nalgebra/tests/core/matrix.rs

878 lines
24 KiB
Rust
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use num::{Zero, One};
use num::Float;
use std::fmt::Display;
use alga::linear::FiniteDimInnerSpace;
use na::{self,
DVector, DMatrix,
Vector1, Vector2, Vector3, Vector4, Vector5, Vector6,
RowVector4, RowVector5,
Matrix1, Matrix2, Matrix3, Matrix4, Matrix5, Matrix6,
Matrix2x3, Matrix3x2, Matrix3x4, Matrix4x3, Matrix2x4, Matrix4x5, Matrix4x6,
MatrixMN};
use na::dimension::{U8, U15};
#[test]
fn iter() {
let a = Matrix2x3::new(1.0, 2.0, 3.0,
4.0, 5.0, 6.0);
let mut it = a.iter();
assert_eq!(*it.next().unwrap(), 1.0);
assert_eq!(*it.next().unwrap(), 4.0);
assert_eq!(*it.next().unwrap(), 2.0);
assert_eq!(*it.next().unwrap(), 5.0);
assert_eq!(*it.next().unwrap(), 3.0);
assert_eq!(*it.next().unwrap(), 6.0);
assert!(it.next().is_none());
let row = a.row(0);
let mut it = row.iter();
assert_eq!(*it.next().unwrap(), 1.0);
assert_eq!(*it.next().unwrap(), 2.0);
assert_eq!(*it.next().unwrap(), 3.0);
assert!(it.next().is_none());
let row = a.row(1);
let mut it = row.iter();
assert_eq!(*it.next().unwrap(), 4.0);
assert_eq!(*it.next().unwrap(), 5.0);
assert_eq!(*it.next().unwrap(), 6.0);
assert!(it.next().is_none());
let m22 = row.column(1);
let mut it = m22.iter();
assert_eq!(*it.next().unwrap(), 5.0);
assert!(it.next().is_none());
let col = a.column(0);
let mut it = col.iter();
assert_eq!(*it.next().unwrap(), 1.0);
assert_eq!(*it.next().unwrap(), 4.0);
assert!(it.next().is_none());
let col = a.column(1);
let mut it = col.iter();
assert_eq!(*it.next().unwrap(), 2.0);
assert_eq!(*it.next().unwrap(), 5.0);
assert!(it.next().is_none());
let col = a.column(2);
let mut it = col.iter();
assert_eq!(*it.next().unwrap(), 3.0);
assert_eq!(*it.next().unwrap(), 6.0);
assert!(it.next().is_none());
}
#[test]
fn is_column_major() {
let a = Matrix2x3::new(1.0, 2.0, 3.0,
4.0, 5.0, 6.0);
let expected = &[ 1.0, 4.0, 2.0, 5.0, 3.0, 6.0 ];
assert_eq!(a.as_slice(), expected);
let a = Matrix2x3::from_row_slice(&[1.0, 2.0, 3.0,
4.0, 5.0, 6.0]);
assert_eq!(a.as_slice(), expected);
let a = Matrix2x3::from_column_slice(&[1.0, 4.0,
2.0, 5.0,
3.0, 6.0]);
assert_eq!(a.as_slice(), expected);
}
#[test]
fn linear_index() {
let a = Matrix2x3::new(1, 2, 3,
4, 5, 6);
assert_eq!(a[0], 1);
assert_eq!(a[1], 4);
assert_eq!(a[2], 2);
assert_eq!(a[3], 5);
assert_eq!(a[4], 3);
assert_eq!(a[5], 6);
let b = Vector4::new(1, 2, 3, 4);
assert_eq!(b[0], 1);
assert_eq!(b[1], 2);
assert_eq!(b[2], 3);
assert_eq!(b[3], 4);
let c = RowVector4::new(1, 2, 3, 4);
assert_eq!(c[0], 1);
assert_eq!(c[1], 2);
assert_eq!(c[2], 3);
assert_eq!(c[3], 4);
}
#[test]
fn identity() {
let id1 = Matrix3::<f64>::identity();
let id2 = Matrix3x4::new(1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0);
let id2bis = Matrix3x4::identity();
let id3 = Matrix4x3::new(1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0,
0.0, 0.0, 0.0);
let id3bis = Matrix4x3::identity();
let not_id1 = Matrix3::identity() * 2.0;
let not_id2 = Matrix3x4::new(1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 1.0);
let not_id3 = Matrix4x3::new(1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0,
0.0, 1.0, 0.0);
assert_eq!(id2, id2bis);
