nalgebra/src/geometry/unit_complex_ops.rs
2019-02-16 22:29:41 +01:00

464 lines
13 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use std::ops::{Div, DivAssign, Mul, MulAssign};
use alga::general::Real;
use base::allocator::Allocator;
use base::constraint::{DimEq, ShapeConstraint};
use base::dimension::{Dim, U1, U2};
use base::storage::{Storage, StorageMut};
use base::{DefaultAllocator, Matrix, Unit, Vector, Vector2};
use geometry::{Isometry, Point2, Rotation, Similarity, Translation, UnitComplex};
/*
* This file provides:
* ===================
*
* UnitComplex × UnitComplex
* UnitComplex × Rotation -> UnitComplex
* Rotation × UnitComplex -> UnitComplex
*
* UnitComplex ÷ UnitComplex
* UnitComplex ÷ Rotation -> UnitComplex
* Rotation ÷ UnitComplex -> UnitComplex
*
*
* UnitComplex × Point
* UnitComplex × Vector
* UnitComplex × Unit<T>
*
* UnitComplex × Isometry<UnitComplex>
* UnitComplex × Similarity<UnitComplex>
* UnitComplex × Translation -> Isometry<UnitComplex>
*
* NOTE: -UnitComplex is already provided by `Unit<T>`.
*
* (Assignment Operators)
*
* UnitComplex ×= UnitComplex
* UnitComplex ×= Rotation
*
* UnitComplex ÷= UnitComplex
* UnitComplex ÷= Rotation
*
* Rotation ×= UnitComplex
* Rotation ÷= UnitComplex
*
*/
// UnitComplex × UnitComplex
impl<N: Real> Mul<Self> for UnitComplex<N> {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Unit::new_unchecked(self.into_inner() * rhs.into_inner())
}
}
impl<'a, N: Real> Mul<UnitComplex<N>> for &'a UnitComplex<N> {
type Output = UnitComplex<N>;
#[inline]
fn mul(self, rhs: UnitComplex<N>) -> Self::Output {
Unit::new_unchecked(self.complex() * rhs.into_inner())
}
}
impl<'b, N: Real> Mul<&'b UnitComplex<N>> for UnitComplex<N> {
type Output = Self;
#[inline]
fn mul(self, rhs: &'b UnitComplex<N>) -> Self::Output {
Unit::new_unchecked(self.into_inner() * rhs.complex())
}
}
impl<'a, 'b, N: Real> Mul<&'b UnitComplex<N>> for &'a UnitComplex<N> {
type Output = UnitComplex<N>;
#[inline]
fn mul(self, rhs: &'b UnitComplex<N>) -> Self::Output {
Unit::new_unchecked(self.complex() * rhs.complex())
}
}
// UnitComplex ÷ UnitComplex
impl<N: Real> Div<Self> for UnitComplex<N> {
type Output = Self;
#[inline]
fn div(self, rhs: Self) -> Self::Output {
Unit::new_unchecked(self.into_inner() * rhs.conjugate().into_inner())
}
}
impl<'a, N: Real> Div<UnitComplex<N>> for &'a UnitComplex<N> {
type Output = UnitComplex<N>;
#[inline]
fn div(self, rhs: UnitComplex<N>) -> Self::Output {
Unit::new_unchecked(self.complex() * rhs.conjugate().into_inner())
}
}
impl<'b, N: Real> Div<&'b UnitComplex<N>> for UnitComplex<N> {
type Output = Self;
#[inline]
fn div(self, rhs: &'b UnitComplex<N>) -> Self::Output {
Unit::new_unchecked(self.into_inner() * rhs.conjugate().into_inner())
}
}
impl<'a, 'b, N: Real> Div<&'b UnitComplex<N>> for &'a UnitComplex<N> {
type Output = UnitComplex<N>;
#[inline]
fn div(self, rhs: &'b UnitComplex<N>) -> Self::Output {
