nalgebra/src/base/matrix.rs
Jenan Wise 85a64fb517 More verbose DMatrix dim asserts where possible.
Previously, most dimension mismatch asserts used raw `assert!` and did
not include the mismatching dimensions in the panic message. When using
dynamic matrices, this led to somewhat-opaque panics such as:

```rust
let m1 = DMatrix::<f32>::zeros(2, 3);
let m2 = DMatrix::<f32>::zeros(5, 10);
m1 + m2 // panic: Matrix addition/subtraction dimensions mismatch.
```

This patch adds dimension information in the panic messages wherever
doing so did not add additional bounds checks, mostly by simply changing
`assert!(a == b, ...)` cases to `assert_eq!`. After:

```rust
// panic: assertion failed: `(left == right)`
//   left: `(2, 3)`,
//  right: `(5, 10)`: Matrix addition/subtraction dimensions mismatch.
```

Note that the `gemv` and `ger` were not updated, as they are called from
within other functions on subset matricies -- e.g., `gemv` is called
from `gemm` which is called from `mul_to` . Including dimension
information in the `gemv` panic messages would be confusing to
`mul` / `mul_to` users, because it would include dimensions of the column
vectors that `gemm` passes to `gemv` rather than of the original `mul`
arguments. A fix would be to add bounds checks to `mul_to`, but that may
have performance and redundancy implications, so is left to another
patch.
2020-06-22 17:18:53 -07:00

1918 lines
58 KiB
Rust
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use num::{One, Zero};
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use std::any::TypeId;
use std::cmp::Ordering;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::mem;
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub, Field, RealField};
use simba::simd::SimdPartialOrd;
use crate::base::allocator::{Allocator, SameShapeAllocator, SameShapeC, SameShapeR};
use crate::base::constraint::{DimEq, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
use crate::base::dimension::{Dim, DimAdd, DimSum, IsNotStaticOne, U1, U2, U3};
use crate::base::iter::{
ColumnIter, ColumnIterMut, MatrixIter, MatrixIterMut, RowIter, RowIterMut,
};
use crate::base::storage::{
ContiguousStorage, ContiguousStorageMut, Owned, SameShapeStorage, Storage, StorageMut,
};
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, Scalar, Unit, VectorN};
use crate::SimdComplexField;
/// A square matrix.
pub type SquareMatrix<N, D, S> = Matrix<N, D, D, S>;
/// A matrix with one column and `D` rows.
pub type Vector<N, D, S> = Matrix<N, D, U1, S>;
/// A matrix with one row and `D` columns .
pub type RowVector<N, D, S> = Matrix<N, U1, D, S>;
/// The type of the result of a matrix sum.
pub type MatrixSum<N, R1, C1, R2, C2> =
Matrix<N, SameShapeR<R1, R2>, SameShapeC<C1, C2>, SameShapeStorage<N, R1, C1, R2, C2>>;
/// The type of the result of a matrix sum.
pub type VectorSum<N, R1, R2> =
Matrix<N, SameShapeR<R1, R2>, U1, SameShapeStorage<N, R1, U1, R2, U1>>;
/// The type of the result of a matrix cross product.
pub type MatrixCross<N, R1, C1, R2, C2> =
Matrix<N, SameShapeR<R1, R2>, SameShapeC<C1, C2>, SameShapeStorage<N, R1, C1, R2, C2>>;
/// The most generic column-major matrix (and vector) type.
///
/// It combines four type parameters:
/// - `N`: for the matrix components scalar type.
/// - `R`: for the matrix number of rows.
/// - `C`: for the matrix number of columns.
/// - `S`: for the matrix data storage, i.e., the buffer that actually contains the matrix
/// components.
///
/// The matrix dimensions parameters `R` and `C` can either be:
/// - type-level unsigned integer constants (e.g. `U1`, `U124`) from the `nalgebra::` root module.
/// All numbers from 0 to 127 are defined that way.
/// - type-level unsigned integer constants (e.g. `U1024`, `U10000`) from the `typenum::` crate.
/// Using those, you will not get error messages as nice as for numbers smaller than 128 defined on
/// the `nalgebra::` module.
/// - the special value `Dynamic` from the `nalgebra::` root module. This indicates that the
/// specified dimension is not known at compile-time. Note that this will generally imply that the
/// matrix data storage `S` performs a dynamic allocation and contains extra metadata for the
/// matrix shape.
///
/// Note that mixing `Dynamic` with type-level unsigned integers is allowed. Actually, a
/// dynamically-sized column vector should be represented as a `Matrix<N, Dynamic, U1, S>` (given
/// some concrete types for `N` and a compatible data storage type `S`).
#[repr(C)]
#[derive(Clone, Copy)]
pub struct Matrix<N: Scalar, R: Dim, C: Dim, S> {
/// The data storage that contains all the matrix components and informations about its number
/// of rows and column (if needed).
pub data: S,
_phantoms: PhantomData<(N, R, C)>,
}
impl<N: Scalar, R: Dim, C: Dim, S: fmt::Debug> fmt::Debug for Matrix<N, R, C, S> {
fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
formatter
.debug_struct("Matrix")
.field("data", &self.data)
.finish()
}
}
impl<N, R, C, S> Default for Matrix<N, R, C, S>
where
N: Scalar,
R: Dim,
C: Dim,
S: Default,
{
fn default() -> Self {
Matrix {
data: Default::default(),
_phantoms: PhantomData,
}
}
}
#[cfg(feature = "serde-serialize")]
impl<N, R, C, S> Serialize for Matrix<N, R, C, S>
where
N: Scalar,
R: Dim,
C: Dim,
S: Serialize,
{
fn serialize<T>(&self, serializer: T) -> Result<T::Ok, T::Error>
where
T: Serializer,
{
self.data.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize")]
impl<'de, N, R, C, S> Deserialize<'de> for Matrix<N, R, C, S>
where
N: Scalar,
R: Dim,
C: Dim,
S: Deserialize<'de>,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
S::deserialize(deserializer).map(|x| Matrix {
data: x,
_phantoms: PhantomData,
})
}
}
#[cfg(feature = "abomonation-serialize")]
impl<N: Scalar, R: Dim, C: Dim, S: Abomonation> Abomonation for Matrix<N, R, C, S> {
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
self.data.entomb(writer)
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.data.exhume(bytes)
}
fn extent(&self) -> usize {
self.data.extent()
}
}
impl<N: Scalar, R: Dim, C: Dim, S> Matrix<N, R, C, S> {
/// Creates a new matrix with the given data without statically checking that the matrix
/// dimension matches the storage dimension.
#[inline]
pub unsafe fn from_data_statically_unchecked(data: S) -> Matrix<N, R, C, S> {
Matrix {
data: data,
_phantoms: PhantomData,
}
}
}
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Creates a new matrix with the given data.
#[inline]
pub fn from_data(data: S) -> Self {
unsafe { Self::from_data_statically_unchecked(data) }
}
/// The total number of elements of this matrix.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Matrix3x4;
/// let mat = Matrix3x4::<f32>::zeros();
/// assert_eq!(mat.len(), 12);
#[inline]
pub fn len(&self) -> usize {
let (nrows, ncols) = self.shape();
nrows * ncols
}
/// The shape of this matrix returned as the tuple (number of rows, number of columns).
