408 lines
11 KiB
Rust
408 lines
11 KiB
Rust
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
|
|
use num::One;
|
|
use std::cmp::Ordering;
|
|
use std::fmt;
|
|
use std::hash;
|
|
#[cfg(feature = "abomonation-serialize")]
|
|
use std::io::{Result as IOResult, Write};
|
|
|
|
#[cfg(feature = "serde-serialize")]
|
|
use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
|
|
|
#[cfg(feature = "abomonation-serialize")]
|
|
use abomonation::Abomonation;
|
|
|
|
use simba::simd::SimdPartialOrd;
|
|
|
|
use crate::base::allocator::Allocator;
|
|
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
|
|
use crate::base::iter::{MatrixIter, MatrixIterMut};
|
|
use crate::base::{DefaultAllocator, Scalar, VectorN};
|
|
|
|
/// A point in a n-dimensional euclidean space.
|
|
#[repr(C)]
|
|
#[derive(Debug, Clone)]
|
|
pub struct Point<N: Scalar, D: DimName>
|
|
where
|
|
DefaultAllocator: Allocator<N, D>,
|
|
{
|
|
/// The coordinates of this point, i.e., the shift from the origin.
|
|
pub coords: VectorN<N, D>,
|
|
}
|
|
|
|
impl<N: Scalar + hash::Hash, D: DimName + hash::Hash> hash::Hash for Point<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D>,
|
|
<DefaultAllocator as Allocator<N, D>>::Buffer: hash::Hash,
|
|
{
|
|
fn hash<H: hash::Hasher>(&self, state: &mut H) {
|
|
self.coords.hash(state)
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar + Copy, D: DimName> Copy for Point<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D>,
|
|
<DefaultAllocator as Allocator<N, D>>::Buffer: Copy,
|
|
{
|
|
}
|
|
|
|
#[cfg(feature = "serde-serialize")]
|
|
impl<N: Scalar, D: DimName> Serialize for Point<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D>,
|
|
<DefaultAllocator as Allocator<N, D>>::Buffer: Serialize,
|
|
{
|
|
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
|
where
|
|
S: Serializer,
|
|
{
|
|
self.coords.serialize(serializer)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "serde-serialize")]
|
|
impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Point<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D>,
|
|
<DefaultAllocator as Allocator<N, D>>::Buffer: Deserialize<'a>,
|
|
{
|
|
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
|
|
where
|
|
Des: Deserializer<'a>,
|
|
{
|
|
let coords = VectorN::<N, D>::deserialize(deserializer)?;
|
|
|
|
Ok(Self::from(coords))
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "abomonation-serialize")]
|
|
impl<N, D> Abomonation for Point<N, D>
|
|
where
|
|
N: Scalar,
|
|
D: DimName,
|
|
VectorN<N, D>: Abomonation,
|
|
DefaultAllocator: Allocator<N, D>,
|
|
{
|
|
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
|
|
self.coords.entomb(writer)
|
|
}
|
|
|
|
fn extent(&self) -> usize {
|
|
self.coords.extent()
|
|
}
|
|
|
|
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
|
|
self.coords.exhume(bytes)
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar, D: DimName> Point<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D>,
|
|
{
|
|
/// Returns a point containing the result of `f` applied to each of its entries.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Point2, Point3};
|
|
/// let p = Point2::new(1.0, 2.0);
|
|
/// assert_eq!(p.map(|e| e * 10.0), Point2::new(10.0, 20.0));
|
|
///
|
|
/// // This works in any dimension.
|
|
/// let p = Point3::new(1.1, 2.1, 3.1);
|
|
/// assert_eq!(p.map(|e| e as u32), Point3::new(1, 2, 3));
|
|
/// ```
|
|
#[inline]
|
|
pub fn map<N2: Scalar, F: FnMut(N) -> N2>(&self, f: F) -> Point<N2, D>
|
|
where
|
|
DefaultAllocator: Allocator<N2, D>,
|
|
{
|
|
self.coords.map(f).into()
|
|
}
|
|
|
|
/// Replaces each component of `self` by the result of a closure `f` applied on it.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Point2, Point3};
|
|
/// let mut p = Point2::new(1.0, 2.0);
|
|
/// p.apply(|e| e * 10.0);
|
|
/// assert_eq!(p, Point2::new(10.0, 20.0));
|
|
///
|
|
/// // This works in any dimension.
