nalgebra/src/geometry/perspective.rs
2022-04-30 10:47:30 +02:00

340 lines
10 KiB
Rust

#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
#[cfg(feature = "rand-no-std")]
use rand::{
distributions::{Distribution, Standard},
Rng,
};
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use std::fmt;
use simba::scalar::RealField;
use crate::base::dimension::U3;
use crate::base::storage::Storage;
use crate::base::{Matrix4, Vector, Vector3};
use crate::geometry::{Point3, Projective3};
/// A 3D perspective projection stored as a homogeneous 4x4 matrix.
#[repr(C)]
#[cfg_attr(feature = "rkyv-serialize", derive(bytecheck::CheckBytes))]
#[cfg_attr(
feature = "rkyv-serialize-no-std",
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
)]
#[cfg_attr(feature = "cuda", derive(cust_core::DeviceCopy))]
#[derive(Copy, Clone)]
pub struct Perspective3<T> {
matrix: Matrix4<T>,
}
impl<T: RealField> fmt::Debug for Perspective3<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
self.matrix.fmt(f)
}
}
impl<T: RealField> PartialEq for Perspective3<T> {
#[inline]
fn eq(&self, right: &Self) -> bool {
self.matrix == right.matrix
}
}
#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Zeroable for Perspective3<T>
where
T: RealField + bytemuck::Zeroable,
Matrix4<T>: bytemuck::Zeroable,
{
}
#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Pod for Perspective3<T>
where
T: RealField + bytemuck::Pod,
Matrix4<T>: bytemuck::Pod,
{
}
#[cfg(feature = "serde-serialize-no-std")]
impl<T: RealField + Serialize> Serialize for Perspective3<T> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.matrix.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'a, T: RealField + Deserialize<'a>> Deserialize<'a> for Perspective3<T> {
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where
Des: Deserializer<'a>,
{
let matrix = Matrix4::<T>::deserialize(deserializer)?;
Ok(Self::from_matrix_unchecked(matrix))
}
}
impl<T> Perspective3<T> {
/// Wraps the given matrix to interpret it as a 3D perspective matrix.
///
/// It is not checked whether or not the given matrix actually represents a perspective
/// projection.
#[inline]
pub const fn from_matrix_unchecked(matrix: Matrix4<T>) -> Self {
Self { matrix }
}
}
impl<T: RealField> Perspective3<T> {
/// Creates a new perspective matrix from the aspect ratio, y field of view, and near/far planes.
pub fn new(aspect: T, fovy: T, znear: T, zfar: T) -> Self {
assert!(
relative_ne!(zfar, znear),
"The near-plane and far-plane must not be superimposed."
);
assert!(
!relative_eq!(aspect, T::zero()),
"The aspect ratio must not be zero."
);
let matrix = Matrix4::identity();
let mut res = Self::from_matrix_unchecked(matrix);
res.set_fovy(fovy);
res.set_aspect(aspect);
res.set_znear_and_zfar(znear, zfar);
res.matrix[(3, 3)] = T::zero();
res.matrix[(3, 2)] = -T::one();
res
}
/// Retrieves the inverse of the underlying homogeneous matrix.
#[inline]
#[must_use]
pub fn inverse(&self) -> Matrix4<T> {
let mut res = self.clone().to_homogeneous();
res[(0, 0)] = T::one() / self.matrix[(0, 0)].clone();
res[(1, 1)] = T::one() / self.matrix[(1, 1)].clone();
res[(2, 2)] = T::zero();
let m23 = self.matrix[(2, 3)].clone();
let m32 = self.matrix[(3, 2)].clone();
res[(2, 3)] = T::one() / m32.clone();
res[(3, 2)] = T::one() / m23.clone();
res[(3, 3)] = -self.matrix[(2, 2)].clone() / (m23 * m32);
res
}
/// Computes the corresponding homogeneous matrix.
#[inline]
#[must_use]
pub fn to_homogeneous(self) -> Matrix4<T> {
self.matrix.clone_owned()
}
/// A reference to the underlying homogeneous transformation matrix.
#[inline]
#[must_use]
pub fn as_matrix(&self) -> &Matrix4<T> {
&self.matrix
}
/// A reference to this transformation seen as a `Projective3`.
#[inline]
#[must_use]
pub fn as_projective(&self) -> &Projective3<T> {
unsafe { &*(self as *const Perspective3<T> as *const Projective3<T>) }
}
/// This transformation seen as a `Projective3`.
#[inline]
#[must_use]
pub fn to_projective(self) -> Projective3<T> {
Projective3::from_matrix_unchecked(self.matrix)
}
/// Retrieves the underlying homogeneous matrix.
#[inline]
pub fn into_inner(self) -> Matrix4<T> {
self.matrix
}
/// Retrieves the underlying homogeneous matrix.
/// Deprecated: Use [`Perspective3::into_inner`] instead.
#[deprecated(note = "use `.into_inner()` instead")]
#[inline]
pub fn unwrap(self) -> Matrix4<T> {
self.matrix
}
/// Gets the `width / height` aspect ratio of the view frustum.
#[inline]
#[must_use]
pub fn aspect(&self) -> T {
self.matrix[(1, 1)].clone() / self.matrix[(0, 0)].clone()
}
/// Gets the y field of view of the view frustum.
#[inline]
#[must_use]
pub fn fovy(&self) -> T {
(T::one() / self.matrix[(1, 1)].clone()).atan() * crate::convert(2.0)
}
/// Gets the near plane offset of the view frustum.