Unit::new_unchecked(self.complex() * rhs.conjugate().into_inner())
}
}
macro_rules! complex_op_impl(
($Op: ident, $op: ident;
($RDim: ident, $CDim: ident) $(for $Storage: ident: $StoragesBound: ident $(<$($BoundParam: ty),*>)*),*;
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Result: ty;
$action: expr; $($lives: tt),*) => {
impl<$($lives ,)* N: Real $(, $Storage: $StoragesBound $(<$($BoundParam),*>)*)*> $Op<$Rhs> for $Lhs
where DefaultAllocator: Allocator<N, $RDim, $CDim> {
type Output = $Result;
#[inline]
fn $op($lhs, $rhs: $Rhs) -> Self::Output {
$action
}
}
}
);
macro_rules! complex_op_impl_all(
($Op: ident, $op: ident;
($RDim: ident, $CDim: ident) $(for $Storage: ident: $StoragesBound: ident $(<$($BoundParam: ty),*>)*),*;
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Result: ty;
[val val] => $action_val_val: expr;
[ref val] => $action_ref_val: expr;
[val ref] => $action_val_ref: expr;
[ref ref] => $action_ref_ref: expr;) => {
complex_op_impl!($Op, $op;
($RDim, $CDim) $(for $Storage: $StoragesBound $(<$($BoundParam),*>)*),*;
$lhs: $Lhs, $rhs: $Rhs, Output = $Result;
$action_val_val; );
complex_op_impl!($Op, $op;
($RDim, $CDim) $(for $Storage: $StoragesBound $(<$($BoundParam),*>)*),*;
$lhs: &'a $Lhs, $rhs: $Rhs, Output = $Result;
$action_ref_val; 'a);
complex_op_impl!($Op, $op;
($RDim, $CDim) $(for $Storage: $StoragesBound $(<$($BoundParam),*>)*),*;
$lhs: $Lhs, $rhs: &'b $Rhs, Output = $Result;
$action_val_ref; 'b);
complex_op_impl!($Op, $op;
($RDim, $CDim) $(for $Storage: $StoragesBound $(<$($BoundParam),*>)*),*;
$lhs: &'a $Lhs, $rhs: &'b $Rhs, Output = $Result;
$action_ref_ref; 'a, 'b);
}
);
// UnitComplex × Rotation
complex_op_impl_all!(
Mul, mul;
(U2, U2);
self: UnitComplex<N>, rhs: Rotation<N, U2>, Output = UnitComplex<N>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => self * UnitComplex::from_rotation_matrix(rhs);
);
// UnitComplex ÷ Rotation
complex_op_impl_all!(
Div, div;
(U2, U2);
self: UnitComplex<N>, rhs: Rotation<N, U2>, Output = UnitComplex<N>;
[val val] => &self / &rhs;
[ref val] => self / &rhs;
[val ref] => &self / rhs;
[ref ref] => self * UnitComplex::from_rotation_matrix(rhs).inverse();
);
// Rotation × UnitComplex
complex_op_impl_all!(
Mul, mul;
(U2, U2);
self: Rotation<N, U2>, rhs: UnitComplex<N>, Output = UnitComplex<N>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => UnitComplex::from_rotation_matrix(self) * rhs;
);
// Rotation ÷ UnitComplex
complex_op_impl_all!(
Div, div;
(U2, U2);
self: Rotation<N, U2>, rhs: UnitComplex<N>, Output = UnitComplex<N>;
[val val] => &self / &rhs;
[ref val] => self / &rhs;
[val ref] => &self / rhs;
[ref ref] => UnitComplex::from_rotation_matrix(self) * rhs.inverse();
);
// UnitComplex × Point
complex_op_impl_all!(
Mul, mul;
(U2, U1);
self: UnitComplex<N>, rhs: Point2<N>, Output = Point2<N>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => Point2::from(self * &rhs.coords);
);
// UnitComplex × Vector
