nalgebra/src/geometry/orthographic.rs

731 lines
27 KiB
Rust

#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
use rand::distributions::{Distribution, Standard};
use rand::Rng;
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use std::fmt;
use std::mem;
use alga::general::Real;
use base::dimension::U3;
use base::helper;
use base::storage::Storage;
use base::{Matrix4, Vector, Vector3};
use geometry::{Point3, Projective3};
/// A 3D orthographic projection stored as an homogeneous 4x4 matrix.
pub struct Orthographic3<N: Real> {
matrix: Matrix4<N>,
}
impl<N: Real> Copy for Orthographic3<N> {}
impl<N: Real> Clone for Orthographic3<N> {
#[inline]
fn clone(&self) -> Self {
Orthographic3::from_matrix_unchecked(self.matrix.clone())
}
}
impl<N: Real> fmt::Debug for Orthographic3<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
self.matrix.fmt(f)
}
}
impl<N: Real> PartialEq for Orthographic3<N> {
#[inline]
fn eq(&self, right: &Self) -> bool {
self.matrix == right.matrix
}
}
#[cfg(feature = "serde-serialize")]
impl<N: Real + Serialize> Serialize for Orthographic3<N> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: Serializer {
self.matrix.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize")]
impl<'a, N: Real + Deserialize<'a>> Deserialize<'a> for Orthographic3<N> {
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where Des: Deserializer<'a> {
let matrix = Matrix4::<N>::deserialize(deserializer)?;
Ok(Orthographic3::from_matrix_unchecked(matrix))
}
}
impl<N: Real> Orthographic3<N> {
/// Creates a new orthographic projection matrix.
///
/// This follows the OpenGL convention, so this will flip the `z` axis.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Orthographic3, Point3};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// // Check this projection actually transforms the view cuboid into the double-unit cube.
/// // See https://www.nalgebra.org/projections/#orthographic-projection for more details.
/// let p1 = Point3::new(1.0, 2.0, -0.1);
/// let p2 = Point3::new(1.0, 2.0, -1000.0);
/// let p3 = Point3::new(1.0, 20.0, -0.1);
/// let p4 = Point3::new(1.0, 20.0, -1000.0);
/// let p5 = Point3::new(10.0, 2.0, -0.1);
/// let p6 = Point3::new(10.0, 2.0, -1000.0);
/// let p7 = Point3::new(10.0, 20.0, -0.1);
/// let p8 = Point3::new(10.0, 20.0, -1000.0);
///
/// assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0));
///
/// // This also works with flipped axis. In other words, we allow that
/// // `left > right`, `bottom > top`, and/or `znear > zfar`.
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
///
/// assert_relative_eq!(proj.project_point(&p1), Point3::new( 1.0, 1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p2), Point3::new( 1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p3), Point3::new( 1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p4), Point3::new( 1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p5), Point3::new(-1.0, 1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p6), Point3::new(-1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p7), Point3::new(-1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p8), Point3::new(-1.0, -1.0, -1.0));
/// ```
#[inline]
pub fn new(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> Self {
let matrix = Matrix4::<N>::identity();
let mut res = Self::from_matrix_unchecked(matrix);
res.set_left_and_right(left, right);
res.set_bottom_and_top(bottom, top);
res.set_znear_and_zfar(znear, zfar);
res
}
/// Wraps the given matrix to interpret it as a 3D orthographic matrix.
///
/// It is not checked whether or not the given matrix actually represents an orthographic
/// projection.
///
/// # Example
/// ```
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let mat = Matrix4::new(
/// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
/// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
/// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
/// 0.0, 0.0, 0.0, 1.0
/// );
/// let proj = Orthographic3::from_matrix_unchecked(mat);
/// assert_eq!(proj, Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0));
/// ```
#[inline]
pub fn from_matrix_unchecked(matrix: Matrix4<N>) -> Self {
Orthographic3 { matrix: matrix }
}
/// Creates a new orthographic projection matrix from an aspect ratio and the vertical field of view.
#[inline]
pub fn from_fov(aspect: N, vfov: N, znear: N, zfar: N) -> Self {
assert!(
znear != zfar,
"The far plane must not be equal to the near plane."
);
assert!(
!relative_eq!(aspect, N::zero()),
"The apsect ratio must not be zero."