///
/// # Examples:
///
/// ```
/// # use nalgebra::Matrix3x4;
/// let mat = Matrix3x4::<f32>::zeros();
/// assert_eq!(mat.shape(), (3, 4));
#[inline]
pub fn shape(&self) -> (usize, usize) {
let (nrows, ncols) = self.data.shape();
(nrows.value(), ncols.value())
}
/// The number of rows of this matrix.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Matrix3x4;
/// let mat = Matrix3x4::<f32>::zeros();
/// assert_eq!(mat.nrows(), 3);
#[inline]
pub fn nrows(&self) -> usize {
self.shape().0
}
/// The number of columns of this matrix.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Matrix3x4;
/// let mat = Matrix3x4::<f32>::zeros();
/// assert_eq!(mat.ncols(), 4);
#[inline]
pub fn ncols(&self) -> usize {
self.shape().1
}
/// The strides (row stride, column stride) of this matrix.
///
/// # Examples:
///
/// ```
/// # use nalgebra::DMatrix;
/// let mat = DMatrix::<f32>::zeros(10, 10);
/// let slice = mat.slice_with_steps((0, 0), (5, 3), (1, 2));
/// // The column strides is the number of steps (here 2) multiplied by the corresponding dimension.
/// assert_eq!(mat.strides(), (1, 10));
#[inline]
pub fn strides(&self) -> (usize, usize) {
let (srows, scols) = self.data.strides();
(srows.value(), scols.value())
}
/// Iterates through this matrix coordinates in column-major order.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Matrix2x3;
/// let mat = Matrix2x3::new(11, 12, 13,
/// 21, 22, 23);
/// let mut it = mat.iter();
/// assert_eq!(*it.next().unwrap(), 11);
/// assert_eq!(*it.next().unwrap(), 21);
/// assert_eq!(*it.next().unwrap(), 12);
/// assert_eq!(*it.next().unwrap(), 22);
/// assert_eq!(*it.next().unwrap(), 13);
/// assert_eq!(*it.next().unwrap(), 23);
/// assert!(it.next().is_none());
#[inline]
pub fn iter(&self) -> MatrixIter<N, R, C, S> {
MatrixIter::new(&self.data)
}
/// Iterate through the rows of this matrix.
///
/// # Example
/// ```
/// # use nalgebra::Matrix2x3;
/// let mut a = Matrix2x3::new(1, 2, 3,
/// 4, 5, 6);
/// for (i, row) in a.row_iter().enumerate() {
/// assert_eq!(row, a.row(i))
/// }
/// ```
#[inline]
pub fn row_iter(&self) -> RowIter<N, R, C, S> {
RowIter::new(self)
}
/// Iterate through the columns of this matrix.
/// # Example
/// ```
/// # use nalgebra::Matrix2x3;
/// let mut a = Matrix2x3::new(1, 2, 3,
/// 4, 5, 6);
/// for (i, column) in a.column_iter().enumerate() {
/// assert_eq!(column, a.column(i))
/// }
/// ```
#[inline]
pub fn column_iter(&self) -> ColumnIter<N, R, C, S> {
ColumnIter::new(self)
}
/// Computes the row and column coordinates of the i-th element of this matrix seen as a
/// vector.
///
/// # Example
/// ```
/// # use nalgebra::Matrix2;
/// let m = Matrix2::new(1, 2,
/// 3, 4);
/// let i = m.vector_to_matrix_index(3);
/// assert_eq!(i, (1, 1));
/// assert_eq!(m[i], m[3]);
/// ```
#[inline]
pub fn vector_to_matrix_index(&self, i: usize) -> (usize, usize) {
let (nrows, ncols) = self.shape();
// Two most common uses that should be optimized by the compiler for statically-sized
// matrices.
if nrows == 1 {
(0, i)
} else if ncols == 1 {
(i, 0)
} else {
(i % nrows, i / nrows)
}
}
/// Returns a pointer to the start of the matrix.
///
/// If the matrix is not empty, this pointer is guaranteed to be aligned
/// and non-null.
///
/// # Example
/// ```
/// # use nalgebra::Matrix2;
/// let m = Matrix2::new(1, 2,
/// 3, 4);
/// let ptr = m.as_ptr();
/// assert_eq!(unsafe { *ptr }, m[0]);
/// ```
#[inline]
pub fn as_ptr(&self) -> *const N {
self.data.ptr()
}
/// Tests whether `self` and `rhs` are equal up to a given epsilon.
///
/// See `relative_eq` from the `RelativeEq` trait for more details.
#[inline]
pub fn relative_eq<R2, C2, SB>(
&self,
other: &Matrix<N, R2, C2, SB>,
eps: N::Epsilon,
max_relative: N::Epsilon,
) -> bool
where
N: RelativeEq,
R2: Dim,
C2: Dim,
SB: Storage<N, R2, C2>,
N::Epsilon: Copy,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
assert!(self.shape() == other.shape());
self.iter()
.zip(other.iter())
.all(|(a, b)| a.relative_eq(b, eps, max_relative))
}
/// Tests whether `self` and `rhs` are exactly equal.
#[inline]
pub fn eq<R2, C2, SB>(&self, other: &Matrix<N, R2, C2, SB>) -> bool
where
N: PartialEq,
R2: Dim,
C2: Dim,
SB: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
assert!(self.shape() == other.shape());
self.iter().zip(other.iter()).all(|(a, b)| *a == *b)
}
/// Moves this matrix into one that owns its data.
#[inline]
pub fn into_owned(self) -> MatrixMN<N, R, C>
where
DefaultAllocator: Allocator<N, R, C>,
{
Matrix::from_data(self.data.into_owned())
}
// FIXME: this could probably benefit from specialization.
// XXX: bad name.
/// Moves this matrix into one that owns its data. The actual type of the result depends on
/// matrix storage combination rules for addition.
#[inline]
pub fn into_owned_sum<R2, C2>(self) -> MatrixSum<N, R, C, R2, C2>
where
R2: Dim,
C2: Dim,
DefaultAllocator: SameShapeAllocator<N, R, C, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
if TypeId::of::<SameShapeStorage<N, R, C, R2, C2>>() == TypeId::of::<Owned<N, R, C>>() {
// We can just return `self.into_owned()`.
unsafe {
// FIXME: check that those copies are optimized away by the compiler.
let owned = self.into_owned();
let res = mem::transmute_copy(&owned);
mem::forget(owned);
res
}
} else {
self.clone_owned_sum()
}
}
/// Clones this matrix to one that owns its data.
#[inline]
pub fn clone_owned(&self) -> MatrixMN<N, R, C>
where
DefaultAllocator: Allocator<N, R, C>,
{
Matrix::from_data(self.data.clone_owned())
}
/// Clones this matrix into one that owns its data. The actual type of the result depends on
/// matrix storage combination rules for addition.
