nalgebra/src/structs/rot_macros.rs
2014-10-30 09:21:22 +01:00

324 lines
8.1 KiB
Rust

#![macro_escape]
macro_rules! submat_impl(
($t: ident, $submat: ident) => (
impl<N> $t<N> {
#[inline]
pub fn submat<'r>(&'r self) -> &'r $submat<N> {
&self.submat
}
}
)
)
macro_rules! rotate_impl(
($trhs: ident, $t: ident, $tv: ident, $tp: ident) => (
/*
* FIXME: we use the double dispatch trick here so that we can rotate vectors _and_
* points. Remove this as soon as rust supports multidispatch.
*/
pub trait $trhs<N> {
fn rotate(left: &$t<N>, right: &Self) -> Self;
fn inv_rotate(left: &$t<N>, right: &Self) -> Self;
}
impl<N, V: $trhs<N>> Rotate<V> for $t<N> {
#[inline(always)]
fn rotate(&self, other: &V) -> V {
$trhs::rotate(self, other)
}
#[inline(always)]
fn inv_rotate(&self, other: &V) -> V {
$trhs::inv_rotate(self, other)
}
}
impl<N: Num + Clone> $trhs<N> for $tv<N> {
#[inline]
fn rotate(t: &$t<N>, v: &$tv<N>) -> $tv<N> {
t * *v
}
#[inline]
fn inv_rotate(t: &$t<N>, v: &$tv<N>) -> $tv<N> {
v * *t
}
}
impl<N: Num + Clone> $trhs<N> for $tp<N> {
#[inline]
fn rotate(t: &$t<N>, p: &$tp<N>) -> $tp<N> {
t * *p
}
#[inline]
fn inv_rotate(t: &$t<N>, p: &$tp<N>) -> $tp<N> {
p * *t
}
}
)
)
macro_rules! transform_impl(
($trhs: ident, $t: ident, $tv: ident, $tp: ident) => (
/*
* FIXME: we use the double dispatch trick here so that we can transform vectors _and_
* points. Remove this as soon as rust supports multidispatch.
*/
pub trait $trhs<N> {
fn transform(left: &$t<N>, right: &Self) -> Self;
fn inv_transform(left: &$t<N>, right: &Self) -> Self;
}
impl<N, V: $trhs<N>> Transform<V> for $t<N> {
#[inline(always)]
fn transform(&self, other: &V) -> V {
$trhs::transform(self, other)
}
#[inline(always)]
fn inv_transform(&self, other: &V) -> V {
$trhs::inv_transform(self, other)
}
}
impl<N: Num + Clone> $trhs<N> for $tv<N> {
#[inline]
fn transform(t: &$t<N>, v: &$tv<N>) -> $tv<N> {
t.rotate(v)
}
#[inline]
fn inv_transform(t: &$t<N>, v: &$tv<N>) -> $tv<N> {
t.inv_rotate(v)
}
}
impl<N: Num + Clone> $trhs<N> for $tp<N> {
#[inline]
fn transform(t: &$t<N>, p: &$tp<N>) -> $tp<N> {
t.rotate(p)
}
#[inline]
fn inv_transform(t: &$t<N>, p: &$tp<N>) -> $tp<N> {
t.inv_rotate(p)
}
}
)
)
macro_rules! dim_impl(
($t: ident, $dim: expr) => (
impl<N> Dim for $t<N> {
#[inline]
fn dim(_: Option<$t<N>>) -> uint {
$dim
}
}
)
)
macro_rules! rotation_matrix_impl(
($t: ident, $tlv: ident, $tav: ident) => (
impl<N: Cast<f64> + FloatMath> RotationMatrix<N, $tlv<N>, $tav<N>, $t<N>> for $t<N> {
#[inline]
fn to_rot_mat(&self) -> $t<N> {
self.clone()
}
}
)
)
macro_rules! one_impl(
($t: ident) => (
impl<N: Num + Clone> One for $t<N> {
#[inline]
fn one() -> $t<N> {
$t { submat: One::one() }
}
}
)
)
macro_rules! rot_mul_rot_impl(
($t: ident, $mulrhs: ident) => (
impl<N: Num + Clone> $mulrhs<N, $t<N>> for $t<N> {
#[inline]
fn binop(left: &$t<N>, right: &$t<N>) -> $t<N> {
$t { submat: left.submat * right.submat }
}
}
)
)