#[inline]
#[must_use]
pub fn znear(&self) -> T {
let ratio =
(-self.matrix[(2, 2)].clone() + T::one()) / (-self.matrix[(2, 2)].clone() - T::one());
self.matrix[(2, 3)].clone() / (ratio * crate::convert(2.0))
- self.matrix[(2, 3)].clone() / crate::convert(2.0)
}
/// Gets the far plane offset of the view frustum.
#[inline]
#[must_use]
pub fn zfar(&self) -> T {
let ratio =
(-self.matrix[(2, 2)].clone() + T::one()) / (-self.matrix[(2, 2)].clone() - T::one());
(self.matrix[(2, 3)].clone() - ratio * self.matrix[(2, 3)].clone()) / crate::convert(2.0)
}
// TODO: add a method to retrieve znear and zfar simultaneously?
// TODO: when we get specialization, specialize the Mul impl instead.
/// Projects a point. Faster than matrix multiplication.
#[inline]
#[must_use]
pub fn project_point(&self, p: &Point3<T>) -> Point3<T> {
let inverse_denom = -T::one() / p[2].clone();
Point3::new(
self.matrix[(0, 0)].clone() * p[0].clone() * inverse_denom.clone(),
self.matrix[(1, 1)].clone() * p[1].clone() * inverse_denom.clone(),
(self.matrix[(2, 2)].clone() * p[2].clone() + self.matrix[(2, 3)].clone())
* inverse_denom,
)
}
/// Un-projects a point. Faster than multiplication by the matrix inverse.
#[inline]
#[must_use]
pub fn unproject_point(&self, p: &Point3<T>) -> Point3<T> {
let inverse_denom =
self.matrix[(2, 3)].clone() / (p[2].clone() + self.matrix[(2, 2)].clone());
Point3::new(
p[0].clone() * inverse_denom.clone() / self.matrix[(0, 0)].clone(),
p[1].clone() * inverse_denom.clone() / self.matrix[(1, 1)].clone(),
-inverse_denom,
)
}
// TODO: when we get specialization, specialize the Mul impl instead.
/// Projects a vector. Faster than matrix multiplication.
#[inline]
#[must_use]
pub fn project_vector<SB>(&self, p: &Vector<T, U3, SB>) -> Vector3<T>
where
SB: Storage<T, U3>,
{
let inverse_denom = -T::one() / p[2].clone();
Vector3::new(
self.matrix[(0, 0)].clone() * p[0].clone() * inverse_denom.clone(),
self.matrix[(1, 1)].clone() * p[1].clone() * inverse_denom,
self.matrix[(2, 2)].clone(),
)
}
/// Updates this perspective matrix with a new `width / height` aspect ratio of the view
/// frustum.
#[inline]
pub fn set_aspect(&mut self, aspect: T) {
assert!(
!relative_eq!(aspect, T::zero()),
"The aspect ratio must not be zero."
);
self.matrix[(0, 0)] = self.matrix[(1, 1)].clone() / aspect;
}
/// Updates this perspective with a new y field of view of the view frustum.
#[inline]
pub fn set_fovy(&mut self, fovy: T) {
let old_m22 = self.matrix[(1, 1)].clone();
let new_m22 = T::one() / (fovy / crate::convert(2.0)).tan();
self.matrix[(1, 1)] = new_m22.clone();
self.matrix[(0, 0)] *= new_m22 / old_m22;
}
/// Updates this perspective matrix with a new near plane offset of the view frustum.
#[inline]
pub fn set_znear(&mut self, znear: T) {
let zfar = self.zfar();
self.set_znear_and_zfar(znear, zfar);
}
/// Updates this perspective matrix with a new far plane offset of the view frustum.
#[inline]
pub fn set_zfar(&mut self, zfar: T) {
let znear = self.znear();
self.set_znear_and_zfar(znear, zfar);
}
/// Updates this perspective matrix with new near and far plane offsets of the view frustum.
#[inline]
pub fn set_znear_and_zfar(&mut self, znear: T, zfar: T) {
self.matrix[(2, 2)] = (zfar.clone() + znear.clone()) / (znear.clone() - zfar.clone());
self.matrix[(2, 3)] = zfar.clone() * znear.clone() * crate::convert(2.0) / (znear - zfar);
}
}
#[cfg(feature = "rand-no-std")]
impl<T: RealField> Distribution<Perspective3<T>> for Standard
where
Standard: Distribution<T>,
{
/// Generate an arbitrary random variate for testing purposes.
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> Perspective3<T> {
use crate::base::helper;
let znear = r.gen();
let zfar = helper::reject_rand(r, |x: &T| !(x.clone() - znear.clone()).is_zero());
let aspect = helper::reject_rand(r, |x: &T| !x.is_zero());
Perspective3::new(aspect, r.gen(), znear, zfar)
}
}
#[cfg(feature = "arbitrary")]
impl<T: RealField + Arbitrary> Arbitrary for Perspective3<T> {
fn arbitrary(g: &mut Gen) -> Self {
use crate::base::helper;
let znear: T = Arbitrary::arbitrary(g);
let zfar = helper::reject(g, |x: &T| !(x.clone() - znear.clone()).is_zero());
let aspect = helper::reject(g, |x: &T| !x.is_zero());
Self::new(aspect, Arbitrary::arbitrary(g), znear, zfar)
}
}
impl<T: RealField> From<Perspective3<T>> for Matrix4<T> {
#[inline]
fn from(pers: Perspective3<T>) -> Self {
pers.into_inner()
}
}