#[inline]
pub fn clone_owned_sum<R2, C2>(&self) -> MatrixSum<N, R, C, R2, C2>
where
R2: Dim,
C2: Dim,
DefaultAllocator: SameShapeAllocator<N, R, C, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
let (nrows, ncols) = self.shape();
let nrows: SameShapeR<R, R2> = Dim::from_usize(nrows);
let ncols: SameShapeC<C, C2> = Dim::from_usize(ncols);
let mut res: MatrixSum<N, R, C, R2, C2> =
unsafe { Matrix::new_uninitialized_generic(nrows, ncols) };
// FIXME: use copy_from
for j in 0..res.ncols() {
for i in 0..res.nrows() {
unsafe {
*res.get_unchecked_mut((i, j)) = self.get_unchecked((i, j)).inlined_clone();
}
}
}
res
}
/// Returns a matrix containing the result of `f` applied to each of its entries.
#[inline]
pub fn map<N2: Scalar, F: FnMut(N) -> N2>(&self, mut f: F) -> MatrixMN<N2, R, C>
where
DefaultAllocator: Allocator<N2, R, C>,
{
let (nrows, ncols) = self.data.shape();
let mut res = unsafe { MatrixMN::new_uninitialized_generic(nrows, ncols) };
for j in 0..ncols.value() {
for i in 0..nrows.value() {
unsafe {
let a = self.data.get_unchecked(i, j).inlined_clone();
*res.data.get_unchecked_mut(i, j) = f(a)
}
}
}
res
}
/// Similar to `self.iter().fold(init, f)` except that `init` is replaced by a closure.
///
/// The initialization closure is given the first component of this matrix:
/// - If the matrix has no component (0 rows or 0 columns) then `init_f` is called with `None`
/// and its return value is the value returned by this method.
/// - If the matrix has has least one component, then `init_f` is called with the first component
/// to compute the initial value. Folding then continues on all the remaining components of the matrix.
#[inline]
pub fn fold_with<N2>(
&self,
init_f: impl FnOnce(Option<&N>) -> N2,
f: impl FnMut(N2, &N) -> N2,
) -> N2 {
let mut it = self.iter();
let init = init_f(it.next());
it.fold(init, f)
}
/// Returns a matrix containing the result of `f` applied to each of its entries. Unlike `map`,
/// `f` also gets passed the row and column index, i.e. `f(row, col, value)`.
#[inline]
pub fn map_with_location<N2: Scalar, F: FnMut(usize, usize, N) -> N2>(
&self,
mut f: F,
) -> MatrixMN<N2, R, C>
where
DefaultAllocator: Allocator<N2, R, C>,
{
let (nrows, ncols) = self.data.shape();
let mut res = unsafe { MatrixMN::new_uninitialized_generic(nrows, ncols) };
for j in 0..ncols.value() {
for i in 0..nrows.value() {
unsafe {
let a = self.data.get_unchecked(i, j).inlined_clone();
*res.data.get_unchecked_mut(i, j) = f(i, j, a)
}
}
}
res
}
/// Returns a matrix containing the result of `f` applied to each entries of `self` and
/// `rhs`.
#[inline]
pub fn zip_map<N2, N3, S2, F>(&self, rhs: &Matrix<N2, R, C, S2>, mut f: F) -> MatrixMN<N3, R, C>
where
N2: Scalar,
N3: Scalar,
S2: Storage<N2, R, C>,
F: FnMut(N, N2) -> N3,
DefaultAllocator: Allocator<N3, R, C>,
{
let (nrows, ncols) = self.data.shape();
let mut res = unsafe { MatrixMN::new_uninitialized_generic(nrows, ncols) };
assert_eq!(
(nrows.value(), ncols.value()),
rhs.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
for j in 0..ncols.value() {
for i in 0..nrows.value() {
unsafe {
let a = self.data.get_unchecked(i, j).inlined_clone();
let b = rhs.data.get_unchecked(i, j).inlined_clone();
*res.data.get_unchecked_mut(i, j) = f(a, b)
}
}
}
res
}
/// Returns a matrix containing the result of `f` applied to each entries of `self` and
/// `b`, and `c`.
#[inline]
pub fn zip_zip_map<N2, N3, N4, S2, S3, F>(
&self,
b: &Matrix<N2, R, C, S2>,
c: &Matrix<N3, R, C, S3>,
mut f: F,
) -> MatrixMN<N4, R, C>
where
N2: Scalar,
N3: Scalar,
N4: Scalar,
S2: Storage<N2, R, C>,
S3: Storage<N3, R, C>,
F: FnMut(N, N2, N3) -> N4,
DefaultAllocator: Allocator<N4, R, C>,
{
let (nrows, ncols) = self.data.shape();
let mut res = unsafe { MatrixMN::new_uninitialized_generic(nrows, ncols) };
assert_eq!(
(nrows.value(), ncols.value()),
b.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
assert_eq!(
(nrows.value(), ncols.value()),
c.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
for j in 0..ncols.value() {
for i in 0..nrows.value() {
unsafe {
let a = self.data.get_unchecked(i, j).inlined_clone();
let b = b.data.get_unchecked(i, j).inlined_clone();
let c = c.data.get_unchecked(i, j).inlined_clone();
*res.data.get_unchecked_mut(i, j) = f(a, b, c)
}
}
}
res
}
/// Folds a function `f` on each entry of `self`.
#[inline]
pub fn fold<Acc>(&self, init: Acc, mut f: impl FnMut(Acc, N) -> Acc) -> Acc {
let (nrows, ncols) = self.data.shape();
let mut res = init;
for j in 0..ncols.value() {
for i in 0..nrows.value() {
unsafe {
let a = self.data.get_unchecked(i, j).inlined_clone();
res = f(res, a)
}
}
}
res
}
/// Folds a function `f` on each pairs of entries from `self` and `rhs`.
#[inline]
pub fn zip_fold<N2, R2, C2, S2, Acc>(
&self,
rhs: &Matrix<N2, R2, C2, S2>,
init: Acc,
mut f: impl FnMut(Acc, N, N2) -> Acc,
) -> Acc
where
N2: Scalar,
R2: Dim,
C2: Dim,
S2: Storage<N2, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
let (nrows, ncols) = self.data.shape();
let mut res = init;
assert_eq!(
(nrows.value(), ncols.value()),
rhs.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
for j in 0..ncols.value() {
for i in 0..nrows.value() {
unsafe {
let a = self.data.get_unchecked(i, j).inlined_clone();
let b = rhs.data.get_unchecked(i, j).inlined_clone();
res = f(res, a, b)
}
}
}
res
}
/// Transposes `self` and store the result into `out`.
#[inline]
pub fn transpose_to<R2, C2, SB>(&self, out: &mut Matrix<N, R2, C2, SB>)
where
R2: Dim,
C2: Dim,
SB: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, C2> + SameNumberOfColumns<C, R2>,
{
let (nrows, ncols) = self.shape();
assert!(
(ncols, nrows) == out.shape(),
"Incompatible shape for transpose-copy."
);
// FIXME: optimize that.
for i in 0..nrows {
for j in 0..ncols {
unsafe {
*out.get_unchecked_mut((j, i)) = self.get_unchecked((i, j)).inlined_clone();
}
}
}
}
/// Transposes `self`.
