nalgebra/src/tests/vec.rs

300 lines
6.4 KiB
Rust

#[test]
use std::iterator::IteratorUtil;
#[test]
use std::num::{Zero, One};
#[test]
use std::rand::{random};
#[test]
use std::cmp::ApproxEq;
#[test]
use vec::{Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6};
#[test]
use traits::basis::Basis;
#[test]
use traits::cross::Cross;
#[test]
use traits::dot::Dot;
#[test]
use traits::norm::Norm;
#[test]
use traits::iterable::{Iterable, IterableMut};
#[test]
use traits::scalar_op::{ScalarMul, ScalarDiv, ScalarAdd, ScalarSub};
macro_rules! test_iterator_impl(
($t: ty, $n: ty) => (
do 10000.times
{
let v: $t = random();
let mut mv: $t = v.clone();
let n: $n = random();
let nv: $t = v.iter().transform(|e| e * n).collect();
for e in mv.mut_iter()
{ *e = *e * n }
assert!(nv == mv && nv == v.scalar_mul(&n));
}
)
)
macro_rules! test_commut_dot_impl(
($t: ty) => (
do 10000.times
{
let v1 : $t = random();
let v2 : $t = random();
assert!(v1.dot(&v2).approx_eq(&v2.dot(&v1)));
}
);
)
macro_rules! test_scalar_op_impl(
($t: ty, $n: ty) => (
do 10000.times
{
let v1 : $t = random();
let n : $n = random();
assert!(v1.scalar_mul(&n).scalar_div(&n).approx_eq(&v1));
assert!(v1.scalar_div(&n).scalar_mul(&n).approx_eq(&v1));
assert!(v1.scalar_sub(&n).scalar_add(&n).approx_eq(&v1));
assert!(v1.scalar_add(&n).scalar_sub(&n).approx_eq(&v1));
let mut v1 : $t = random();
let v0 : $t = v1.clone();
let n : $n = random();
v1.scalar_mul_inplace(&n);
v1.scalar_div_inplace(&n);
assert!(v1.approx_eq(&v0));
}
);
)
macro_rules! test_basis_impl(
($t: ty) => (
do 10000.times
{
do Basis::canonical_basis::<$t> |e1|
{
do Basis::canonical_basis::<$t> |e2|
{ assert!(e1 == e2 || e1.dot(&e2).approx_eq(&Zero::zero())) }
assert!(e1.norm().approx_eq(&One::one()));
}
}
);
)
macro_rules! test_subspace_basis_impl(
($t: ty) => (
do 10000.times
{
let v : $t = random();
let v1 = v.normalized();
do v1.orthonormal_subspace_basis() |e1|
{
// check vectors are orthogonal to v1
assert!(v1.dot(&e1).approx_eq(&Zero::zero()));
// check vectors form an orthonormal basis
assert!(e1.norm().approx_eq(&One::one()));
// check vectors form an ortogonal basis
do v1.orthonormal_subspace_basis() |e2|
{ assert!(e1 == e2 || e1.dot(&e2).approx_eq(&Zero::zero())) }
}
}
);
)
#[test]
fn test_cross_vec3()
{
do 10000.times
{
let v1 : Vec3<f64> = random();
let v2 : Vec3<f64> = random();
let v3 : Vec3<f64> = v1.cross(&v2);
assert!(v3.dot(&v2).approx_eq(&Zero::zero()));
assert!(v3.dot(&v1).approx_eq(&Zero::zero()));
}
}
#[test]
fn test_commut_dot_vec0()
{ test_commut_dot_impl!(Vec0<f64>); }
#[test]
fn test_commut_dot_vec1()
{ test_commut_dot_impl!(Vec1<f64>); }
#[test]
fn test_commut_dot_vec2()
{ test_commut_dot_impl!(Vec2<f64>); }
#[test]
fn test_commut_dot_vec3()
{ test_commut_dot_impl!(Vec3<f64>); }
#[test]
fn test_commut_dot_vec4()
{ test_commut_dot_impl!(Vec4<f64>); }
#[test]
fn test_commut_dot_vec5()
{ test_commut_dot_impl!(Vec5<f64>); }
#[test]
fn test_commut_dot_vec6()
{ test_commut_dot_impl!(Vec6<f64>); }
#[test]
fn test_basis_vec0()
{ test_basis_impl!(Vec0<f64>); }