assert_eq!(id3, id3bis);
assert!(id1.is_identity(0.0));
assert!(id2.is_identity(0.0));
assert!(id3.is_identity(0.0));
assert!(!not_id1.is_identity(0.0));
assert!(!not_id2.is_identity(0.0));
assert!(!not_id3.is_identity(0.0));
}
#[test]
fn coordinates() {
let a = Matrix3x4::new(11, 12, 13, 14,
21, 22, 23, 24,
31, 32, 33, 34);
assert_eq!(a.m11, 11);
assert_eq!(a.m12, 12);
assert_eq!(a.m13, 13);
assert_eq!(a.m14, 14);
assert_eq!(a.m21, 21);
assert_eq!(a.m22, 22);
assert_eq!(a.m23, 23);
assert_eq!(a.m24, 24);
assert_eq!(a.m31, 31);
assert_eq!(a.m32, 32);
assert_eq!(a.m33, 33);
assert_eq!(a.m34, 34);
}
#[test]
fn from_diagonal() {
let diag = Vector3::new(1, 2, 3);
let expected = Matrix3::new(
1, 0, 0,
0, 2, 0,
0, 0, 3);
let a = Matrix3::from_diagonal(&diag);
assert_eq!(a, expected);
}
#[test]
fn from_rows() {
let rows = &[
RowVector4::new(11, 12, 13, 14),
RowVector4::new(21, 22, 23, 24),
RowVector4::new(31, 32, 33, 34)
];
let expected = Matrix3x4::new(
11, 12, 13, 14,
21, 22, 23, 24,
31, 32, 33, 34);
let a = Matrix3x4::from_rows(rows);
assert_eq!(a, expected);
}
#[test]
fn from_columns() {
let columns = &[
Vector3::new(11, 21, 31),
Vector3::new(12, 22, 32),
Vector3::new(13, 23, 33),
Vector3::new(14, 24, 34)
];
let expected = Matrix3x4::new(
11, 12, 13, 14,
21, 22, 23, 24,
31, 32, 33, 34);
let a = Matrix3x4::from_columns(columns);
assert_eq!(a, expected);
}
#[test]
fn from_columns_dynamic() {
let columns = &[
DVector::from_row_slice(3, &[11, 21, 31]),
DVector::from_row_slice(3, &[12, 22, 32]),
DVector::from_row_slice(3, &[13, 23, 33]),
DVector::from_row_slice(3, &[14, 24, 34])
];
let expected = DMatrix::from_row_slice(3, 4,
&[ 11, 12, 13, 14,
21, 22, 23, 24,
31, 32, 33, 34 ]);
let a = DMatrix::from_columns(columns);
assert_eq!(a, expected);
}
#[test]
#[should_panic]
fn from_too_many_rows() {
let rows = &[
RowVector4::new(11, 12, 13, 14),
RowVector4::new(21, 22, 23, 24),
RowVector4::new(31, 32, 33, 34),
RowVector4::new(31, 32, 33, 34)
];
let _ = Matrix3x4::from_rows(rows);
}
#[test]
#[should_panic]
fn from_not_enough_columns() {
let columns = &[
Vector3::new(11, 21, 31),
Vector3::new(14, 24, 34)
];
let _ = Matrix3x4::from_columns(columns);
}
#[test]
#[should_panic]
fn from_rows_with_different_dimensions() {
let columns = &[
DVector::from_row_slice(3, &[ 11, 21, 31 ]),
DVector::from_row_slice(3, &[ 12, 22, 32, 33 ])
];
let _ = DMatrix::from_columns(columns);
}
#[test]
fn to_homogeneous() {
let a = Vector3::new(1.0, 2.0, 3.0);
let expected_a = Vector4::new(1.0, 2.0, 3.0, 0.0);
let b = DVector::from_row_slice(3, &[ 1.0, 2.0, 3.0 ]);
let expected_b = DVector::from_row_slice(4, &[ 1.0, 2.0, 3.0, 0.0 ]);
assert_eq!(a.to_homogeneous(), expected_a);
assert_eq!(b.to_homogeneous(), expected_b);
}
#[test]
fn simple_add() {
let a = Matrix2x3::new(1.0, 2.0, 3.0,
4.0, 5.0, 6.0);
let b = Matrix2x3::new(10.0, 20.0, 30.0,
40.0, 50.0, 60.0);
let c = DMatrix::from_row_slice(2, 3, &[ 10.0, 20.0, 30.0,
40.0, 50.0, 60.0 ]);
let expected = Matrix2x3::new(11.0, 22.0, 33.0,
44.0, 55.0, 66.0);
assert_eq!(expected, &a + &b);
assert_eq!(expected, &a + b);
assert_eq!(expected, a + &b);
assert_eq!(expected, a + b);
// Sum of a static matrix with a dynamic one.