#[inline]
#[must_use = "Did you mean to use transpose_mut()?"]
pub fn transpose(&self) -> MatrixMN<N, C, R>
where
DefaultAllocator: Allocator<N, C, R>,
{
let (nrows, ncols) = self.data.shape();
unsafe {
let mut res = Matrix::new_uninitialized_generic(ncols, nrows);
self.transpose_to(&mut res);
res
}
}
}
impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
/// Mutably iterates through this matrix coordinates.
#[inline]
pub fn iter_mut(&mut self) -> MatrixIterMut<N, R, C, S> {
MatrixIterMut::new(&mut self.data)
}
/// Returns a mutable pointer to the start of the matrix.
///
/// If the matrix is not empty, this pointer is guaranteed to be aligned
/// and non-null.
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut N {
self.data.ptr_mut()
}
/// Mutably iterates through this matrix rows.
///
/// # Example
/// ```
/// # use nalgebra::Matrix2x3;
/// let mut a = Matrix2x3::new(1, 2, 3,
/// 4, 5, 6);
/// for (i, mut row) in a.row_iter_mut().enumerate() {
/// row *= (i + 1) * 10;
/// }
///
/// let expected = Matrix2x3::new(10, 20, 30,
/// 80, 100, 120);
/// assert_eq!(a, expected);
/// ```
#[inline]
pub fn row_iter_mut(&mut self) -> RowIterMut<N, R, C, S> {
RowIterMut::new(self)
}
/// Mutably iterates through this matrix columns.
///
/// # Example
/// ```
/// # use nalgebra::Matrix2x3;
/// let mut a = Matrix2x3::new(1, 2, 3,
/// 4, 5, 6);
/// for (i, mut col) in a.column_iter_mut().enumerate() {
/// col *= (i + 1) * 10;
/// }
///
/// let expected = Matrix2x3::new(10, 40, 90,
/// 40, 100, 180);
/// assert_eq!(a, expected);
/// ```
#[inline]
pub fn column_iter_mut(&mut self) -> ColumnIterMut<N, R, C, S> {
ColumnIterMut::new(self)
}
/// Swaps two entries without bound-checking.
#[inline]
pub unsafe fn swap_unchecked(&mut self, row_cols1: (usize, usize), row_cols2: (usize, usize)) {
debug_assert!(row_cols1.0 < self.nrows() && row_cols1.1 < self.ncols());
debug_assert!(row_cols2.0 < self.nrows() && row_cols2.1 < self.ncols());
self.data.swap_unchecked(row_cols1, row_cols2)
}
/// Swaps two entries.
#[inline]
pub fn swap(&mut self, row_cols1: (usize, usize), row_cols2: (usize, usize)) {
let (nrows, ncols) = self.shape();
assert!(
row_cols1.0 < nrows && row_cols1.1 < ncols,
"Matrix elements swap index out of bounds."
);
assert!(
row_cols2.0 < nrows && row_cols2.1 < ncols,
"Matrix elements swap index out of bounds."
);
unsafe { self.swap_unchecked(row_cols1, row_cols2) }
}
/// Fills this matrix with the content of a slice. Both must hold the same number of elements.
///
/// The components of the slice are assumed to be ordered in column-major order.
#[inline]
pub fn copy_from_slice(&mut self, slice: &[N]) {
let (nrows, ncols) = self.shape();
assert!(
nrows * ncols == slice.len(),
"The slice must contain the same number of elements as the matrix."
);
for j in 0..ncols {
for i in 0..nrows {
unsafe {
*self.get_unchecked_mut((i, j)) =
slice.get_unchecked(i + j * nrows).inlined_clone();
}
}
}
}
/// Fills this matrix with the content of another one. Both must have the same shape.
#[inline]
pub fn copy_from<R2, C2, SB>(&mut self, other: &Matrix<N, R2, C2, SB>)
where
R2: Dim,
C2: Dim,
SB: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
assert!(
self.shape() == other.shape(),
"Unable to copy from a matrix with a different shape."
);
for j in 0..self.ncols() {
for i in 0..self.nrows() {
unsafe {
*self.get_unchecked_mut((i, j)) = other.get_unchecked((i, j)).inlined_clone();
}
}
}
}
/// Fills this matrix with the content of the transpose another one.
#[inline]
pub fn tr_copy_from<R2, C2, SB>(&mut self, other: &Matrix<N, R2, C2, SB>)
where
R2: Dim,
C2: Dim,
SB: Storage<N, R2, C2>,
ShapeConstraint: DimEq<R, C2> + SameNumberOfColumns<C, R2>,
{
let (nrows, ncols) = self.shape();
assert!(
(ncols, nrows) == other.shape(),
"Unable to copy from a matrix with incompatible shape."
);
for j in 0..ncols {
for i in 0..nrows {
unsafe {
*self.get_unchecked_mut((i, j)) = other.get_unchecked((j, i)).inlined_clone();
}
}
}
}
// FIXME: rename `apply` to `apply_mut` and `apply_into` to `apply`?
/// Returns `self` with each of its components replaced by the result of a closure `f` applied on it.
#[inline]
pub fn apply_into<F: FnMut(N) -> N>(mut self, f: F) -> Self {
self.apply(f);
self
}
/// Replaces each component of `self` by the result of a closure `f` applied on it.
#[inline]
pub fn apply<F: FnMut(N) -> N>(&mut self, mut f: F) {
let (nrows, ncols) = self.shape();
for j in 0..ncols {
for i in 0..nrows {
unsafe {
let e = self.data.get_unchecked_mut(i, j);
*e = f(e.inlined_clone())
}
}
}
}
/// Replaces each component of `self` by the result of a closure `f` applied on its components
/// joined with the components from `rhs`.
#[inline]
pub fn zip_apply<N2, R2, C2, S2>(
&mut self,
rhs: &Matrix<N2, R2, C2, S2>,
mut f: impl FnMut(N, N2) -> N,
) where
N2: Scalar,
R2: Dim,
C2: Dim,
S2: Storage<N2, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
let (nrows, ncols) = self.shape();
assert_eq!(
(nrows, ncols),
rhs.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
for j in 0..ncols {
for i in 0..nrows {
unsafe {
let e = self.data.get_unchecked_mut(i, j);
let rhs = rhs.get_unchecked((i, j)).inlined_clone();
*e = f(e.inlined_clone(), rhs)
}
}
}
}
/// Replaces each component of `self` by the result of a closure `f` applied on its components
/// joined with the components from `b` and `c`.
#[inline]
pub fn zip_zip_apply<N2, R2, C2, S2, N3, R3, C3, S3>(
&mut self,
b: &Matrix<N2, R2, C2, S2>,
c: &Matrix<N3, R3, C3, S3>,
mut f: impl FnMut(N, N2, N3) -> N,
) where
N2: Scalar,
R2: Dim,
C2: Dim,
S2: Storage<N2, R2, C2>,
N3: Scalar,
R3: Dim,
C3: Dim,
S3: Storage<N3, R3, C3>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
let (nrows, ncols) = self.shape();
assert_eq!(
(nrows, ncols),
b.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
assert_eq!(
(nrows, ncols),
c.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
for j in 0..ncols {
for i in 0..nrows {
unsafe {
let e = self.data.get_unchecked_mut(i, j);
let b = b.get_unchecked((i, j)).inlined_clone();
let c = c.get_unchecked((i, j)).inlined_clone();
*e = f(e.inlined_clone(), b, c)
}
}
}
}
}
impl<N: Scalar, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
/// Gets a reference to the i-th element of this column vector without bound checking.
