nalgebra/tests/conversion.rs

148 lines
6.0 KiB
Rust

#[cfg(feature = "arbitrary")]
#[macro_use]
extern crate quickcheck;
#[macro_use]
extern crate approx;
extern crate num_traits as num;
extern crate alga;
extern crate nalgebra as na;
use alga::linear::Transformation;
use na::{Vector3, Point3, Translation3, Isometry3, Similarity3, Affine3, Projective3, Transform3,
Rotation3, UnitQuaternion};
#[cfg(feature = "arbitrary")]
quickcheck!{
fn translation_conversion(t: Translation3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
let iso: Isometry3<f64> = na::convert(t);
let sim: Similarity3<f64> = na::convert(t);
let aff: Affine3<f64> = na::convert(t);
let prj: Projective3<f64> = na::convert(t);
let tr: Transform3<f64> = na::convert(t);
t == na::try_convert(iso).unwrap() &&
t == na::try_convert(sim).unwrap() &&
t == na::try_convert(aff).unwrap() &&
t == na::try_convert(prj).unwrap() &&
t == na::try_convert(tr).unwrap() &&
t.transform_vector(&v) == iso * v &&
t.transform_vector(&v) == sim * v &&
t.transform_vector(&v) == aff * v &&
t.transform_vector(&v) == prj * v &&
t.transform_vector(&v) == tr * v &&
t * p == iso * p &&
t * p == sim * p &&
t * p == aff * p &&
t * p == prj * p &&
t * p == tr * p
}
fn rotation_conversion(r: Rotation3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
let uq: UnitQuaternion<f64> = na::convert(r);
let iso: Isometry3<f64> = na::convert(r);
let sim: Similarity3<f64> = na::convert(r);
let aff: Affine3<f64> = na::convert(r);
let prj: Projective3<f64> = na::convert(r);
let tr: Transform3<f64> = na::convert(r);
relative_eq!(r, na::try_convert(uq).unwrap(), epsilon = 1.0e-7) &&
relative_eq!(r, na::try_convert(iso).unwrap(), epsilon = 1.0e-7) &&
relative_eq!(r, na::try_convert(sim).unwrap(), epsilon = 1.0e-7) &&
r == na::try_convert(aff).unwrap() &&
r == na::try_convert(prj).unwrap() &&
r == na::try_convert(tr).unwrap() &&
// NOTE: we need relative_eq because IsometryBase and SimilarityBase use quaternions.
relative_eq!(r * v, uq * v, epsilon = 1.0e-7) &&
relative_eq!(r * v, iso * v, epsilon = 1.0e-7) &&
relative_eq!(r * v, sim * v, epsilon = 1.0e-7) &&
r * v == aff * v &&
r * v == prj * v &&
r * v == tr * v &&
relative_eq!(r * p, uq * p, epsilon = 1.0e-7) &&
relative_eq!(r * p, iso * p, epsilon = 1.0e-7) &&
relative_eq!(r * p, sim * p, epsilon = 1.0e-7) &&
r * p == aff * p &&
r * p == prj * p &&
r * p == tr * p
}
fn unit_quaternion_conversion(uq: UnitQuaternion<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
let rot: Rotation3<f64> = na::convert(uq);
let iso: Isometry3<f64> = na::convert(uq);
let sim: Similarity3<f64> = na::convert(uq);
let aff: Affine3<f64> = na::convert(uq);
let prj: Projective3<f64> = na::convert(uq);
let tr: Transform3<f64> = na::convert(uq);
uq == na::try_convert(iso).unwrap() &&
uq == na::try_convert(sim).unwrap() &&
relative_eq!(uq, na::try_convert(rot).unwrap(), epsilon = 1.0e-7) &&
relative_eq!(uq, na::try_convert(aff).unwrap(), epsilon = 1.0e-7) &&
relative_eq!(uq, na::try_convert(prj).unwrap(), epsilon = 1.0e-7) &&
relative_eq!(uq, na::try_convert(tr).unwrap(), epsilon = 1.0e-7) &&
// NOTE: iso and sim use unit quaternions for the rotation so conversions to them are exact.
relative_eq!(uq * v, rot * v, epsilon = 1.0e-7) &&
uq * v == iso * v &&
uq * v == sim * v &&
relative_eq!(uq * v, aff * v, epsilon = 1.0e-7) &&
relative_eq!(uq * v, prj * v, epsilon = 1.0e-7) &&
relative_eq!(uq * v, tr * v, epsilon = 1.0e-7) &&
relative_eq!(uq * p, rot * p, epsilon = 1.0e-7) &&
uq * p == iso * p &&
uq * p == sim * p &&
relative_eq!(uq * p, aff * p, epsilon = 1.0e-7) &&
relative_eq!(uq * p, prj * p, epsilon = 1.0e-7) &&
relative_eq!(uq * p, tr * p, epsilon = 1.0e-7)
}
fn isometry_conversion(iso: Isometry3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
let sim: Similarity3<f64> = na::convert(iso);
let aff: Affine3<f64> = na::convert(iso);
let prj: Projective3<f64> = na::convert(iso);
let tr: Transform3<f64> = na::convert(iso);
iso == na::try_convert(sim).unwrap() &&
relative_eq!(iso, na::try_convert(aff).unwrap(), epsilon = 1.0e-7) &&
relative_eq!(iso, na::try_convert(prj).unwrap(), epsilon = 1.0e-7) &&
relative_eq!(iso, na::try_convert(tr).unwrap(), epsilon = 1.0e-7) &&
iso * v == sim * v &&
relative_eq!(iso * v, aff * v, epsilon = 1.0e-7) &&
relative_eq!(iso * v, prj * v, epsilon = 1.0e-7) &&
relative_eq!(iso * v, tr * v, epsilon = 1.0e-7) &&
iso * p == sim * p &&
relative_eq!(iso * p, aff * p, epsilon = 1.0e-7) &&
relative_eq!(iso * p, prj * p, epsilon = 1.0e-7) &&
relative_eq!(iso * p, tr * p, epsilon = 1.0e-7)
}
fn similarity_conversion(sim: Similarity3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
let aff: Affine3<f64> = na::convert(sim);
let prj: Projective3<f64> = na::convert(sim);
let tr: Transform3<f64> = na::convert(sim);
relative_eq!(sim, na::try_convert(aff).unwrap(), epsilon = 1.0e-7) &&
relative_eq!(sim, na::try_convert(prj).unwrap(), epsilon = 1.0e-7) &&
relative_eq!(sim, na::try_convert(tr).unwrap(), epsilon = 1.0e-7) &&
relative_eq!(sim * v, aff * v, epsilon = 1.0e-7) &&
relative_eq!(sim * v, prj * v, epsilon = 1.0e-7) &&
relative_eq!(sim * v, tr * v, epsilon = 1.0e-7) &&
relative_eq!(sim * p, aff * p, epsilon = 1.0e-7) &&
relative_eq!(sim * p, prj * p, epsilon = 1.0e-7) &&
relative_eq!(sim * p, tr * p, epsilon = 1.0e-7)
}
// XXX test TransformBase
}