414 lines
13 KiB
Rust
414 lines
13 KiB
Rust
#[cfg(feature = "serde-serialize")]
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
use num::Zero;
|
|
use num_complex::Complex;
|
|
|
|
use simba::scalar::RealField;
|
|
|
|
use crate::ComplexHelper;
|
|
use na::allocator::Allocator;
|
|
use na::dimension::{Const, Dim};
|
|
use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar};
|
|
|
|
use lapack;
|
|
|
|
/// Generalized eigenvalues and generalized eigenvectors(left and right) of a pair of N*N square matrices.
|
|
///
|
|
/// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0
|
|
///
|
|
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
|
|
/// of (A,B) satisfies
|
|
///
|
|
/// A * v(j) = lambda(j) * B * v(j).
|
|
///
|
|
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
|
|
/// of (A,B) satisfies
|
|
///
|
|
/// u(j)**H * A = lambda(j) * u(j)**H * B .
|
|
/// where u(j)**H is the conjugate-transpose of u(j).
|
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
|
#[cfg_attr(
|
|
feature = "serde-serialize",
|
|
serde(
|
|
bound(serialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
|
OVector<T, D>: Serialize,
|
|
OMatrix<T, D, D>: Serialize")
|
|
)
|
|
)]
|
|
#[cfg_attr(
|
|
feature = "serde-serialize",
|
|
serde(
|
|
bound(deserialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
|
OVector<T, D>: Serialize,
|
|
OMatrix<T, D, D>: Deserialize<'de>")
|
|
)
|
|
)]
|
|
#[derive(Clone, Debug)]
|
|
pub struct GE<T: Scalar, D: Dim>
|
|
where
|
|
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
|
|
{
|
|
alphar: OVector<T, D>,
|
|
alphai: OVector<T, D>,
|
|
beta: OVector<T, D>,
|
|
vsl: OMatrix<T, D, D>,
|
|
vsr: OMatrix<T, D, D>,
|
|
}
|
|
|
|
impl<T: Scalar + Copy, D: Dim> Copy for GE<T, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
|
OMatrix<T, D, D>: Copy,
|
|
OVector<T, D>: Copy,
|
|
{
|
|
}
|
|
|
|
impl<T: GEScalar + RealField + Copy, D: Dim> GE<T, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
|
{
|
|
/// Attempts to compute the generalized eigenvalues, and left and right associated eigenvectors
|
|
/// via the raw returns from LAPACK's dggev and sggev routines
|
|
///
|
|
/// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0
|
|
///
|
|
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
|
|
/// of (A,B) satisfies
|
|
///
|
|
/// A * v(j) = lambda(j) * B * v(j).
|
|
///
|
|
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
|
|
/// of (A,B) satisfies
|
|
///
|
|
/// u(j)**H * A = lambda(j) * u(j)**H * B .
|
|
/// where u(j)**H is the conjugate-transpose of u(j).
|
|
///
|
|
/// Panics if the method did not converge.
|
|
pub fn new(a: OMatrix<T, D, D>, b: OMatrix<T, D, D>) -> Self {
|
|
Self::try_new(a, b).expect("Calculation of generalized eigenvalues failed.")
|
|
}
|
|
|
|
/// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's
|
|
/// dggev and sggev routines
|
|
///
|
|
/// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0
|
|
///
|
|
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
|
|
/// of (A,B) satisfies
|
|
///
|
|
/// A * v(j) = lambda(j) * B * v(j).
|
|
///
|
|
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
|
|
/// of (A,B) satisfies
|
|
///
|
|
/// u(j)**H * A = lambda(j) * u(j)**H * B .
|
|
/// where u(j)**H is the conjugate-transpose of u(j).
|
|
///
|
|
/// Returns `None` if the method did not converge.
|
|
pub fn try_new(mut a: OMatrix<T, D, D>, mut b: OMatrix<T, D, D>) -> Option<Self> {
|
|
assert!(
|
|
a.is_square() && b.is_square(),
|
|
"Unable to compute the generalized eigenvalues of non-square matrices."
|
|
);
|
|
|
|
assert!(
|
|
a.shape_generic() == b.shape_generic(),
|
|
"Unable to compute the generalized eigenvalues of two square matrices of different dimensions."