#[inline]
pub unsafe fn vget_unchecked(&self, i: usize) -> &N {
debug_assert!(i < self.nrows(), "Vector index out of bounds.");
let i = i * self.strides().0;
self.data.get_unchecked_linear(i)
}
}
impl<N: Scalar, D: Dim, S: StorageMut<N, D>> Vector<N, D, S> {
/// Gets a mutable reference to the i-th element of this column vector without bound checking.
#[inline]
pub unsafe fn vget_unchecked_mut(&mut self, i: usize) -> &mut N {
debug_assert!(i < self.nrows(), "Vector index out of bounds.");
let i = i * self.strides().0;
self.data.get_unchecked_linear_mut(i)
}
}
impl<N: Scalar, R: Dim, C: Dim, S: ContiguousStorage<N, R, C>> Matrix<N, R, C, S> {
/// Extracts a slice containing the entire matrix entries ordered column-by-columns.
#[inline]
pub fn as_slice(&self) -> &[N] {
self.data.as_slice()
}
}
impl<N: Scalar, R: Dim, C: Dim, S: ContiguousStorageMut<N, R, C>> Matrix<N, R, C, S> {
/// Extracts a mutable slice containing the entire matrix entries ordered column-by-columns.
#[inline]
pub fn as_mut_slice(&mut self) -> &mut [N] {
self.data.as_mut_slice()
}
}
impl<N: Scalar, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
/// Transposes the square matrix `self` in-place.
pub fn transpose_mut(&mut self) {
assert!(
self.is_square(),
"Unable to transpose a non-square matrix in-place."
);
let dim = self.shape().0;
for i in 1..dim {
for j in 0..i {
unsafe { self.swap_unchecked((i, j), (j, i)) }
}
}
}
}
impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Takes the adjoint (aka. conjugate-transpose) of `self` and store the result into `out`.
#[inline]
pub fn adjoint_to<R2, C2, SB>(&self, out: &mut Matrix<N, R2, C2, SB>)
where
R2: Dim,
C2: Dim,
SB: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, C2> + SameNumberOfColumns<C, R2>,
{
let (nrows, ncols) = self.shape();
assert!(
(ncols, nrows) == out.shape(),
"Incompatible shape for transpose-copy."
);
// FIXME: optimize that.
for i in 0..nrows {
for j in 0..ncols {
unsafe {
*out.get_unchecked_mut((j, i)) = self.get_unchecked((i, j)).simd_conjugate();
}
}
}
}
/// The adjoint (aka. conjugate-transpose) of `self`.
#[inline]
#[must_use = "Did you mean to use adjoint_mut()?"]
pub fn adjoint(&self) -> MatrixMN<N, C, R>
where
DefaultAllocator: Allocator<N, C, R>,
{
let (nrows, ncols) = self.data.shape();
unsafe {
let mut res: MatrixMN<_, C, R> = Matrix::new_uninitialized_generic(ncols, nrows);
self.adjoint_to(&mut res);
res
}
}
/// Takes the conjugate and transposes `self` and store the result into `out`.
#[deprecated(note = "Renamed `self.adjoint_to(out)`.")]
#[inline]
pub fn conjugate_transpose_to<R2, C2, SB>(&self, out: &mut Matrix<N, R2, C2, SB>)
where
R2: Dim,
C2: Dim,
SB: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, C2> + SameNumberOfColumns<C, R2>,
{
self.adjoint_to(out)
}
/// The conjugate transposition of `self`.
#[deprecated(note = "Renamed `self.adjoint()`.")]
#[inline]
pub fn conjugate_transpose(&self) -> MatrixMN<N, C, R>
where
DefaultAllocator: Allocator<N, C, R>,
{
self.adjoint()
}
/// The conjugate of `self`.
#[inline]
#[must_use = "Did you mean to use conjugate_mut()?"]
pub fn conjugate(&self) -> MatrixMN<N, R, C>
where
DefaultAllocator: Allocator<N, R, C>,
{
self.map(|e| e.simd_conjugate())
}
/// Divides each component of the complex matrix `self` by the given real.
#[inline]
#[must_use = "Did you mean to use unscale_mut()?"]
pub fn unscale(&self, real: N::SimdRealField) -> MatrixMN<N, R, C>
where
DefaultAllocator: Allocator<N, R, C>,
{
self.map(|e| e.simd_unscale(real))
}
/// Multiplies each component of the complex matrix `self` by the given real.
#[inline]
#[must_use = "Did you mean to use scale_mut()?"]
pub fn scale(&self, real: N::SimdRealField) -> MatrixMN<N, R, C>
where
DefaultAllocator: Allocator<N, R, C>,
{
self.map(|e| e.simd_scale(real))
}
}
impl<N: SimdComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
/// The conjugate of the complex matrix `self` computed in-place.
#[inline]
pub fn conjugate_mut(&mut self) {
self.apply(|e| e.simd_conjugate())
}
/// Divides each component of the complex matrix `self` by the given real.
#[inline]
pub fn unscale_mut(&mut self, real: N::SimdRealField) {
self.apply(|e| e.simd_unscale(real))
}
/// Multiplies each component of the complex matrix `self` by the given real.
#[inline]
pub fn scale_mut(&mut self, real: N::SimdRealField) {
self.apply(|e| e.simd_scale(real))
}
}
impl<N: SimdComplexField, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
/// Sets `self` to its adjoint.
#[deprecated(note = "Renamed to `self.adjoint_mut()`.")]
pub fn conjugate_transform_mut(&mut self) {
self.adjoint_mut()
}
/// Sets `self` to its adjoint (aka. conjugate-transpose).
pub fn adjoint_mut(&mut self) {
assert!(
self.is_square(),
"Unable to transpose a non-square matrix in-place."
);
let dim = self.shape().0;
for i in 0..dim {
for j in 0..i {
unsafe {
let ref_ij = self.get_unchecked_mut((i, j)) as *mut N;
let ref_ji = self.get_unchecked_mut((j, i)) as *mut N;
let conj_ij = (*ref_ij).simd_conjugate();
let conj_ji = (*ref_ji).simd_conjugate();
*ref_ij = conj_ji;
*ref_ji = conj_ij;
}
}
{
let diag = unsafe { self.get_unchecked_mut((i, i)) };
*diag = diag.simd_conjugate();
}
}
}
}
impl<N: Scalar, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
/// The diagonal of this matrix.
#[inline]
pub fn diagonal(&self) -> VectorN<N, D>
where
DefaultAllocator: Allocator<N, D>,
{
self.map_diagonal(|e| e)
}
/// Apply the given function to this matrix's diagonal and returns it.