complex_op_impl_all!(
Mul, mul;
(U2, U1) for S: Storage<N, U2>;
self: UnitComplex<N>, rhs: Vector<N, U2, S>, Output = Vector2<N>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => {
let i = self.as_ref().im;
let r = self.as_ref().re;
Vector2::new(r * rhs[0] - i * rhs[1], i * rhs[0] + r * rhs[1])
};
);
// UnitComplex × Unit<Vector>
complex_op_impl_all!(
Mul, mul;
(U2, U1) for S: Storage<N, U2>;
self: UnitComplex<N>, rhs: Unit<Vector<N, U2, S>>, Output = Unit<Vector2<N>>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => Unit::new_unchecked(self * rhs.as_ref());
);
// UnitComplex × Isometry<UnitComplex>
complex_op_impl_all!(
Mul, mul;
(U2, U1);
self: UnitComplex<N>, rhs: Isometry<N, U2, UnitComplex<N>>,
Output = Isometry<N, U2, UnitComplex<N>>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => {
let shift = self * &rhs.translation.vector;
Isometry::from_parts(Translation::from(shift), self * &rhs.rotation)
};
);
// UnitComplex × Similarity<UnitComplex>
complex_op_impl_all!(
Mul, mul;
(U2, U1);
self: UnitComplex<N>, rhs: Similarity<N, U2, UnitComplex<N>>,
Output = Similarity<N, U2, UnitComplex<N>>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => Similarity::from_isometry(self * &rhs.isometry, rhs.scaling());
);
// UnitComplex × Translation
complex_op_impl_all!(
Mul, mul;
(U2, U1);
self: UnitComplex<N>, rhs: Translation<N, U2>,
Output = Isometry<N, U2, UnitComplex<N>>;
[val val] => Isometry::from_parts(Translation::from(&self * rhs.vector), self);
[ref val] => Isometry::from_parts(Translation::from( self * rhs.vector), self.clone());
[val ref] => Isometry::from_parts(Translation::from(&self * &rhs.vector), self);
[ref ref] => Isometry::from_parts(Translation::from( self * &rhs.vector), self.clone());
);
// Translation × UnitComplex
complex_op_impl_all!(
Mul, mul;
(U2, U1);
self: Translation<N, U2>, right: UnitComplex<N>,
Output = Isometry<N, U2, UnitComplex<N>>;
[val val] => Isometry::from_parts(self, right);
[ref val] => Isometry::from_parts(self.clone(), right);
[val ref] => Isometry::from_parts(self, right.clone());
[ref ref] => Isometry::from_parts(self.clone(), right.clone());
);
// UnitComplex ×= UnitComplex
impl<N: Real> MulAssign<UnitComplex<N>> for UnitComplex<N> {
#[inline]
fn mul_assign(&mut self, rhs: UnitComplex<N>) {
*self = &*self * rhs
}
}
impl<'b, N: Real> MulAssign<&'b UnitComplex<N>> for UnitComplex<N> {
#[inline]
fn mul_assign(&mut self, rhs: &'b UnitComplex<N>) {
*self = &*self * rhs
}
}
// UnitComplex /= UnitComplex
impl<N: Real> DivAssign<UnitComplex<N>> for UnitComplex<N> {
#[inline]
fn div_assign(&mut self, rhs: UnitComplex<N>) {
*self = &*self / rhs
}
}
impl<'b, N: Real> DivAssign<&'b UnitComplex<N>> for UnitComplex<N> {
#[inline]
fn div_assign(&mut self, rhs: &'b UnitComplex<N>) {
*self = &*self / rhs
}
}
// UnitComplex ×= Rotation
impl<N: Real> MulAssign<Rotation<N, U2>> for UnitComplex<N>
where DefaultAllocator: Allocator<N, U2, U2>