|
|
);
|
|
|
|
let (nrows, ncols) = a.shape_generic();
|
|
let n = nrows.value();
|
|
|
|
let mut info = 0;
|
|
|
|
let mut alphar = Matrix::zeros_generic(nrows, Const::<1>);
|
|
let mut alphai = Matrix::zeros_generic(nrows, Const::<1>);
|
|
let mut beta = Matrix::zeros_generic(nrows, Const::<1>);
|
|
let mut vsl = Matrix::zeros_generic(nrows, ncols);
|
|
let mut vsr = Matrix::zeros_generic(nrows, ncols);
|
|
|
|
let lwork = T::xggev_work_size(
|
|
b'V',
|
|
b'V',
|
|
n as i32,
|
|
a.as_mut_slice(),
|
|
n as i32,
|
|
b.as_mut_slice(),
|
|
n as i32,
|
|
alphar.as_mut_slice(),
|
|
alphai.as_mut_slice(),
|
|
beta.as_mut_slice(),
|
|
vsl.as_mut_slice(),
|
|
n as i32,
|
|
vsr.as_mut_slice(),
|
|
n as i32,
|
|
&mut info,
|
|
);
|
|
lapack_check!(info);
|
|
|
|
let mut work = vec![T::zero(); lwork as usize];
|
|
|
|
T::xggev(
|
|
b'V',
|
|
b'V',
|
|
n as i32,
|
|
a.as_mut_slice(),
|
|
n as i32,
|
|
b.as_mut_slice(),
|
|
n as i32,
|
|
alphar.as_mut_slice(),
|
|
alphai.as_mut_slice(),
|
|
beta.as_mut_slice(),
|
|
vsl.as_mut_slice(),
|
|
n as i32,
|
|
vsr.as_mut_slice(),
|
|
n as i32,
|
|
&mut work,
|
|
lwork,
|
|
&mut info,
|
|
);
|
|
lapack_check!(info);
|
|
|
|
Some(GE {
|
|
alphar,
|
|
alphai,
|
|
beta,
|
|
vsl,
|
|
vsr,
|
|
})
|
|
}
|
|
|
|
/// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues
|
|
/// Outputs two matrices, the first one containing the left eigenvectors of the generalized eigenvalues
|
|
/// as columns and the second matrix contains the right eigenvectors of the generalized eigenvalues
|
|
/// as columns
|
|
///
|
|
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
|
|
/// of (A,B) satisfies
|
|
///
|
|
/// A * v(j) = lambda(j) * B * v(j).
|
|
///
|
|
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
|
|
/// of (A,B) satisfies
|
|
///
|
|
/// u(j)**H * A = lambda(j) * u(j)**H * B .
|
|
/// where u(j)**H is the conjugate-transpose of u(j).
|
|
///
|
|
/// What is going on below?
|
|
/// If the j-th and (j+1)-th eigenvalues form a complex conjugate pair,
|
|
/// then u(j) = VSL(:,j)+i*VSL(:,j+1) and u(j+1) = VSL(:,j)-i*VSL(:,j+1).
|
|
/// and then v(j) = VSR(:,j)+i*VSR(:,j+1) and v(j+1) = VSR(:,j)-i*VSR(:,j+1).
|
|
pub fn eigenvectors(self) -> (OMatrix<Complex<T>, D, D>, OMatrix<Complex<T>, D, D>)
|
|
where
|
|
DefaultAllocator:
|
|
Allocator<Complex<T>, D, D> + Allocator<Complex<T>, D> + Allocator<(Complex<T>, T), D>,
|
|
{
|
|
let n = self.vsl.shape().0;
|
|
|
|
let mut l = self
|
|
.vsl
|
|
.clone()
|
|
.map(|x| Complex::new(x, T::RealField::zero()));
|
|
|
|
let mut r = self
|
|
.vsr
|
|
.clone()
|
|
.map(|x| Complex::new(x, T::RealField::zero()));
|
|
|
|
let eigenvalues = &self.eigenvalues();
|
|
|
|
let mut c = 0;
|
|
|
|
while c < n {
|
|
if eigenvalues[c].im.abs() > T::RealField::default_epsilon() && c + 1 < n && {
|
|
let e_conj = eigenvalues[c].conj();
|
|
let e = eigenvalues[c + 1];
|
|
((e_conj.re - e.re).abs() < T::RealField::default_epsilon())
|
|
&& ((e_conj.im - e.im).abs() < T::RealField::default_epsilon())
|
|
} {
|
|
// taking care of the left eigenvector matrix
|
|
l.column_mut(c).zip_apply(&self.vsl.column(c + 1), |r, i| {
|
|
*r = Complex::new(r.re.clone(), i.clone());
|
|
});
|
|
l.column_mut(c + 1).zip_apply(&self.vsl.column(c), |i, r| {
|
|
*i = Complex::new(r.clone(), -i.re.clone());
|
|
});
|
|
|
|
// taking care of the right eigenvector matrix
|
|
r.column_mut(c).zip_apply(&self.vsr.column(c + 1), |r, i| {
|
|
*r = Complex::new(r.re.clone(), i.clone());
|
|
});
|
|
r.column_mut(c + 1).zip_apply(&self.vsr.column(c), |i, r| {
|
|
*i = Complex::new(r.clone(), -i.re.clone());
|
|
});
|
|
|
|
c += 2;
|
|
} else {
|
|
c += 1;
|
|
}
|
|
}