///
/// This is a more efficient version of `self.diagonal().map(f)` since this
/// allocates only once.
pub fn map_diagonal<N2: Scalar>(&self, mut f: impl FnMut(N) -> N2) -> VectorN<N2, D>
where
DefaultAllocator: Allocator<N2, D>,
{
assert!(
self.is_square(),
"Unable to get the diagonal of a non-square matrix."
);
let dim = self.data.shape().0;
let mut res = unsafe { VectorN::new_uninitialized_generic(dim, U1) };
for i in 0..dim.value() {
unsafe {
*res.vget_unchecked_mut(i) = f(self.get_unchecked((i, i)).inlined_clone());
}
}
res
}
/// Computes a trace of a square matrix, i.e., the sum of its diagonal elements.
#[inline]
pub fn trace(&self) -> N
where
N: Scalar + Zero + ClosedAdd,
{
assert!(
self.is_square(),
"Cannot compute the trace of non-square matrix."
);
let dim = self.data.shape().0;
let mut res = N::zero();
for i in 0..dim.value() {
res += unsafe { self.get_unchecked((i, i)).inlined_clone() };
}
res
}
}
impl<N: SimdComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
/// The symmetric part of `self`, i.e., `0.5 * (self + self.transpose())`.
#[inline]
pub fn symmetric_part(&self) -> MatrixMN<N, D, D>
where
DefaultAllocator: Allocator<N, D, D>,
{
assert!(
self.is_square(),
"Cannot compute the symmetric part of a non-square matrix."
);
let mut tr = self.transpose();
tr += self;
tr *= crate::convert::<_, N>(0.5);
tr
}
/// The hermitian part of `self`, i.e., `0.5 * (self + self.adjoint())`.
#[inline]
pub fn hermitian_part(&self) -> MatrixMN<N, D, D>
where
DefaultAllocator: Allocator<N, D, D>,
{
assert!(
self.is_square(),
"Cannot compute the hermitian part of a non-square matrix."
);
let mut tr = self.adjoint();
tr += self;
tr *= crate::convert::<_, N>(0.5);
tr
}
}
impl<N: Scalar + Zero + One, D: DimAdd<U1> + IsNotStaticOne, S: Storage<N, D, D>>
Matrix<N, D, D, S>
{
/// Yields the homogeneous matrix for this matrix, i.e., appending an additional dimension and
/// and setting the diagonal element to `1`.
#[inline]
pub fn to_homogeneous(&self) -> MatrixN<N, DimSum<D, U1>>
where
DefaultAllocator: Allocator<N, DimSum<D, U1>, DimSum<D, U1>>,
{
assert!(
self.is_square(),
"Only square matrices can currently be transformed to homogeneous coordinates."
);
let dim = DimSum::<D, U1>::from_usize(self.nrows() + 1);
let mut res = MatrixN::identity_generic(dim, dim);
res.generic_slice_mut::<D, D>((0, 0), self.data.shape())
.copy_from(&self);
res
}
}
impl<N: Scalar + Zero, D: DimAdd<U1>, S: Storage<N, D>> Vector<N, D, S> {
/// Computes the coordinates in projective space of this vector, i.e., appends a `0` to its
/// coordinates.
#[inline]
pub fn to_homogeneous(&self) -> VectorN<N, DimSum<D, U1>>
where
DefaultAllocator: Allocator<N, DimSum<D, U1>>,
{
self.push(N::zero())
}
/// Constructs a vector from coordinates in projective space, i.e., removes a `0` at the end of
/// `self`. Returns `None` if this last component is not zero.
#[inline]
pub fn from_homogeneous<SB>(v: Vector<N, DimSum<D, U1>, SB>) -> Option<VectorN<N, D>>
where
SB: Storage<N, DimSum<D, U1>>,
DefaultAllocator: Allocator<N, D>,
{
if v[v.len() - 1].is_zero() {
let nrows = D::from_usize(v.len() - 1);
Some(v.generic_slice((0, 0), (nrows, U1)).into_owned())
} else {
None
}
}
}
impl<N: Scalar + Zero, D: DimAdd<U1>, S: Storage<N, D>> Vector<N, D, S> {
/// Constructs a new vector of higher dimension by appending `element` to the end of `self`.
#[inline]
pub fn push(&self, element: N) -> VectorN<N, DimSum<D, U1>>
where
DefaultAllocator: Allocator<N, DimSum<D, U1>>,
{
let len = self.len();
let hnrows = DimSum::<D, U1>::from_usize(len + 1);
let mut res = unsafe { VectorN::<N, _>::new_uninitialized_generic(hnrows, U1) };
res.generic_slice_mut((0, 0), self.data.shape())
.copy_from(self);
res[(len, 0)] = element;
res
}
}
impl<N, R: Dim, C: Dim, S> AbsDiffEq for Matrix<N, R, C, S>
where
N: Scalar + AbsDiffEq,
S: Storage<N, R, C>,
N::Epsilon: Copy,
{
type Epsilon = N::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.iter()
.zip(other.iter())
.all(|(a, b)| a.abs_diff_eq(b, epsilon))
}
}
impl<N, R: Dim, C: Dim, S> RelativeEq for Matrix<N, R, C, S>
where
N: Scalar + RelativeEq,
S: Storage<N, R, C>,
N::Epsilon: Copy,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.relative_eq(other, epsilon, max_relative)
}
}
impl<N, R: Dim, C: Dim, S> UlpsEq for Matrix<N, R, C, S>
where
N: Scalar + UlpsEq,
S: Storage<N, R, C>,
N::Epsilon: Copy,
{
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
assert!(self.shape() == other.shape());
self.iter()
.zip(other.iter())
.all(|(a, b)| a.ulps_eq(b, epsilon, max_ulps))
}
}
impl<N, R: Dim, C: Dim, S> PartialOrd for Matrix<N, R, C, S>
where
N: Scalar + PartialOrd,
S: Storage<N, R, C>,
{
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
if self.shape() != other.shape() {
return None;
}
if self.nrows() == 0 || self.ncols() == 0 {
return Some(Ordering::Equal);
}
let mut first_ord = unsafe {
self.data
.get_unchecked_linear(0)
.partial_cmp(other.data.get_unchecked_linear(0))
};
if let Some(first_ord) = first_ord.as_mut() {
let mut it = self.iter().zip(other.iter());
let _ = it.next(); // Drop the first elements (we already tested it).
for (left, right) in it {
if let Some(ord) = left.partial_cmp(right) {
match ord {
Ordering::Equal => { /* Does not change anything. */ }
Ordering::Less => {
if *first_ord == Ordering::Greater {
return None;
}
*first_ord = ord
}
Ordering::Greater => {
if *first_ord == Ordering::Less {
return None;
}
*first_ord = ord
}
}
} else {
return None;
}
}
}
first_ord
}
#[inline]
fn lt(&self, right: &Self) -> bool {
assert_eq!(
self.shape(),
right.shape(),
"Matrix comparison error: dimensions mismatch."
);
self.iter().zip(right.iter()).all(|(a, b)| a.lt(b))
}
#[inline]
fn le(&self, right: &Self) -> bool {
assert_eq!(
self.shape(),
right.shape(),
"Matrix comparison error: dimensions mismatch."