);
let half: N = ::convert(0.5);
let width = zfar * (vfov * half).tan();
let height = width / aspect;
Self::new(
-width * half,
width * half,
-height * half,
height * half,
znear,
zfar,
)
}
/// Retrieves the inverse of the underlying homogeneous matrix.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// let inv = proj.inverse();
///
/// assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity());
/// assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity());
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// let inv = proj.inverse();
/// assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity());
/// assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity());
/// ```
#[inline]
pub fn inverse(&self) -> Matrix4<N> {
let mut res = self.to_homogeneous();
let inv_m11 = N::one() / self.matrix[(0, 0)];
let inv_m22 = N::one() / self.matrix[(1, 1)];
let inv_m33 = N::one() / self.matrix[(2, 2)];
res[(0, 0)] = inv_m11;
res[(1, 1)] = inv_m22;
res[(2, 2)] = inv_m33;
res[(0, 3)] = -self.matrix[(0, 3)] * inv_m11;
res[(1, 3)] = -self.matrix[(1, 3)] * inv_m22;
res[(2, 3)] = -self.matrix[(2, 3)] * inv_m33;
res
}
/// Computes the corresponding homogeneous matrix.
///
/// # Example
/// ```
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// let expected = Matrix4::new(
/// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
/// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
/// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
/// 0.0, 0.0, 0.0, 1.0
/// );
/// assert_eq!(proj.to_homogeneous(), expected);
/// ```
#[inline]
pub fn to_homogeneous(&self) -> Matrix4<N> {
self.matrix
}
/// A reference to the underlying homogeneous transformation matrix.
///
/// # Example
/// ```
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// let expected = Matrix4::new(
/// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
/// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
/// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
/// 0.0, 0.0, 0.0, 1.0
/// );
/// assert_eq!(*proj.as_matrix(), expected);
/// ```
#[inline]
pub fn as_matrix(&self) -> &Matrix4<N> {
&self.matrix
}
/// A reference to this transformation seen as a `Projective3`.
///
/// # Example
/// ```
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_eq!(proj.as_projective().to_homogeneous(), proj.to_homogeneous());
/// ```
#[inline]
pub fn as_projective(&self) -> &Projective3<N> {
unsafe { mem::transmute(self) }
}
/// This transformation seen as a `Projective3`.
///
/// # Example
/// ```
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_eq!(proj.to_projective().to_homogeneous(), proj.to_homogeneous());
/// ```
#[inline]
pub fn to_projective(&self) -> Projective3<N> {
Projective3::from_matrix_unchecked(self.matrix)
}
/// Retrieves the underlying homogeneous matrix.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// let expected = Matrix4::new(
/// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
/// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
/// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
/// 0.0, 0.0, 0.0, 1.0
/// );
/// assert_eq!(proj.unwrap(), expected);
/// ```
#[inline]
pub fn unwrap(self) -> Matrix4<N> {
self.matrix
}
/// The left offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.left(), 1.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.left(), 10.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn left(&self) -> N {
(-N::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)]
}
/// The right offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.right(), 10.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.right(), 1.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn right(&self) -> N {
(N::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)]
}
/// The bottom offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.bottom(), 2.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.bottom(), 20.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn bottom(&self) -> N {
(-N::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)]
}
/// The top offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.top(), 20.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.top(), 2.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn top(&self) -> N {
(N::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)]
}
/// The near plane offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.znear(), 0.1, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.znear(), 1000.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn znear(&self) -> N {
(N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)]
}
/// The far plane offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.zfar(), 1000.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.zfar(), 0.1, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn zfar(&self) -> N {
(-N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)]
}
// FIXME: when we get specialization, specialize the Mul impl instead.