#[test]
fn test_basis_vec1()
{ test_basis_impl!(Vec1<f64>); }
#[test]
fn test_basis_vec2()
{ test_basis_impl!(Vec2<f64>); }
#[test]
fn test_basis_vec3()
{ test_basis_impl!(Vec3<f64>); }
#[test]
fn test_basis_vec4()
{ test_basis_impl!(Vec4<f64>); }
#[test]
fn test_basis_vec5()
{ test_basis_impl!(Vec5<f64>); }
#[test]
fn test_basis_vec6()
{ test_basis_impl!(Vec6<f64>); }
#[test]
fn test_subspace_basis_vec0()
{ test_subspace_basis_impl!(Vec0<f64>); }
#[test]
fn test_subspace_basis_vec1()
{ test_subspace_basis_impl!(Vec1<f64>); }
#[test]
fn test_subspace_basis_vec2()
{ test_subspace_basis_impl!(Vec2<f64>); }
#[test]
fn test_subspace_basis_vec3()
{ test_subspace_basis_impl!(Vec3<f64>); }
#[test]
fn test_subspace_basis_vec4()
{ test_subspace_basis_impl!(Vec4<f64>); }
#[test]
fn test_subspace_basis_vec5()
{ test_subspace_basis_impl!(Vec5<f64>); }
#[test]
fn test_subspace_basis_vec6()
{ test_subspace_basis_impl!(Vec6<f64>); }
#[test]
fn test_scalar_op_vec0()
{ test_scalar_op_impl!(Vec0<f64>, f64); }
#[test]
fn test_scalar_op_vec1()
{ test_scalar_op_impl!(Vec1<f64>, f64); }
#[test]
fn test_scalar_op_vec2()
{ test_scalar_op_impl!(Vec2<f64>, f64); }
#[test]
fn test_scalar_op_vec3()
{ test_scalar_op_impl!(Vec3<f64>, f64); }
#[test]
fn test_scalar_op_vec4()
{ test_scalar_op_impl!(Vec4<f64>, f64); }
#[test]
fn test_scalar_op_vec5()
{ test_scalar_op_impl!(Vec5<f64>, f64); }
#[test]
fn test_scalar_op_vec6()
{ test_scalar_op_impl!(Vec6<f64>, f64); }
#[test]
fn test_iterator_vec0()
{ test_iterator_impl!(Vec0<f64>, f64); }
#[test]
fn test_iterator_vec1()
{ test_iterator_impl!(Vec1<f64>, f64); }
#[test]
fn test_iterator_vec2()
{ test_iterator_impl!(Vec2<f64>, f64); }
#[test]
fn test_iterator_vec3()
{ test_iterator_impl!(Vec3<f64>, f64); }
#[test]
fn test_iterator_vec4()
{ test_iterator_impl!(Vec4<f64>, f64); }
#[test]
fn test_iterator_vec5()
{ test_iterator_impl!(Vec5<f64>, f64); }
#[test]
fn test_iterator_vec6()
{ test_iterator_impl!(Vec6<f64>, f64); }
#[test]
fn test_ord_vec3()
{
// equality
assert!(Vec3::new(0.5, 0.5, 0.5) == Vec3::new(0.5, 0.5, 0.5));
assert!(!(Vec3::new(1.5, 0.5, 0.5) == Vec3::new(0.5, 0.5, 0.5)));
assert!(Vec3::new(1.5, 0.5, 0.5) != Vec3::new(0.5, 0.5, 0.5));
// comparable
assert!(Vec3::new(0.5, 0.3, 0.3) < Vec3::new(1.0, 2.0, 1.0));
assert!(Vec3::new(0.5, 0.3, 0.3) <= Vec3::new(1.0, 2.0, 1.0));
assert!(Vec3::new(2.0, 4.0, 2.0) > Vec3::new(1.0, 2.0, 1.0));
assert!(Vec3::new(2.0, 4.0, 2.0) >= Vec3::new(1.0, 2.0, 1.0));
// not comparable
assert!(!(Vec3::new(0.0, 3.0, 0.0) < Vec3::new(1.0, 2.0, 1.0)));
assert!(!(Vec3::new(0.0, 3.0, 0.0) > Vec3::new(1.0, 2.0, 1.0)));
assert!(!(Vec3::new(0.0, 3.0, 0.0) <= Vec3::new(1.0, 2.0, 1.0)));
assert!(!(Vec3::new(0.0, 3.0, 0.0) >= Vec3::new(1.0, 2.0, 1.0)));
}
#[test]
fn test_min_max_vec3()
{
assert_eq!(Vec3::new(1, 2, 3).max(&Vec3::new(3, 2, 1)), Vec3::new(3, 2, 3));
assert_eq!(Vec3::new(1, 2, 3).min(&Vec3::new(3, 2, 1)), Vec3::new(1, 2, 1));
assert_eq!(
Vec3::new(0, 2, 4).clamp(
&Vec3::new(1, 1, 1), &Vec3::new(3, 3, 3)
), Vec3::new(1, 2, 3)
);
}