assert_eq!(expected, &a + &c);
assert_eq!(expected, a + &c);
assert_eq!(expected, &c + &a);
assert_eq!(expected, &c + a);
}
#[test]
fn simple_sum() {
type M = Matrix2x3<f32>;
let a = M::new(1.0, 2.0, 3.0,
4.0, 5.0, 6.0);
let b = M::new(10.0, 20.0, 30.0,
40.0, 50.0, 60.0);
let c = M::new(100.0, 200.0, 300.0,
400.0, 500.0, 600.0);
assert_eq!(M::zero(), Vec::<M>::new().iter().sum());
assert_eq!(M::zero(), Vec::<M>::new().into_iter().sum());
assert_eq!(a + b, vec![a, b].iter().sum());
assert_eq!(a + b, vec![a, b].into_iter().sum());
assert_eq!(a + b + c, vec![a, b, c].iter().sum());
assert_eq!(a + b + c, vec![a, b, c].into_iter().sum());
}
#[test]
fn simple_scalar_mul() {
let a = Matrix2x3::new(1.0, 2.0, 3.0,
4.0, 5.0, 6.0);
let expected = Matrix2x3::new(10.0, 20.0, 30.0,
40.0, 50.0, 60.0);
assert_eq!(expected, a * 10.0);
assert_eq!(expected, &a * 10.0);
assert_eq!(expected, 10.0 * a);
assert_eq!(expected, 10.0 * &a);
}
#[test]
fn simple_mul() {
let a = Matrix2x3::new(1.0, 2.0, 3.0,
4.0, 5.0, 6.0);
let b = Matrix3x4::new(10.0, 20.0, 30.0, 40.0,
50.0, 60.0, 70.0, 80.0,
90.0, 100.0, 110.0, 120.0);
let expected = Matrix2x4::new(380.0, 440.0, 500.0, 560.0,
830.0, 980.0, 1130.0, 1280.0);
assert_eq!(expected, &a * &b);
assert_eq!(expected, a * &b);
assert_eq!(expected, &a * b);
assert_eq!(expected, a * b);
}
#[test]
fn simple_product() {
type M = Matrix3<f32>;
let a = M::new(1.0, 2.0, 3.0,
4.0, 5.0, 6.0,
7.0, 8.0, 9.0);
let b = M::new(10.0, 20.0, 30.0,
40.0, 50.0, 60.0,
70.0, 80.0, 90.0);
let c = M::new(100.0, 200.0, 300.0,
400.0, 500.0, 600.0,
700.0, 800.0, 900.0);
assert_eq!(M::one(), Vec::<M>::new().iter().product());
assert_eq!(M::one(), Vec::<M>::new().into_iter().product());
assert_eq!(a * b, vec![a, b].iter().product());
assert_eq!(a * b, vec![a, b].into_iter().product());
assert_eq!(a * b * c, vec![a, b, c].iter().product());
assert_eq!(a * b * c, vec![a, b, c].into_iter().product());
}
#[test]
fn simple_scalar_conversion() {
let a = Matrix2x3::new(1.0, 2.0, 3.0,
4.0, 5.0, 6.0);
let expected = Matrix2x3::new(1, 2, 3,
4, 5, 6);
let a_u32: Matrix2x3<u32> = na::try_convert(a).unwrap(); // f32 -> u32
let a_f32: Matrix2x3<f32> = na::convert(a_u32); // u32 -> f32
assert_eq!(a, a_f32);
assert_eq!(expected, a_u32);
}
#[test]
fn apply() {
let mut a = Matrix4::new(
1.1, 2.2, 3.3, 4.4,
5.5, 6.6, 7.7, 8.8,
9.9, 8.8, 7.7, 6.6,
5.5, 4.4, 3.3, 2.2);
let expected = Matrix4::new(
1.0, 2.0, 3.0, 4.0,
6.0, 7.0, 8.0, 9.0,
10.0, 9.0, 8.0, 7.0,
6.0, 4.0, 3.0, 2.0);
a.apply(|e| e.round());
assert_eq!(a, expected);
}
#[test]
fn map() {
let a = Matrix4::new(
1.1f64, 2.2, 3.3, 4.4,
5.5, 6.6, 7.7, 8.8,
