nalgebra/src/geometry/isometry.rs

206 lines
6.8 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use std::fmt;
use std::marker::PhantomData;
use approx::ApproxEq;
use alga::general::{Real, SubsetOf};
use alga::linear::Rotation;
use core::{Scalar, OwnedSquareMatrix};
use core::dimension::{DimName, DimNameSum, DimNameAdd, U1};
use core::storage::{Storage, OwnedStorage};
use core::allocator::{Allocator, OwnedAllocator};
use geometry::{TranslationBase, PointBase};
/// An isometry that uses a data storage deduced from the allocator `A`.
pub type OwnedIsometryBase<N, D, A, R> =
IsometryBase<N, D, <A as Allocator<N, D, U1>>::Buffer, R>;
/// A direct isometry, i.e., a rotation followed by a translation.
#[repr(C)]
#[derive(Hash, Debug, Clone, Copy, Serialize, Deserialize)]
pub struct IsometryBase<N: Scalar, D: DimName, S, R> {
/// The pure rotational part of this isometry.
pub rotation: R,
/// The pure translational part of this isometry.
pub translation: TranslationBase<N, D, S>,
// One dummy private field just to prevent explicit construction.
#[serde(skip_serializing, skip_deserializing)]
_noconstruct: PhantomData<N>
}
impl<N, D: DimName, S, R> IsometryBase<N, D, S, R>
where N: Real,
S: OwnedStorage<N, D, U1>,
R: Rotation<PointBase<N, D, S>>,
S::Alloc: OwnedAllocator<N, D, U1, S> {
/// Creates a new isometry from its rotational and translational parts.
#[inline]
pub fn from_parts(translation: TranslationBase<N, D, S>, rotation: R) -> IsometryBase<N, D, S, R> {
IsometryBase {
rotation: rotation,
translation: translation,
_noconstruct: PhantomData
}
}
/// Inverts `self`.
#[inline]
pub fn inverse(&self) -> IsometryBase<N, D, S, R> {
let mut res = self.clone();
res.inverse_mut();
res
}
/// Inverts `self`.
#[inline]
pub fn inverse_mut(&mut self) {
self.rotation.inverse_mut();
self.translation.inverse_mut();
self.translation.vector = self.rotation.transform_vector(&self.translation.vector);
}
/// Appends to `self` the given translation in-place.
#[inline]
pub fn append_translation_mut(&mut self, t: &TranslationBase<N, D, S>) {
self.translation.vector += &t.vector
}
/// Appends to `self` the given rotation in-place.
#[inline]
pub fn append_rotation_mut(&mut self, r: &R) {
self.rotation = self.rotation.append_rotation(&r);
self.translation.vector = r.transform_vector(&self.translation.vector);
}
/// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
/// lets `p` invariant.
#[inline]
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &PointBase<N, D, S>) {
self.translation.vector -= &p.coords;
self.append_rotation_mut(r);
self.translation.vector += &p.coords;
}
/// Appends in-place to `self` a rotation centered at the point with coordinates
/// `self.translation`.
#[inline]
pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
let center = PointBase::from_coordinates(self.translation.vector.clone());
self.append_rotation_wrt_point_mut(r, &center)
}
}
// NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation
// and makes it hard to use it, e.g., for Transform × Isometry implementation.
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
// explicit struct construction is prevented by the dummy ZST field).
impl<N, D: DimName, S, R> IsometryBase<N, D, S, R>
where N: Scalar,
S: Storage<N, D, U1> {
/// Converts this isometry into its equivalent homogeneous transformation matrix.
#[inline]
pub fn to_homogeneous(&self) -> OwnedSquareMatrix<N, DimNameSum<D, U1>, S::Alloc>
where D: DimNameAdd<U1>,
R: SubsetOf<OwnedSquareMatrix<N, DimNameSum<D, U1>, S::Alloc>>,
S::Alloc: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
let mut res: OwnedSquareMatrix<N, _, S::Alloc> = ::convert_ref(&self.rotation);
res.fixed_slice_mut::<D, U1>(0, D::dim()).copy_from(&self.translation.vector);
res
}
}
impl<N, D: DimName, S, R> Eq for IsometryBase<N, D, S, R>
where N: Real,
S: OwnedStorage<N, D, U1>,
R: Rotation<PointBase<N, D, S>> + Eq,
S::Alloc: OwnedAllocator<N, D, U1, S> {
}
impl<N, D: DimName, S, R> PartialEq for IsometryBase<N, D, S, R>
where N: Real,
S: OwnedStorage<N, D, U1>,
R: Rotation<PointBase<N, D, S>> + PartialEq,
S::Alloc: OwnedAllocator<N, D, U1, S> {
#[inline]
fn eq(&self, right: &IsometryBase<N, D, S, R>) -> bool {
self.translation == right.translation &&
self.rotation == right.rotation
}
}
impl<N, D: DimName, S, R> ApproxEq for IsometryBase<N, D, S, R>
where N: Real,
S: OwnedStorage<N, D, U1>,
R: Rotation<PointBase<N, D, S>> + ApproxEq<Epsilon = N::Epsilon>,
S::Alloc: OwnedAllocator<N, D, U1, S>,
N::Epsilon: Copy {
type Epsilon = N::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
self.translation.relative_eq(&other.translation, epsilon, max_relative) &&
self.rotation.relative_eq(&other.rotation, epsilon, max_relative)
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.translation.ulps_eq(&other.translation, epsilon, max_ulps) &&
self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
}
}
/*
*
* Display
*
*/
impl<N, D: DimName, S, R> fmt::Display for IsometryBase<N, D, S, R>
where N: Real + fmt::Display,
S: OwnedStorage<N, D, U1>,
R: fmt::Display,
S::Alloc: OwnedAllocator<N, D, U1, S> + Allocator<usize, D, U1> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
try!(writeln!(f, "IsometryBase {{"));
try!(write!(f, "{:.*}", precision, self.translation));
try!(write!(f, "{:.*}", precision, self.rotation));
writeln!(f, "}}")
}
}
// /*
// *
// * Absolute
// *
// */
// impl<N: Absolute> Absolute for $t<N> {
// type AbsoluteValue = $submatrix<N::AbsoluteValue>;
//
// #[inline]
// fn abs(m: &$t<N>) -> $submatrix<N::AbsoluteValue> {
// Absolute::abs(&m.submatrix)
// }
// }