|
|
/// let mut p = Point3::new(1.0, 2.0, 3.0);
|
|
/// p.apply(|e| e * 10.0);
|
|
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
|
|
/// ```
|
|
#[inline]
|
|
pub fn apply<F: FnMut(N) -> N>(&mut self, f: F) {
|
|
self.coords.apply(f)
|
|
}
|
|
|
|
/// Converts this point into a vector in homogeneous coordinates, i.e., appends a `1` at the
|
|
/// end of it.
|
|
///
|
|
/// This is the same as `.into()`.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Point2, Point3, Vector3, Vector4};
|
|
/// let p = Point2::new(10.0, 20.0);
|
|
/// assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0));
|
|
///
|
|
/// // This works in any dimension.
|
|
/// let p = Point3::new(10.0, 20.0, 30.0);
|
|
/// assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));
|
|
/// ```
|
|
#[inline]
|
|
pub fn to_homogeneous(&self) -> VectorN<N, DimNameSum<D, U1>>
|
|
where
|
|
N: One,
|
|
D: DimNameAdd<U1>,
|
|
DefaultAllocator: Allocator<N, DimNameSum<D, U1>>,
|
|
{
|
|
let mut res = unsafe { VectorN::<_, DimNameSum<D, U1>>::new_uninitialized() };
|
|
res.fixed_slice_mut::<D, U1>(0, 0).copy_from(&self.coords);
|
|
res[(D::dim(), 0)] = N::one();
|
|
|
|
res
|
|
}
|
|
|
|
/// Creates a new point with the given coordinates.
|
|
#[deprecated(note = "Use Point::from(vector) instead.")]
|
|
#[inline]
|
|
pub fn from_coordinates(coords: VectorN<N, D>) -> Self {
|
|
Self { coords }
|
|
}
|
|
|
|
/// The dimension of this point.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Point2, Point3};
|
|
/// let p = Point2::new(1.0, 2.0);
|
|
/// assert_eq!(p.len(), 2);
|
|
///
|
|
/// // This works in any dimension.
|
|
/// let p = Point3::new(10.0, 20.0, 30.0);
|
|
/// assert_eq!(p.len(), 3);
|
|
/// ```
|
|
#[inline]
|
|
pub fn len(&self) -> usize {
|
|
self.coords.len()
|
|
}
|
|
|
|
/// The stride of this point. This is the number of buffer element separating each component of
|
|
/// this point.
|
|
#[inline]
|
|
#[deprecated(note = "This methods is no longer significant and will always return 1.")]
|
|
pub fn stride(&self) -> usize {
|
|
self.coords.strides().0
|
|
}
|
|
|
|
/// Iterates through this point coordinates.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::Point3;
|
|
/// let p = Point3::new(1.0, 2.0, 3.0);
|
|
/// let mut it = p.iter().cloned();
|
|
///
|
|
/// assert_eq!(it.next(), Some(1.0));
|
|
/// assert_eq!(it.next(), Some(2.0));
|
|
/// assert_eq!(it.next(), Some(3.0));
|
|
/// assert_eq!(it.next(), None);
|
|
#[inline]
|
|
pub fn iter(&self) -> MatrixIter<N, D, U1, <DefaultAllocator as Allocator<N, D>>::Buffer> {
|
|
self.coords.iter()
|
|
}
|
|
|
|
/// Gets a reference to i-th element of this point without bound-checking.
|
|
#[inline]
|
|
pub unsafe fn get_unchecked(&self, i: usize) -> &N {
|
|
self.coords.vget_unchecked(i)
|
|
}
|
|
|
|
/// Mutably iterates through this point coordinates.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::Point3;
|
|
/// let mut p = Point3::new(1.0, 2.0, 3.0);
|
|
///
|
|
/// for e in p.iter_mut() {
|
|
/// *e *= 10.0;
|
|
/// }
|
|
///
|
|
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
|
|
#[inline]
|
|
pub fn iter_mut(
|
|
&mut self,
|
|
) -> MatrixIterMut<N, D, U1, <DefaultAllocator as Allocator<N, D>>::Buffer> {
|
|
self.coords.iter_mut()
|
|
}
|
|
|
|
/// Gets a mutable reference to i-th element of this point without bound-checking.
|
|
#[inline]
|
|
pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut N {
|
|
self.coords.vget_unchecked_mut(i)
|
|
}
|
|
|
|
/// Swaps two entries without bound-checking.
