {
/// Returns the convolution of the target vector and a kernel
///
/// # Arguments
///
/// * `kernel` - A Vector with size > 0
///
/// # Errors
/// Inputs must statisfy `vector.len() >= kernel.len() > 0`.
///
pub fn convolve_full<D2, S2>(
&self,
kernel: Vector<N, D2, S2>,
) -> VectorN<N, DimDiff<DimSum<D1, D2>, U1>>
where
D1: DimAdd<D2>,
D2: DimAdd<D1, Output = DimSum<D1, D2>>,
DimSum<D1, D2>: DimSub<U1>,
S2: Storage<N, D2>,
DefaultAllocator: Allocator<N, DimDiff<DimSum<D1, D2>, U1>>,
{
let vec = self.len();
let ker = kernel.len();
if ker == 0 || ker > vec {
panic!("convolve_full expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
}
let result_len = self.data.shape().0.add(kernel.data.shape().0).sub(U1);
let mut conv = VectorN::zeros_generic(result_len, U1);
for i in 0..(vec + ker - 1) {
let u_i = if i > vec { i - ker } else { 0 };
let u_f = cmp::min(i, vec - 1);
if u_i == u_f {
conv[i] += self[u_i] * kernel[(i - u_i)];
} else {
for u in u_i..(u_f + 1) {
if i - u < ker {
conv[i] += self[u] * kernel[(i - u)];
}
}
}
}
conv
}
/// Returns the convolution of the target vector and a kernel
/// The output convolution consists only of those elements that do not rely on the zero-padding.
/// # Arguments
///
/// * `kernel` - A Vector with size > 0
///
///
/// # Errors
/// Inputs must statisfy `self.len() >= kernel.len() > 0`.
///
pub fn convolve_valid<D2, S2>(&self, kernel: Vector<N, D2, S2>,
) -> VectorN<N, DimDiff<DimSum<D1, U1>, D2>>
where
D1: DimAdd<U1>,
D2: Dim,
DimSum<D1, U1>: DimSub<D2>,
S2: Storage<N, D2>,
DefaultAllocator: Allocator<N, DimDiff<DimSum<D1, U1>, D2>>,
{
let vec = self.len();
let ker = kernel.len();
if ker == 0 || ker > vec {
panic!("convolve_valid expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
}
let result_len = self.data.shape().0.add(U1).sub(kernel.data.shape().0);
let mut conv = VectorN::zeros_generic(result_len, U1);
for i in 0..(vec - ker + 1) {
for j in 0..ker {
conv[i] += self[i + j] * kernel[ker - j - 1];
}
}
conv
}
/// Returns the convolution of the targetvector and a kernel
/// The output convolution is the same size as vector, centered with respect to the full output.
/// # Arguments
///
/// * `kernel` - A Vector with size > 0
///
/// # Errors
/// Inputs must statisfy `self.len() >= kernel.len() > 0`.
pub fn convolve_same<D2, S2>(&self, kernel: Vector<N, D2, S2>) -> VectorN<N, DimMaximum<D1, D2>>
where
D1: DimMax<D2>,
D2: DimMax<D1, Output = DimMaximum<D1, D2>>,
S2: Storage<N, D2>,
DefaultAllocator: Allocator<N, DimMaximum<D1, D2>>,
{
let vec = self.len();
let ker = kernel.len();
if ker == 0 || ker > vec {
panic!("convolve_same expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
}
let result_len = self.data.shape().0.max(kernel.data.shape().0);
let mut conv = VectorN::zeros_generic(result_len, U1);
for i in 0..vec {
for j in 0..ker {
let val = if i + j < 1 || i + j >= vec + 1 {
zero::<N>()
} else {
self[i + j - 1]
};
conv[i] += val * kernel[ker - j - 1];
}
}
conv
}
}