/// Projects a point. Faster than matrix multiplication.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Orthographic3, Point3};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
///
/// let p1 = Point3::new(1.0, 2.0, -0.1);
/// let p2 = Point3::new(1.0, 2.0, -1000.0);
/// let p3 = Point3::new(1.0, 20.0, -0.1);
/// let p4 = Point3::new(1.0, 20.0, -1000.0);
/// let p5 = Point3::new(10.0, 2.0, -0.1);
/// let p6 = Point3::new(10.0, 2.0, -1000.0);
/// let p7 = Point3::new(10.0, 20.0, -0.1);
/// let p8 = Point3::new(10.0, 20.0, -1000.0);
///
/// assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0));
/// ```
#[inline]
pub fn project_point(&self, p: &Point3<N>) -> Point3<N> {
Point3::new(
self.matrix[(0, 0)] * p[0] + self.matrix[(0, 3)],
self.matrix[(1, 1)] * p[1] + self.matrix[(1, 3)],
self.matrix[(2, 2)] * p[2] + self.matrix[(2, 3)],
)
}
/// Un-projects a point. Faster than multiplication by the underlying matrix inverse.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Orthographic3, Point3};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
///
/// let p1 = Point3::new(-1.0, -1.0, -1.0);
/// let p2 = Point3::new(-1.0, -1.0, 1.0);
/// let p3 = Point3::new(-1.0, 1.0, -1.0);
/// let p4 = Point3::new(-1.0, 1.0, 1.0);
/// let p5 = Point3::new( 1.0, -1.0, -1.0);
/// let p6 = Point3::new( 1.0, -1.0, 1.0);
/// let p7 = Point3::new( 1.0, 1.0, -1.0);
/// let p8 = Point3::new( 1.0, 1.0, 1.0);
///
/// assert_relative_eq!(proj.unproject_point(&p1), Point3::new(1.0, 2.0, -0.1), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p2), Point3::new(1.0, 2.0, -1000.0), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p3), Point3::new(1.0, 20.0, -0.1), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p4), Point3::new(1.0, 20.0, -1000.0), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p5), Point3::new(10.0, 2.0, -0.1), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p6), Point3::new(10.0, 2.0, -1000.0), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p7), Point3::new(10.0, 20.0, -0.1), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p8), Point3::new(10.0, 20.0, -1000.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn unproject_point(&self, p: &Point3<N>) -> Point3<N> {
Point3::new(
(p[0] - self.matrix[(0, 3)]) / self.matrix[(0, 0)],
(p[1] - self.matrix[(1, 3)]) / self.matrix[(1, 1)],
(p[2] - self.matrix[(2, 3)]) / self.matrix[(2, 2)],
)
}
// FIXME: when we get specialization, specialize the Mul impl instead.
/// Projects a vector. Faster than matrix multiplication.
///
/// Vectors are not affected by the translation part of the projection.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Orthographic3, Vector3};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
///
/// let v1 = Vector3::x();
/// let v2 = Vector3::y();
/// let v3 = Vector3::z();
///
/// assert_relative_eq!(proj.project_vector(&v1), Vector3::x() * 2.0 / 9.0);
/// assert_relative_eq!(proj.project_vector(&v2), Vector3::y() * 2.0 / 18.0);
/// assert_relative_eq!(proj.project_vector(&v3), Vector3::z() * -2.0 / 999.9);
/// ```
#[inline]
pub fn project_vector<SB>(&self, p: &Vector<N, U3, SB>) -> Vector3<N>
where SB: Storage<N, U3> {
Vector3::new(
self.matrix[(0, 0)] * p[0],
self.matrix[(1, 1)] * p[1],
self.matrix[(2, 2)] * p[2],
)
}
/// Sets the left offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_left(2.0);
/// assert_relative_eq!(proj.left(), 2.0, epsilon = 1.0e-6);
///
/// // It is OK to set a left offset greater than the current right offset.
/// proj.set_left(20.0);
/// assert_relative_eq!(proj.left(), 20.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_left(&mut self, left: N) {
let right = self.right();
self.set_left_and_right(left, right);
}
/// Sets the right offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_right(15.0);
/// assert_relative_eq!(proj.right(), 15.0, epsilon = 1.0e-6);
///
/// // It is OK to set a right offset smaller than the current left offset.
/// proj.set_right(-3.0);
/// assert_relative_eq!(proj.right(), -3.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_right(&mut self, right: N) {
let left = self.left();
self.set_left_and_right(left, right);
}
/// Sets the bottom offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_bottom(8.0);
/// assert_relative_eq!(proj.bottom(), 8.0, epsilon = 1.0e-6);
///
/// // It is OK to set a bottom offset greater than the current top offset.
/// proj.set_bottom(50.0);
/// assert_relative_eq!(proj.bottom(), 50.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_bottom(&mut self, bottom: N) {
let top = self.top();
self.set_bottom_and_top(bottom, top);
}
/// Sets the top offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_top(15.0);
/// assert_relative_eq!(proj.top(), 15.0, epsilon = 1.0e-6);
///
/// // It is OK to set a top offset smaller than the current bottom offset.