|
|
#[inline]
|
|
pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize) {
|
|
self.coords.swap_unchecked((i1, 0), (i2, 0))
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar + AbsDiffEq, D: DimName> AbsDiffEq for Point<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D>,
|
|
N::Epsilon: Copy,
|
|
{
|
|
type Epsilon = N::Epsilon;
|
|
|
|
#[inline]
|
|
fn default_epsilon() -> Self::Epsilon {
|
|
N::default_epsilon()
|
|
}
|
|
|
|
#[inline]
|
|
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
|
self.coords.abs_diff_eq(&other.coords, epsilon)
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar + RelativeEq, D: DimName> RelativeEq for Point<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D>,
|
|
N::Epsilon: Copy,
|
|
{
|
|
#[inline]
|
|
fn default_max_relative() -> Self::Epsilon {
|
|
N::default_max_relative()
|
|
}
|
|
|
|
#[inline]
|
|
fn relative_eq(
|
|
&self,
|
|
other: &Self,
|
|
epsilon: Self::Epsilon,
|
|
max_relative: Self::Epsilon,
|
|
) -> bool {
|
|
self.coords
|
|
.relative_eq(&other.coords, epsilon, max_relative)
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar + UlpsEq, D: DimName> UlpsEq for Point<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D>,
|
|
N::Epsilon: Copy,
|
|
{
|
|
#[inline]
|
|
fn default_max_ulps() -> u32 {
|
|
N::default_max_ulps()
|
|
}
|
|
|
|
#[inline]
|
|
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
|
self.coords.ulps_eq(&other.coords, epsilon, max_ulps)
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar + Eq, D: DimName> Eq for Point<N, D> where DefaultAllocator: Allocator<N, D> {}
|
|
|
|
impl<N: Scalar, D: DimName> PartialEq for Point<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D>,
|
|
{
|
|
#[inline]
|
|
fn eq(&self, right: &Self) -> bool {
|
|
self.coords == right.coords
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar + PartialOrd, D: DimName> PartialOrd for Point<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D>,
|
|
{
|
|
#[inline]
|
|
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
|
self.coords.partial_cmp(&other.coords)
|
|
}
|
|
|
|
#[inline]
|
|
fn lt(&self, right: &Self) -> bool {
|
|
self.coords.lt(&right.coords)
|
|
}
|
|
|
|
#[inline]
|
|
fn le(&self, right: &Self) -> bool {
|
|
self.coords.le(&right.coords)
|
|
}
|
|
|
|
#[inline]
|
|
fn gt(&self, right: &Self) -> bool {
|
|
self.coords.gt(&right.coords)
|
|
}
|
|
|
|
#[inline]
|
|
fn ge(&self, right: &Self) -> bool {
|
|
self.coords.ge(&right.coords)
|
|
}
|
|
}
|
|
|
|
/*
|
|
* inf/sup
|
|
*/
|
|
impl<N: Scalar + SimdPartialOrd, D: DimName> Point<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D>,
|
|
{
|
|
/// Computes the infimum (aka. componentwise min) of two points.
|
|
#[inline]
|
|
pub fn inf(&self, other: &Self) -> Point<N, D> {
|
|
self.coords.inf(&other.coords).into()
|
|
}
|
|
|
|
/// Computes the supremum (aka. componentwise max) of two points.
|
|
#[inline]
|
|
pub fn sup(&self, other: &Self) -> Point<N, D> {
|
|
self.coords.sup(&other.coords).into()
|
|
}
|
|
|
|
/// Computes the (infimum, supremum) of two points.
|
|
#[inline]
|
|
pub fn inf_sup(&self, other: &Self) -> (Point<N, D>, Point<N, D>) {
|
|
let (inf, sup) = self.coords.inf_sup(&other.coords);
|
|
(inf.into(), sup.into())
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Display
|
|
*
|
|
*/
|
|
impl<N: Scalar + fmt::Display, D: DimName> fmt::Display for Point<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D>,
|
|
{
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "{{")?;
|
|
|
|
let mut it = self.coords.iter();
|
|
|
|
write!(f, "{}", *it.next().unwrap())?;
|
|
|
|
for comp in it {
|
|
write!(f, ", {}", *comp)?;
|
|
}
|
|
|
|
write!(f, "}}")
|
|
}
|
|
}
|