9.9, 8.8, 7.7, 6.6,
5.5, 4.4, 3.3, 2.2);
let expected = Matrix4::new(
1, 2, 3, 4,
6, 7, 8, 9,
10, 9, 8, 7,
6, 4, 3, 2);
let computed = a.map(|e| e.round() as i64);
assert_eq!(computed, expected);
}
#[test]
fn zip_map() {
let a = Matrix3::new(
11i32, 12, 13,
21, 22, 23,
31, 32, 33);
let b = Matrix3::new(
11u32, 12, 13,
21, 22, 23,
31, 32, 33);
let expected = Matrix3::new(
22.0f32, 24.0, 26.0,
42.0, 44.0, 46.0,
62.0, 64.0, 66.0);
let computed = a.zip_map(&b, |ea, eb| ea as f32 + eb as f32);
assert_eq!(computed, expected);
}
#[test]
#[should_panic]
fn trace_panic() {
let m = DMatrix::<f32>::new_random(2, 3);
let _ = m.trace();
}
#[test]
fn trace() {
let m = Matrix2::new(1.0, 20.0,
30.0, 4.0);
assert_eq!(m.trace(), 5.0);
}
#[test]
fn simple_transpose() {
let a = Matrix2x3::new(1.0, 2.0, 3.0,
4.0, 5.0, 6.0);
let expected = Matrix3x2::new(1.0, 4.0,
2.0, 5.0,
3.0, 6.0);
assert_eq!(a.transpose(), expected);
}
#[test]
fn simple_transpose_mut() {
let mut a = Matrix3::new(1.0, 2.0, 3.0,
4.0, 5.0, 6.0,
7.0, 8.0, 9.0);
let expected = Matrix3::new(1.0, 4.0, 7.0,
2.0, 5.0, 8.0,
3.0, 6.0, 9.0);
a.transpose_mut();
assert_eq!(a, expected);
}
#[test]
fn vector_index_mut() {
let mut v = Vector3::new(1, 2, 3);
assert_eq!(v[0], 1);
assert_eq!(v[1], 2);
assert_eq!(v[2], 3);
v[0] = 10;
v[1] = 20;
v[2] = 30;
assert_eq!(v, Vector3::new(10, 20, 30));
}
#[test]
fn components_mut() {
let mut m2 = Matrix2::from_element(1.0);
let mut m3 = Matrix3::from_element(1.0);
let mut m4 = Matrix4::from_element(1.0);
let mut m5 = Matrix5::from_element(1.0);
let mut m6 = Matrix6::from_element(1.0);
m2.m11 = 0.0; m2.m12 = 0.0;
m2.m21 = 0.0; m2.m22 = 0.0;
m3.m11 = 0.0; m3.m12 = 0.0; m3.m13 = 0.0;
m3.m21 = 0.0; m3.m22 = 0.0; m3.m23 = 0.0;
m3.m31 = 0.0; m3.m32 = 0.0; m3.m33 = 0.0;
m4.m11 = 0.0; m4.m12 = 0.0; m4.m13 = 0.0; m4.m14 = 0.0;
m4.m21 = 0.0; m4.m22 = 0.0; m4.m23 = 0.0; m4.m24 = 0.0;
m4.m31 = 0.0; m4.m32 = 0.0; m4.m33 = 0.0; m4.m34 = 0.0;
m4.m41 = 0.0; m4.m42 = 0.0; m4.m43 = 0.0; m4.m44 = 0.0;
m5.m11 = 0.0; m5.m12 = 0.0; m5.m13 = 0.0; m5.m14 = 0.0; m5.m15 = 0.0;
m5.m21 = 0.0; m5.m22 = 0.0; m5.m23 = 0.0; m5.m24 = 0.0; m5.m25 = 0.0;
m5.m31 = 0.0; m5.m32 = 0.0; m5.m33 = 0.0; m5.m34 = 0.0; m5.m35 = 0.0;
m5.m41 = 0.0; m5.m42 = 0.0; m5.m43 = 0.0; m5.m44 = 0.0; m5.m45 = 0.0;
m5.m51 = 0.0; m5.m52 = 0.0; m5.m53 = 0.0; m5.m54 = 0.0; m5.m55 = 0.0;
m6.m11 = 0.0; m6.m12 = 0.0; m6.m13 = 0.0; m6.m14 = 0.0; m6.m15 = 0.0; m6.m16 = 0.0;
m6.m21 = 0.0; m6.m22 = 0.0; m6.m23 = 0.0; m6.m24 = 0.0; m6.m25 = 0.0; m6.m26 = 0.0;
m6.m31 = 0.0; m6.m32 = 0.0; m6.m33 = 0.0; m6.m34 = 0.0; m6.m35 = 0.0; m6.m36 = 0.0;