{
#[inline]
fn mul_assign(&mut self, rhs: Rotation<N, U2>) {
*self = &*self * rhs
}
}
impl<'b, N: Real> MulAssign<&'b Rotation<N, U2>> for UnitComplex<N>
where DefaultAllocator: Allocator<N, U2, U2>
{
#[inline]
fn mul_assign(&mut self, rhs: &'b Rotation<N, U2>) {
*self = &*self * rhs
}
}
// UnitComplex ÷= Rotation
impl<N: Real> DivAssign<Rotation<N, U2>> for UnitComplex<N>
where DefaultAllocator: Allocator<N, U2, U2>
{
#[inline]
fn div_assign(&mut self, rhs: Rotation<N, U2>) {
*self = &*self / rhs
}
}
impl<'b, N: Real> DivAssign<&'b Rotation<N, U2>> for UnitComplex<N>
where DefaultAllocator: Allocator<N, U2, U2>
{
#[inline]
fn div_assign(&mut self, rhs: &'b Rotation<N, U2>) {
*self = &*self / rhs
}
}
// Rotation ×= UnitComplex
impl<N: Real> MulAssign<UnitComplex<N>> for Rotation<N, U2>
where DefaultAllocator: Allocator<N, U2, U2>
{
#[inline]
fn mul_assign(&mut self, rhs: UnitComplex<N>) {
self.mul_assign(rhs.to_rotation_matrix())
}
}
impl<'b, N: Real> MulAssign<&'b UnitComplex<N>> for Rotation<N, U2>
where DefaultAllocator: Allocator<N, U2, U2>
{
#[inline]
fn mul_assign(&mut self, rhs: &'b UnitComplex<N>) {
self.mul_assign(rhs.to_rotation_matrix())
}
}
// Rotation ÷= UnitComplex
impl<N: Real> DivAssign<UnitComplex<N>> for Rotation<N, U2>
where DefaultAllocator: Allocator<N, U2, U2>
{
#[inline]
fn div_assign(&mut self, rhs: UnitComplex<N>) {
self.div_assign(rhs.to_rotation_matrix())
}
}
impl<'b, N: Real> DivAssign<&'b UnitComplex<N>> for Rotation<N, U2>
where DefaultAllocator: Allocator<N, U2, U2>
{
#[inline]
fn div_assign(&mut self, rhs: &'b UnitComplex<N>) {
self.div_assign(rhs.to_rotation_matrix())
}
}
// Matrix = UnitComplex * Matrix
impl<N: Real> UnitComplex<N> {
/// Performs the multiplication `rhs = self * rhs` in-place.
pub fn rotate<R2: Dim, C2: Dim, S2: StorageMut<N, R2, C2>>(
&self,
rhs: &mut Matrix<N, R2, C2, S2>,
) where
ShapeConstraint: DimEq<R2, U2>,
{
assert_eq!(
rhs.nrows(),
2,
"Unit complex rotation: the input matrix must have exactly two rows."
);
let i = self.as_ref().im;
let r = self.as_ref().re;
for j in 0..rhs.ncols() {
unsafe {
let a = *rhs.get_unchecked((0, j));
let b = *rhs.get_unchecked((1, j));
*rhs.get_unchecked_mut((0, j)) = r * a - i * b;
*rhs.get_unchecked_mut((1, j)) = i * a + r * b;
}
}
}
/// Performs the multiplication `lhs = lhs * self` in-place.
pub fn rotate_rows<R2: Dim, C2: Dim, S2: StorageMut<N, R2, C2>>(
&self,
lhs: &mut Matrix<N, R2, C2, S2>,
) where
ShapeConstraint: DimEq<C2, U2>,
{
assert_eq!(
lhs.ncols(),
2,
"Unit complex rotation: the input matrix must have exactly two columns."
);
let i = self.as_ref().im;
let r = self.as_ref().re;
// FIXME: can we optimize that to iterate on one column at a time ?
for j in 0..lhs.nrows() {
unsafe {
let a = *lhs.get_unchecked((j, 0));
let b = *lhs.get_unchecked((j, 1));
*lhs.get_unchecked_mut((j, 0)) = r * a + i * b;
*lhs.get_unchecked_mut((j, 1)) = -i * a + r * b;
}
}
}
}