/// proj.set_top(-3.0);
/// assert_relative_eq!(proj.top(), -3.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_top(&mut self, top: N) {
let bottom = self.bottom();
self.set_bottom_and_top(bottom, top);
}
/// Sets the near plane offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_znear(8.0);
/// assert_relative_eq!(proj.znear(), 8.0, epsilon = 1.0e-6);
///
/// // It is OK to set a znear greater than the current zfar.
/// proj.set_znear(5000.0);
/// assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_znear(&mut self, znear: N) {
let zfar = self.zfar();
self.set_znear_and_zfar(znear, zfar);
}
/// Sets the far plane offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_zfar(15.0);
/// assert_relative_eq!(proj.zfar(), 15.0, epsilon = 1.0e-6);
///
/// // It is OK to set a zfar smaller than the current znear.
/// proj.set_zfar(-3.0);
/// assert_relative_eq!(proj.zfar(), -3.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_zfar(&mut self, zfar: N) {
let znear = self.znear();
self.set_znear_and_zfar(znear, zfar);
}
/// Sets the view cuboid offsets along the `x` axis.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_left_and_right(7.0, 70.0);
/// assert_relative_eq!(proj.left(), 7.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.right(), 70.0, epsilon = 1.0e-6);
///
/// // It is also OK to have `left > right`.
/// proj.set_left_and_right(70.0, 7.0);
/// assert_relative_eq!(proj.left(), 70.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.right(), 7.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_left_and_right(&mut self, left: N, right: N) {
assert!(
left != right,
"The left corner must not be equal to the right corner."
);
self.matrix[(0, 0)] = ::convert::<_, N>(2.0) / (right - left);
self.matrix[(0, 3)] = -(right + left) / (right - left);
}
/// Sets the view cuboid offsets along the `y` axis.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_bottom_and_top(7.0, 70.0);
/// assert_relative_eq!(proj.bottom(), 7.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.top(), 70.0, epsilon = 1.0e-6);
///
/// // It is also OK to have `bottom > top`.
/// proj.set_bottom_and_top(70.0, 7.0);
/// assert_relative_eq!(proj.bottom(), 70.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.top(), 7.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_bottom_and_top(&mut self, bottom: N, top: N) {
assert!(
bottom != top,
"The top corner must not be equal to the bottom corner."
);
self.matrix[(1, 1)] = ::convert::<_, N>(2.0) / (top - bottom);
self.matrix[(1, 3)] = -(top + bottom) / (top - bottom);
}
/// Sets the near and far plane offsets of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_znear_and_zfar(50.0, 5000.0);
/// assert_relative_eq!(proj.znear(), 50.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.zfar(), 5000.0, epsilon = 1.0e-6);
///
/// // It is also OK to have `znear > zfar`.
/// proj.set_znear_and_zfar(5000.0, 0.5);
/// assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.zfar(), 0.5, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_znear_and_zfar(&mut self, znear: N, zfar: N) {
assert!(
zfar != znear,
"The near-plane and far-plane must not be superimposed."
);
self.matrix[(2, 2)] = -::convert::<_, N>(2.0) / (zfar - znear);
self.matrix[(2, 3)] = -(zfar + znear) / (zfar - znear);
}
}
impl<N: Real> Distribution<Orthographic3<N>> for Standard
where Standard: Distribution<N>
{
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> Orthographic3<N> {
let left = r.gen();
let right = helper::reject_rand(r, |x: &N| *x > left);
let bottom = r.gen();
let top = helper::reject_rand(r, |x: &N| *x > bottom);
let znear = r.gen();
let zfar = helper::reject_rand(r, |x: &N| *x > znear);
Orthographic3::new(left, right, bottom, top, znear, zfar)
}
}
#[cfg(feature = "arbitrary")]
impl<N: Real + Arbitrary> Arbitrary for Orthographic3<N>
where Matrix4<N>: Send
{
fn arbitrary<G: Gen>(g: &mut G) -> Self {
let left = Arbitrary::arbitrary(g);
let right = helper::reject(g, |x: &N| *x > left);
let bottom = Arbitrary::arbitrary(g);
let top = helper::reject(g, |x: &N| *x > bottom);
let znear = Arbitrary::arbitrary(g);
let zfar = helper::reject(g, |x: &N| *x > znear);
Self::new(left, right, bottom, top, znear, zfar)
}
}
impl<N: Real> From<Orthographic3<N>> for Matrix4<N> {
#[inline]
fn from(orth: Orthographic3<N>) -> Self {
orth.unwrap()
}
}