m6.m41 = 0.0; m6.m42 = 0.0; m6.m43 = 0.0; m6.m44 = 0.0; m6.m45 = 0.0; m6.m46 = 0.0;
m6.m51 = 0.0; m6.m52 = 0.0; m6.m53 = 0.0; m6.m54 = 0.0; m6.m55 = 0.0; m6.m56 = 0.0;
m6.m61 = 0.0; m6.m62 = 0.0; m6.m63 = 0.0; m6.m64 = 0.0; m6.m65 = 0.0; m6.m66 = 0.0;
assert!(m2.is_zero());
assert!(m3.is_zero());
assert!(m4.is_zero());
assert!(m5.is_zero());
assert!(m6.is_zero());
let mut v1 = Vector1::from_element(1.0);
let mut v2 = Vector2::from_element(1.0);
let mut v3 = Vector3::from_element(1.0);
let mut v4 = Vector4::from_element(1.0);
let mut v5 = Vector5::from_element(1.0);
let mut v6 = Vector6::from_element(1.0);
v1.x = 0.0;
v2.x = 0.0; v2.y = 0.0;
v3.x = 0.0; v3.y = 0.0; v3.z = 0.0;
v4.x = 0.0; v4.y = 0.0; v4.z = 0.0; v4.w = 0.0;
v5.x = 0.0; v5.y = 0.0; v5.z = 0.0; v5.w = 0.0; v5.a = 0.0;
v6.x = 0.0; v6.y = 0.0; v6.z = 0.0; v6.w = 0.0; v6.a = 0.0; v6.b = 0.0;
assert!(v1.is_zero());
assert!(v2.is_zero());
assert!(v3.is_zero());
assert!(v4.is_zero());
assert!(v5.is_zero());
assert!(v6.is_zero());
// Check that the components order is correct.
m3.m11 = 11.0; m3.m12 = 12.0; m3.m13 = 13.0;
m3.m21 = 21.0; m3.m22 = 22.0; m3.m23 = 23.0;
m3.m31 = 31.0; m3.m32 = 32.0; m3.m33 = 33.0;
let expected_m3 = Matrix3::new(11.0, 12.0, 13.0,
21.0, 22.0, 23.0,
31.0, 32.0, 33.0);
assert_eq!(expected_m3, m3);
}
#[test]
fn kronecker() {
let a = Matrix2x3::new(
11, 12, 13,
21, 22, 23);
let b = Matrix4x5::new(
110, 120, 130, 140, 150,
210, 220, 230, 240, 250,
310, 320, 330, 340, 350,
410, 420, 430, 440, 450);
let expected = MatrixMN::<_, U8, U15>::from_row_slice(&[
1210, 1320, 1430, 1540, 1650, 1320, 1440, 1560, 1680, 1800, 1430, 1560, 1690, 1820, 1950,
2310, 2420, 2530, 2640, 2750, 2520, 2640, 2760, 2880, 3000, 2730, 2860, 2990, 3120, 3250,
3410, 3520, 3630, 3740, 3850, 3720, 3840, 3960, 4080, 4200, 4030, 4160, 4290, 4420, 4550,
4510, 4620, 4730, 4840, 4950, 4920, 5040, 5160, 5280, 5400, 5330, 5460, 5590, 5720, 5850,
2310, 2520, 2730, 2940, 3150, 2420, 2640, 2860, 3080, 3300, 2530, 2760, 2990, 3220, 3450,
4410, 4620, 4830, 5040, 5250, 4620, 4840, 5060, 5280, 5500, 4830, 5060, 5290, 5520, 5750,
6510, 6720, 6930, 7140, 7350, 6820, 7040, 7260, 7480, 7700, 7130, 7360, 7590, 7820, 8050,
8610, 8820, 9030, 9240, 9450, 9020, 9240, 9460, 9680, 9900, 9430, 9660, 9890, 10120, 10350 ]);
let computed = a.kronecker(&b);
assert_eq!(computed, expected);
let a = Vector2::new(1, 2);
let b = Vector3::new(10, 20, 30);
let expected = Vector6::new(10, 20, 30, 20, 40, 60);
assert_eq!(a.kronecker(&b), expected);
let a = Vector2::new(1, 2);
let b = RowVector4::new(10, 20, 30, 40);
let expected = Matrix2x4::new(
10, 20, 30, 40,
20, 40, 60, 80);