|
|
|
|
(l, r)
|
|
}
|
|
|
|
/// computes the generalized eigenvalues i.e values of lambda that satisfy the following equation
|
|
/// determinant(A - lambda* B) = 0
|
|
#[must_use]
|
|
fn eigenvalues(&self) -> OVector<Complex<T>, D>
|
|
where
|
|
DefaultAllocator: Allocator<Complex<T>, D>,
|
|
{
|
|
let mut out = Matrix::zeros_generic(self.vsl.shape_generic().0, Const::<1>);
|
|
|
|
for i in 0..out.len() {
|
|
out[i] = if self.beta[i].clone().abs() < T::RealField::default_epsilon() {
|
|
Complex::zero()
|
|
} else {
|
|
let mut cr = self.alphar[i].clone();
|
|
let mut ci = self.alphai[i].clone();
|
|
let b = self.beta[i].clone();
|
|
|
|
if cr.clone().abs() < T::RealField::default_epsilon() {
|
|
cr = T::RealField::zero()
|
|
} else {
|
|
cr = cr / b.clone()
|
|
};
|
|
|
|
if ci.clone().abs() < T::RealField::default_epsilon() {
|
|
ci = T::RealField::zero()
|
|
} else {
|
|
ci = ci / b
|
|
};
|
|
|
|
Complex::new(cr, ci)
|
|
}
|
|
}
|
|
|
|
out
|
|
}
|
|
|
|
/// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alpai), beta)
|
|
/// straight from LAPACK
|
|
#[must_use]
|
|
pub fn raw_eigenvalues(&self) -> OVector<(Complex<T>, T), D>
|
|
where
|
|
DefaultAllocator: Allocator<(Complex<T>, T), D>,
|
|
{
|
|
let mut out = Matrix::from_element_generic(
|
|
self.vsl.shape_generic().0,
|
|
Const::<1>,
|
|
(Complex::zero(), T::RealField::zero()),
|
|
);
|
|
|
|
for i in 0..out.len() {
|
|
out[i] = (Complex::new(self.alphar[i], self.alphai[i]), self.beta[i])
|
|
}
|
|
|
|
out
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Lapack functions dispatch.
|
|
*
|
|
*/
|
|
/// Trait implemented by scalars for which Lapack implements the RealField GE decomposition.
|
|
pub trait GEScalar: Scalar {
|
|
#[allow(missing_docs)]
|
|
fn xggev(
|
|
jobvsl: u8,
|
|
jobvsr: u8,
|
|
n: i32,
|
|
a: &mut [Self],
|
|
lda: i32,
|
|
b: &mut [Self],
|
|
ldb: i32,
|
|
alphar: &mut [Self],
|
|
alphai: &mut [Self],
|
|
beta: &mut [Self],
|
|
vsl: &mut [Self],
|
|
ldvsl: i32,
|
|
vsr: &mut [Self],
|
|
ldvsr: i32,
|
|
work: &mut [Self],
|
|
lwork: i32,
|
|
info: &mut i32,
|
|
);
|
|
|
|
#[allow(missing_docs)]
|
|
fn xggev_work_size(
|
|
jobvsl: u8,
|
|
jobvsr: u8,
|
|
n: i32,
|
|
a: &mut [Self],
|
|
lda: i32,
|
|
b: &mut [Self],
|
|
ldb: i32,
|
|
alphar: &mut [Self],
|
|
alphai: &mut [Self],
|
|
beta: &mut [Self],
|
|
vsl: &mut [Self],
|
|
ldvsl: i32,
|
|
vsr: &mut [Self],
|
|
ldvsr: i32,
|
|
info: &mut i32,
|
|
) -> i32;
|
|
}
|
|
|
|
macro_rules! real_eigensystem_scalar_impl (
|
|
($N: ty, $xggev: path) => (
|
|
impl GEScalar for $N {
|
|
#[inline]
|
|
fn xggev(jobvsl: u8,
|
|
jobvsr: u8,
|
|
n: i32,
|
|
a: &mut [$N],
|
|
lda: i32,
|
|
b: &mut [$N],
|
|
ldb: i32,
|
|
alphar: &mut [$N],
|
|
alphai: &mut [$N],
|
|
beta : &mut [$N],
|
|
vsl: &mut [$N],
|
|
ldvsl: i32,
|
|
vsr: &mut [$N],
|
|
ldvsr: i32,
|
|
work: &mut [$N],
|
|
lwork: i32,
|
|
info: &mut i32) {
|
|
unsafe { $xggev(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, info); }
|
|
}
|
|
|
|
|
|
#[inline]
|
|
fn xggev_work_size(jobvsl: u8,
|
|
jobvsr: u8,
|
|
n: i32,
|
|
a: &mut [$N],
|
|
lda: i32,
|
|
b: &mut [$N],
|
|
ldb: i32,
|
|
alphar: &mut [$N],
|
|
alphai: &mut [$N],
|
|
beta : &mut [$N],
|
|
vsl: &mut [$N],
|
|
ldvsl: i32,
|
|
vsr: &mut [$N],
|
|
ldvsr: i32,
|
|
info: &mut i32)
|
|
-> i32 {
|
|
let mut work = [ Zero::zero() ];
|
|
let lwork = -1 as i32;
|
|
|
|
unsafe { $xggev(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, &mut work, lwork, info); }
|
|
ComplexHelper::real_part(work[0]) as i32
|
|
}
|
|
}
|
|
)
|
|
);
|
|
|
|
real_eigensystem_scalar_impl!(f32, lapack::sggev);
|
|
real_eigensystem_scalar_impl!(f64, lapack::dggev);
|