macro_rules! rot_mul_vec_impl(
($t: ident, $tv: ident, $mulrhs: ident) => (
impl<N: Num + Clone> $mulrhs<N, $tv<N>> for $tv<N> {
#[inline]
fn binop(left: &$t<N>, right: &$tv<N>) -> $tv<N> {
left.submat * *right
}
}
)
)
macro_rules! rot_mul_pnt_impl(
($t: ident, $tv: ident, $mulrhs: ident) => (
rot_mul_vec_impl!($t, $tv, $mulrhs)
)
)
macro_rules! vec_mul_rot_impl(
($t: ident, $tv: ident, $mulrhs: ident) => (
impl<N: Num + Clone> $mulrhs<N, $tv<N>> for $t<N> {
#[inline]
fn binop(left: &$tv<N>, right: &$t<N>) -> $tv<N> {
*left * right.submat
}
}
)
)
macro_rules! pnt_mul_rot_impl(
($t: ident, $tv: ident, $mulrhs: ident) => (
vec_mul_rot_impl!($t, $tv, $mulrhs)
)
)
macro_rules! inv_impl(
($t: ident) => (
impl<N: Clone> Inv for $t<N> {
#[inline]
fn inv(&mut self) -> bool {
self.transpose();
// always succeed
true
}
#[inline]
fn inv_cpy(m: &$t<N>) -> Option<$t<N>> {
// always succeed
Some(Transpose::transpose_cpy(m))
}
}
)
)
macro_rules! transpose_impl(
($t: ident) => (
impl<N: Clone> Transpose for $t<N> {
#[inline]
fn transpose_cpy(m: &$t<N>) -> $t<N> {
$t { submat: Transpose::transpose_cpy(&m.submat) }
}
#[inline]
fn transpose(&mut self) {
self.submat.transpose()
}
}
)
)
macro_rules! row_impl(
($t: ident, $tv: ident) => (
impl<N: Clone + Zero> Row<$tv<N>> for $t<N> {
#[inline]
fn nrows(&self) -> uint {
self.submat.nrows()
}
#[inline]
fn row(&self, i: uint) -> $tv<N> {
self.submat.row(i)
}
#[inline]
fn set_row(&mut self, i: uint, row: $tv<N>) {
self.submat.set_row(i, row);
}
}
)
)
macro_rules! col_impl(
($t: ident, $tv: ident) => (
impl<N: Clone + Zero> Col<$tv<N>> for $t<N> {
#[inline]
fn ncols(&self) -> uint {
self.submat.ncols()
}
#[inline]
fn col(&self, i: uint) -> $tv<N> {
self.submat.col(i)
}
#[inline]
fn set_col(&mut self, i: uint, col: $tv<N>) {
self.submat.set_col(i, col);
}
}
)
)
macro_rules! index_impl(
($t: ident) => (
impl<N> Index<(uint, uint), N> for $t<N> {
fn index(&self, i: &(uint, uint)) -> &N {
&self.submat[*i]
}
}
impl<N> IndexMut<(uint, uint), N> for $t<N> {
fn index_mut(&mut self, i: &(uint, uint)) -> &mut N {
&mut self.submat[*i]
}
}
)
)
macro_rules! to_homogeneous_impl(
($t: ident, $tm: ident) => (
impl<N: Num + Clone> ToHomogeneous<$tm<N>> for $t<N> {
#[inline]
fn to_homogeneous(m: &$t<N>) -> $tm<N> {
ToHomogeneous::to_homogeneous(&m.submat)
}
}
)
)
macro_rules! approx_eq_impl(
($t: ident) => (
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N> {
#[inline]
fn approx_epsilon(_: Option<$t<N>>) -> N {
ApproxEq::approx_epsilon(None::<N>)
}
#[inline]
fn approx_eq(a: &$t<N>, b: &$t<N>) -> bool {
ApproxEq::approx_eq(&a.submat, &b.submat)
}
#[inline]
fn approx_eq_eps(a: &$t<N>, b: &$t<N>, epsilon: &N) -> bool {
ApproxEq::approx_eq_eps(&a.submat, &b.submat, epsilon)
}
}
)
)
macro_rules! absolute_impl(
($t: ident, $tm: ident) => (
impl<N: Signed> Absolute<$tm<N>> for $t<N> {
#[inline]
fn abs(m: &$t<N>) -> $tm<N> {
Absolute::abs(&m.submat)
}
}
)
)