nalgebra/src/linalg/symmetric_tridiagonal.rs
2019-03-25 11:21:41 +01:00

158 lines
5.5 KiB
Rust

#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use alga::general::ComplexField;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, SquareMatrix, VectorN};
use crate::dimension::{DimDiff, DimSub, U1};
use crate::storage::Storage;
use crate::linalg::householder;
/// Tridiagonalization of a symmetric matrix.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Serialize,
VectorN<N, DimDiff<D, U1>>: Serialize"
))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Deserialize<'de>,
VectorN<N, DimDiff<D, U1>>: Deserialize<'de>"
))
)]
#[derive(Clone, Debug)]
pub struct SymmetricTridiagonal<N: ComplexField, D: DimSub<U1>>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
{
tri: MatrixN<N, D>,
off_diagonal: VectorN<N, DimDiff<D, U1>>,
}
impl<N: ComplexField, D: DimSub<U1>> Copy for SymmetricTridiagonal<N, D>
where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Copy,
VectorN<N, DimDiff<D, U1>>: Copy,
{}
impl<N: ComplexField, D: DimSub<U1>> SymmetricTridiagonal<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
{
/// Computes the tridiagonalization of the symmetric matrix `m`.
///
/// Only the lower-triangular part (including the diagonal) of `m` is read.
pub fn new(mut m: MatrixN<N, D>) -> Self {
let dim = m.data.shape().0;
assert!(
m.is_square(),
"Unable to compute the symmetric tridiagonal decomposition of a non-square matrix."
);
assert!(
dim.value() != 0,
"Unable to compute the symmetric tridiagonal decomposition of an empty matrix."
);
let mut off_diagonal = unsafe { MatrixMN::new_uninitialized_generic(dim.sub(U1), U1) };
let mut p = unsafe { MatrixMN::new_uninitialized_generic(dim.sub(U1), U1) };
for i in 0..dim.value() - 1 {
let mut m = m.rows_range_mut(i + 1..);
let (mut axis, mut m) = m.columns_range_pair_mut(i, i + 1..);
let (norm, not_zero) = householder::reflection_axis_mut(&mut axis);
off_diagonal[i] = norm;
if not_zero {
let mut p = p.rows_range_mut(i..);
p.hegemv(crate::convert(2.0), &m, &axis, N::zero());
let dot = axis.dotc(&p);
m.hegerc(-N::one(), &p, &axis, N::one());
m.hegerc(-N::one(), &axis, &p, N::one());
m.hegerc(dot * crate::convert(2.0), &axis, &axis, N::one());
}
}
Self {
tri: m,
off_diagonal,
}
}
#[doc(hidden)]
// For debugging.
pub fn internal_tri(&self) -> &MatrixN<N, D> {
&self.tri
}
/// Retrieve the orthogonal transformation, diagonal, and off diagonal elements of this
/// decomposition.
pub fn unpack(self) -> (MatrixN<N, D>, VectorN<N::RealField, D>, VectorN<N::RealField, DimDiff<D, U1>>)
where DefaultAllocator: Allocator<N::RealField, D>
+ Allocator<N::RealField, DimDiff<D, U1>> {
let diag = self.diagonal();
let q = self.q();
(q, diag, self.off_diagonal.map(N::modulus))
}
/// Retrieve the diagonal, and off diagonal elements of this decomposition.
pub fn unpack_tridiagonal(self) -> (VectorN<N::RealField, D>, VectorN<N::RealField, DimDiff<D, U1>>)
where DefaultAllocator: Allocator<N::RealField, D>
+ Allocator<N::RealField, DimDiff<D, U1>> {
(self.diagonal(), self.off_diagonal.map(N::modulus))
}
/// The diagonal components of this decomposition.
pub fn diagonal(&self) -> VectorN<N::RealField, D>
where DefaultAllocator: Allocator<N::RealField, D> { self.tri.map_diagonal(|e| e.real()) }
/// The off-diagonal components of this decomposition.
pub fn off_diagonal(&self) -> VectorN<N::RealField, DimDiff<D, U1>>
where DefaultAllocator: Allocator<N::RealField, DimDiff<D, U1>> {
self.off_diagonal.map(N::modulus)
}
/// Computes the orthogonal matrix `Q` of this decomposition.
pub fn q(&self) -> MatrixN<N, D> {
householder::assemble_q(&self.tri, self.off_diagonal.as_slice())
}
/// Recomputes the original symmetric matrix.
pub fn recompose(mut self) -> MatrixN<N, D> {
let q = self.q();
self.tri.fill_lower_triangle(N::zero(), 2);
self.tri.fill_upper_triangle(N::zero(), 2);
for i in 0..self.off_diagonal.len() {
let val = N::from_real(self.off_diagonal[i].modulus());
self.tri[(i + 1, i)] = val;
self.tri[(i, i + 1)] = val;
}
&q * self.tri * q.adjoint()
}
}
impl<N: ComplexField, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
{
/// Computes the tridiagonalization of this symmetric matrix.
///
/// Only the lower-triangular part (including the diagonal) of `m` is read.
pub fn symmetric_tridiagonalize(self) -> SymmetricTridiagonal<N, D> {
SymmetricTridiagonal::new(self.into_owned())
}
}