assert_eq!(a.kronecker(&b), expected);
}
#[test]
fn set_row_column() {
let a = Matrix4x5::new(
11, 12, 13, 14, 15,
21, 22, 23, 24, 25,
31, 32, 33, 34, 35,
41, 42, 43, 44, 45);
let expected1 = Matrix4x5::new(
11, 12, 13, 14, 15,
42, 43, 44, 45, 46,
31, 32, 33, 34, 35,
41, 42, 43, 44, 45);
let expected2 = Matrix4x5::new(
11, 12, 100, 14, 15,
42, 43, 101, 45, 46,
31, 32, 102, 34, 35,
41, 42, 103, 44, 45);
let row = RowVector5::new(42, 43, 44, 45, 46);
let col = Vector4::new(100, 101, 102, 103);
let mut computed = a;
computed.set_row(1, &row);
assert_eq!(expected1, computed);
computed.set_column(2, &col);
assert_eq!(expected2, computed);
}
#[cfg(feature = "arbitrary")]
quickcheck! {
/*
*
* Transposition.
*
*/
fn transpose_transpose_is_self(m: Matrix2x3<f64>) -> bool {
m.transpose().transpose() == m
}
fn transpose_mut_transpose_mut_is_self(m: Matrix3<f64>) -> bool {
let mut mm = m;
mm.transpose_mut();
mm.transpose_mut();
m == mm
}
fn transpose_transpose_is_id_dyn(m: DMatrix<f64>) -> bool {
m.transpose().transpose() == m
}
fn check_transpose_components_dyn(m: DMatrix<f64>) -> bool {
let tr = m.transpose();
let (nrows, ncols) = m.shape();
if nrows != tr.shape().1 || ncols != tr.shape().0 {
return false
}
for i in 0 .. nrows {
for j in 0 .. ncols {
if m[(i, j)] != tr[(j, i)] {
return false
}
}
}
true
}
fn tr_mul_is_transpose_then_mul(m: Matrix4x6<f64>, v: Vector4<f64>) -> bool {
relative_eq!(m.transpose() * v, m.tr_mul(&v), epsilon = 1.0e-7)
}
/*
*
*
* Inversion.
*
*
*/
fn self_mul_inv_is_id_dim1(m: Matrix1<f64>) -> bool {
if let Some(im) = m.try_inverse() {
let id = Matrix1::one();
relative_eq!(im * m, id, epsilon = 1.0e-7) &&
relative_eq!(m * im, id, epsilon = 1.0e-7)
}
else {
true
}
}
fn self_mul_inv_is_id_dim2(m: Matrix2<f64>) -> bool {
if let Some(im) = m.try_inverse() {
let id = Matrix2::one();
relative_eq!(im * m, id, epsilon = 1.0e-7) &&
relative_eq!(m * im, id, epsilon = 1.0e-7)
}
else {
true
}
}
fn self_mul_inv_is_id_dim3(m: Matrix3<f64>) -> bool {
if let Some(im) = m.try_inverse() {
let id = Matrix3::one();
relative_eq!(im * m, id, epsilon = 1.0e-7) &&
relative_eq!(m * im, id, epsilon = 1.0e-7)
}
else {
true
}
}
fn self_mul_inv_is_id_dim4(m: Matrix4<f64>) -> bool {
if let Some(im) = m.try_inverse() {
let id = Matrix4::one();
relative_eq!(im * m, id, epsilon = 1.0e-7) &&
relative_eq!(m * im, id, epsilon = 1.0e-7)
}
else {
true
}
}
fn self_mul_inv_is_id_dim6(m: Matrix6<f64>) -> bool {
if let Some(im) = m.try_inverse() {
let id = Matrix6::one();
relative_eq!(im * m, id, epsilon = 1.0e-7) &&
relative_eq!(m * im, id, epsilon = 1.0e-7)
}
else {
true
}
}
/*
*
* Normalization.