);
self.iter().zip(right.iter()).all(|(a, b)| a.le(b))
}
#[inline]
fn gt(&self, right: &Self) -> bool {
assert_eq!(
self.shape(),
right.shape(),
"Matrix comparison error: dimensions mismatch."
);
self.iter().zip(right.iter()).all(|(a, b)| a.gt(b))
}
#[inline]
fn ge(&self, right: &Self) -> bool {
assert_eq!(
self.shape(),
right.shape(),
"Matrix comparison error: dimensions mismatch."
);
self.iter().zip(right.iter()).all(|(a, b)| a.ge(b))
}
}
impl<N, R: Dim, C: Dim, S> Eq for Matrix<N, R, C, S>
where
N: Scalar + Eq,
S: Storage<N, R, C>,
{
}
impl<N, R, R2, C, C2, S, S2> PartialEq<Matrix<N, R2, C2, S2>> for Matrix<N, R, C, S>
where
N: Scalar + PartialEq,
C: Dim,
C2: Dim,
R: Dim,
R2: Dim,
S: Storage<N, R, C>,
S2: Storage<N, R2, C2>,
{
#[inline]
fn eq(&self, right: &Matrix<N, R2, C2, S2>) -> bool {
self.shape() == right.shape() && self.iter().zip(right.iter()).all(|(l, r)| l == r)
}
}
macro_rules! impl_fmt {
($trait: path, $fmt_str_without_precision: expr, $fmt_str_with_precision: expr) => {
impl<N, R: Dim, C: Dim, S> $trait for Matrix<N, R, C, S>
where
N: Scalar + $trait,
S: Storage<N, R, C>,
DefaultAllocator: Allocator<usize, R, C>,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
#[cfg(feature = "std")]
fn val_width<N: Scalar + $trait>(val: &N, f: &mut fmt::Formatter) -> usize {
match f.precision() {
Some(precision) => format!($fmt_str_with_precision, val, precision)
.chars()
.count(),
None => format!($fmt_str_without_precision, val).chars().count(),
}
}
#[cfg(not(feature = "std"))]
fn val_width<N: Scalar + $trait>(_: &N, _: &mut fmt::Formatter) -> usize {
4
}
let (nrows, ncols) = self.data.shape();
if nrows.value() == 0 || ncols.value() == 0 {
return write!(f, "[ ]");
}
let mut max_length = 0;
let mut lengths: MatrixMN<usize, R, C> = Matrix::zeros_generic(nrows, ncols);
let (nrows, ncols) = self.shape();
for i in 0..nrows {
for j in 0..ncols {
lengths[(i, j)] = val_width(&self[(i, j)], f);
max_length = crate::max(max_length, lengths[(i, j)]);
}
}
let max_length_with_space = max_length + 1;
writeln!(f)?;
writeln!(
f,
" ┌ {:>width$} ┐",
"",
width = max_length_with_space * ncols - 1
)?;
for i in 0..nrows {
write!(f, "")?;
for j in 0..ncols {
let number_length = lengths[(i, j)] + 1;
let pad = max_length_with_space - number_length;
write!(f, " {:>thepad$}", "", thepad = pad)?;
match f.precision() {
Some(precision) => {
write!(f, $fmt_str_with_precision, (*self)[(i, j)], precision)?
}
None => write!(f, $fmt_str_without_precision, (*self)[(i, j)])?,
}
}
writeln!(f, "")?;
}
writeln!(
f,
" └ {:>width$} ┘",
"",
width = max_length_with_space * ncols - 1
)?;
writeln!(f)
}
}
};
}
impl_fmt!(fmt::Display, "{}", "{:.1$}");
impl_fmt!(fmt::LowerExp, "{:e}", "{:.1$e}");
impl_fmt!(fmt::UpperExp, "{:E}", "{:.1$E}");
impl_fmt!(fmt::Octal, "{:o}", "{:1$o}");
impl_fmt!(fmt::LowerHex, "{:x}", "{:1$x}");
impl_fmt!(fmt::UpperHex, "{:X}", "{:1$X}");
impl_fmt!(fmt::Binary, "{:b}", "{:.1$b}");
impl_fmt!(fmt::Pointer, "{:p}", "{:.1$p}");
#[test]
fn lower_exp() {
let test = crate::Matrix2::new(1e6, 2e5, 2e-5, 1.);
assert_eq!(
format!("{:e}", test),
r"
┌ ┐
│ 1e6 2e5 │
│ 2e-5 1e0 │
└ ┘
"
)
}
impl<N: Scalar + ClosedAdd + ClosedSub + ClosedMul, R: Dim, C: Dim, S: Storage<N, R, C>>
Matrix<N, R, C, S>
{
/// The perpendicular product between two 2D column vectors, i.e. `a.x * b.y - a.y * b.x`.
#[inline]
pub fn perp<R2, C2, SB>(&self, b: &Matrix<N, R2, C2, SB>) -> N
where
R2: Dim,
C2: Dim,
SB: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, U2>
+ SameNumberOfColumns<C, U1>
+ SameNumberOfRows<R2, U2>
+ SameNumberOfColumns<C2, U1>,
{
assert!(
self.shape() == (2, 1),
"2D perpendicular product requires (2, 1) vector but found {:?}",
self.shape()
);
unsafe {
self.get_unchecked((0, 0)).inlined_clone() * b.get_unchecked((1, 0)).inlined_clone()
- self.get_unchecked((1, 0)).inlined_clone()
* b.get_unchecked((0, 0)).inlined_clone()
}
}
// FIXME: use specialization instead of an assertion.
/// The 3D cross product between two vectors.
///
/// Panics if the shape is not 3D vector. In the future, this will be implemented only for
/// dynamically-sized matrices and statically-sized 3D matrices.
#[inline]
pub fn cross<R2, C2, SB>(&self, b: &Matrix<N, R2, C2, SB>) -> MatrixCross<N, R, C, R2, C2>
where
R2: Dim,
C2: Dim,
SB: Storage<N, R2, C2>,
DefaultAllocator: SameShapeAllocator<N, R, C, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
let shape = self.shape();
assert_eq!(shape, b.shape(), "Vector cross product dimension mismatch.");
assert!(
(shape.0 == 3 && shape.1 == 1) || (shape.0 == 1 && shape.1 == 3),
"Vector cross product dimension mismatch: must be (3, 1) or (1, 3) but found {:?}.",
shape
);
if shape.0 == 3 {
unsafe {
// FIXME: soooo ugly!
let nrows = SameShapeR::<R, R2>::from_usize(3);
let ncols = SameShapeC::<C, C2>::from_usize(1);
let mut res = Matrix::new_uninitialized_generic(nrows, ncols);
let ax = self.get_unchecked((0, 0));
let ay = self.get_unchecked((1, 0));
let az = self.get_unchecked((2, 0));
let bx = b.get_unchecked((0, 0));
let by = b.get_unchecked((1, 0));
let bz = b.get_unchecked((2, 0));
*res.get_unchecked_mut((0, 0)) = ay.inlined_clone() * bz.inlined_clone()
- az.inlined_clone() * by.inlined_clone();
*res.get_unchecked_mut((1, 0)) = az.inlined_clone() * bx.inlined_clone()
- ax.inlined_clone() * bz.inlined_clone();
*res.get_unchecked_mut((2, 0)) = ax.inlined_clone() * by.inlined_clone()
- ay.inlined_clone() * bx.inlined_clone();
res
}
} else {
unsafe {
// FIXME: ugly!
let nrows = SameShapeR::<R, R2>::from_usize(1);
let ncols = SameShapeC::<C, C2>::from_usize(3);
let mut res = Matrix::new_uninitialized_generic(nrows, ncols);
let ax = self.get_unchecked((0, 0));
let ay = self.get_unchecked((0, 1));
let az = self.get_unchecked((0, 2));
let bx = b.get_unchecked((0, 0));
let by = b.get_unchecked((0, 1));
let bz = b.get_unchecked((0, 2));
*res.get_unchecked_mut((0, 0)) = ay.inlined_clone() * bz.inlined_clone()
- az.inlined_clone() * by.inlined_clone();
*res.get_unchecked_mut((0, 1)) = az.inlined_clone() * bx.inlined_clone()
- ax.inlined_clone() * bz.inlined_clone();
*res.get_unchecked_mut((0, 2)) = ax.inlined_clone() * by.inlined_clone()
- ay.inlined_clone() * bx.inlined_clone();
res
}
}
}
}
impl<N: Scalar + Field, S: Storage<N, U3>> Vector<N, U3, S>
where
DefaultAllocator: Allocator<N, U3>,
{
/// Computes the matrix `M` such that for all vector `v` we have `M * v == self.cross(&v)`.
#[inline]
pub fn cross_matrix(&self) -> MatrixN<N, U3> {
MatrixN::<N, U3>::new(
N::zero(),
-self[2].inlined_clone(),
self[1].inlined_clone(),
self[2].inlined_clone(),
N::zero(),
-self[0].inlined_clone(),
-self[1].inlined_clone(),
self[0].inlined_clone(),
N::zero(),
)
}
}
impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// The smallest angle between two vectors.
#[inline]
pub fn angle<R2: Dim, C2: Dim, SB>(&self, other: &Matrix<N, R2, C2, SB>) -> N::SimdRealField
where
SB: Storage<N, R2, C2>,
ShapeConstraint: DimEq<R, R2> + DimEq<C, C2>,
{
let prod = self.dotc(other);
let n1 = self.norm();
let n2 = other.norm();
if n1.is_zero() || n2.is_zero() {
N::SimdRealField::zero()
} else {
let cang = prod.simd_real() / (n1 * n2);
cang.simd_clamp(-N::SimdRealField::one(), N::SimdRealField::one())
.simd_acos()
}
}
}
impl<N: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim, S: Storage<N, D>>
Vector<N, D, S>
{
/// Returns `self * (1.0 - t) + rhs * t`, i.e., the linear blend of the vectors x and y using the scalar value a.
///
/// The value for a is not restricted to the range `[0, 1]`.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Vector3;
/// let x = Vector3::new(1.0, 2.0, 3.0);
/// let y = Vector3::new(10.0, 20.0, 30.0);
/// assert_eq!(x.lerp(&y, 0.1), Vector3::new(1.9, 3.8, 5.7));
/// ```
pub fn lerp<S2: Storage<N, D>>(&self, rhs: &Vector<N, D, S2>, t: N) -> VectorN<N, D>
where
DefaultAllocator: Allocator<N, D>,
{
let mut res = self.clone_owned();
res.axpy(t.inlined_clone(), rhs, N::one() - t);
res
}
}
impl<N: RealField, D: Dim, S: Storage<N, D>> Unit<Vector<N, D, S>> {
/// Computes the spherical linear interpolation between two unit vectors.
///
/// # Examples:
///
/// ```
/// # use nalgebra::{Unit, Vector2};
///
/// let v1 = Unit::new_normalize(Vector2::new(1.0, 2.0));
/// let v2 = Unit::new_normalize(Vector2::new(2.0, -3.0));
///
/// let v = v1.slerp(&v2, 1.0);
///
/// assert_eq!(v, v2);
/// ```
pub fn slerp<S2: Storage<N, D>>(
&self,
rhs: &Unit<Vector<N, D, S2>>,
t: N,
) -> Unit<VectorN<N, D>>
where
DefaultAllocator: Allocator<N, D>,
{
// FIXME: the result is wrong when self and rhs are collinear with opposite direction.
self.try_slerp(rhs, t, N::default_epsilon())
.unwrap_or(Unit::new_unchecked(self.clone_owned()))
}
/// Computes the spherical linear interpolation between two unit vectors.
///
/// Returns `None` if the two vectors are almost collinear and with opposite direction
/// (in this case, there is an infinity of possible results).
pub fn try_slerp<S2: Storage<N, D>>(
&self,
rhs: &Unit<Vector<N, D, S2>>,
t: N,
epsilon: N,
) -> Option<Unit<VectorN<N, D>>>
where
DefaultAllocator: Allocator<N, D>,
{
let c_hang = self.dot(rhs);
// self == other
if c_hang >= N::one() {
return Some(Unit::new_unchecked(self.clone_owned()));
}
let hang = c_hang.acos();
let s_hang = (N::one() - c_hang * c_hang).sqrt();
// FIXME: what if s_hang is 0.0 ? The result is not well-defined.
if relative_eq!(s_hang, N::zero(), epsilon = epsilon) {
None
} else {
let ta = ((N::one() - t) * hang).sin() / s_hang;
let tb = (t * hang).sin() / s_hang;
let mut res = self.scale(ta);
res.axpy(tb, &**rhs, N::one());
Some(Unit::new_unchecked(res))
}
}
}
impl<N, R: Dim, C: Dim, S> AbsDiffEq for Unit<Matrix<N, R, C, S>>
where
N: Scalar + AbsDiffEq,
S: Storage<N, R, C>,
N::Epsilon: Copy,
{
type Epsilon = N::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.as_ref().abs_diff_eq(other.as_ref(), epsilon)
}
}
impl<N, R: Dim, C: Dim, S> RelativeEq for Unit<Matrix<N, R, C, S>>
where
N: Scalar + RelativeEq,
S: Storage<N, R, C>,
N::Epsilon: Copy,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.as_ref()
.relative_eq(other.as_ref(), epsilon, max_relative)
}
}
impl<N, R: Dim, C: Dim, S> UlpsEq for Unit<Matrix<N, R, C, S>>
where
N: Scalar + UlpsEq,
S: Storage<N, R, C>,
N::Epsilon: Copy,
{
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
}
}
impl<N, R, C, S> Hash for Matrix<N, R, C, S>
where
N: Scalar + Hash,
R: Dim,
C: Dim,
S: Storage<N, R, C>,
{
fn hash<H: Hasher>(&self, state: &mut H) {
let (nrows, ncols) = self.shape();
(nrows, ncols).hash(state);
for j in 0..ncols {
for i in 0..nrows {
unsafe {
self.get_unchecked((i, j)).hash(state);
}
}
}
}
}