*
*/
fn normalized_vec_norm_is_one(v: Vector3<f64>) -> bool {
if let Some(nv) = v.try_normalize(1.0e-10) {
relative_eq!(nv.norm(), 1.0, epsilon = 1.0e-7)
}
else {
true
}
}
fn normalized_vec_norm_is_one_dyn(v: DVector<f64>) -> bool {
if let Some(nv) = v.try_normalize(1.0e-10) {
relative_eq!(nv.norm(), 1.0, epsilon = 1.0e-7)
}
else {
true
}
}
}
// FIXME: move this to alga ?
macro_rules! finite_dim_inner_space_test(
($($Vector: ident, $orthonormal_subspace: ident, $orthonormalization: ident);* $(;)*) => {$(
#[cfg(feature = "arbitrary")]
quickcheck!{
fn $orthonormal_subspace(vs: Vec<$Vector<f64>>) -> bool {
let mut given_basis = vs.clone();
let given_basis_dim = $Vector::orthonormalize(&mut given_basis[..]);
let mut ortho_basis = Vec::new();
$Vector::orthonormal_subspace_basis(
&given_basis[.. given_basis_dim],
|e| { ortho_basis.push(*e); true }
);
if !is_subspace_basis(&ortho_basis[..]) {
return false;
}
for v in vs {
for b in &ortho_basis {
if !relative_eq!(v.dot(b), 0.0, epsilon = 1.0e-7) {
println!("Found dot product: {} · {} = {}", v, b, v.dot(b));
return false;
}
}
}
true
}
fn $orthonormalization(vs: Vec<$Vector<f64>>) -> bool {
let mut basis = vs.clone();
let subdim = $Vector::orthonormalize(&mut basis[..]);
if !is_subspace_basis(&basis[.. subdim]) {
return false;
}
for mut e in vs {
for b in &basis[.. subdim] {
e -= e.dot(b) * b
}
// Any element of `e` must be a linear combination of the basis elements.
if !relative_eq!(e.norm(), 0.0, epsilon = 1.0e-7) {
println!("Orthonormalization; element decomposition failure: {}", e);
println!("... the non-zero norm is: {}", e.norm());
return false;
}
}
true
}
}
)*}
);
finite_dim_inner_space_test!(
Vector1, orthonormal_subspace_basis1, orthonormalize1;
Vector2, orthonormal_subspace_basis2, orthonormalize2;
Vector3, orthonormal_subspace_basis3, orthonormalize3;
Vector4, orthonormal_subspace_basis4, orthonormalize4;
Vector5, orthonormal_subspace_basis5, orthonormalize5;
Vector6, orthonormal_subspace_basis6, orthonormalize6;
);
/*
*
* Helper functions.
*
*/
fn is_subspace_basis<T: FiniteDimInnerSpace<Real = f64> + Display>(vs: &[T]) -> bool {
for i in 0 .. vs.len() {
// Basis elements must be normalized.
if !relative_eq!(vs[i].norm(), 1.0, epsilon = 1.0e-7) {
println!("Non-zero basis element norm: {}", vs[i].norm());
return false;
}
for j in 0 .. i {
// Basis elements must be orthogonal.
if !relative_eq!(vs[i].dot(&vs[j]), 0.0, epsilon = 1.0e-7) {
println!("Non-orthogonal basis elements: {} · {} = {}", vs[i], vs[j], vs[i].dot(&vs[j]));
return false
}
}
}
true
}