nalgebra/tests/vec.rs
Sébastien Crozet e6156727f2 Use full names for everything.
Note that `sqdist` becomes `distance_squared` and `sqnorm` becomes `norm_squared`.

Fix #176.
2016-04-17 17:26:58 +02:00

375 lines
8.5 KiB
Rust

extern crate rand;
#[cfg(feature="generic_sizes")]
extern crate typenum;
extern crate nalgebra as na;
use rand::random;
use na::{Vector1, Vector2, Vector3, Vector4, Vector5, Vector6, Matrix3, Rotation2, Rotation3, Iterable, IterableMut};
#[cfg(feature="generic_sizes")]
use typenum::U10;
#[cfg(feature="generic_sizes")]
use na::VectorN;
macro_rules! test_iterator_impl(
($t: ty, $n: ty) => (
for _ in 0usize .. 10000 {
let v: $t = random();
let mut mv: $t = v.clone();
let n: $n = random();
let nv: $t = v.iter().map(|e| *e * n).collect();
for e in mv.iter_mut() {
*e = *e * n
}
assert!(nv == mv && nv == v * n);
}
)
);
macro_rules! test_commut_dot_impl(
($t: ty) => (
for _ in 0usize .. 10000 {
let v1 : $t = random();
let v2 : $t = random();
assert!(na::approx_eq(&na::dot(&v1, &v2), &na::dot(&v2, &v1)));
}
);
);
macro_rules! test_scalar_op_impl(
($t: ty, $n: ty) => (
for _ in 0usize .. 10000 {
let v1 : $t = random();
let n : $n = random();
assert!(na::approx_eq(&((v1 * n) / n), &v1));
assert!(na::approx_eq(&((v1 / n) * n), &v1));
assert!(na::approx_eq(&((v1 - n) + n), &v1));
assert!(na::approx_eq(&((v1 + n) - n), &v1));
let mut v1 : $t = random();
let v0 : $t = v1.clone();
let n : $n = random();
v1 = v1 * n;
v1 = v1 / n;
assert!(na::approx_eq(&v1, &v0));
}
);
);
macro_rules! test_basis_impl(
($t: ty) => (
for _ in 0usize .. 10000 {
na::canonical_basis(|e1: $t| {
na::canonical_basis(|e2: $t| {
assert!(e1 == e2 || na::approx_eq(&na::dot(&e1, &e2), &na::zero()));
true
});
assert!(na::approx_eq(&na::norm(&e1), &na::one()));
true
})
}
);
);
macro_rules! test_subspace_basis_impl(
($t: ty) => (
for _ in 0usize .. 10000 {
let v : $t = random();
let v1 = na::normalize(&v);
na::orthonormal_subspace_basis(&v1, |e1| {
// check vectors are orthogonal to v1
assert!(na::approx_eq(&na::dot(&v1, &e1), &na::zero()));
// check vectors form an orthonormal basis
assert!(na::approx_eq(&na::norm(&e1), &na::one()));
// check vectors form an ortogonal basis
na::orthonormal_subspace_basis(&v1, |e2| {
assert!(e1 == e2 || na::approx_eq(&na::dot(&e1, &e2), &na::zero()));
true
});
true
})
}
);
);
#[test]
fn test_cross_vec3() {
for _ in 0usize .. 10000 {
let v1 : Vector3<f64> = random();
let v2 : Vector3<f64> = random();
let v3 : Vector3<f64> = na::cross(&v1, &v2);
assert!(na::approx_eq(&na::dot(&v3, &v2), &na::zero()));
assert!(na::approx_eq(&na::dot(&v3, &v1), &na::zero()));
}
}
#[test]
fn test_commut_dot_vec1() {
test_commut_dot_impl!(Vector1<f64>);
}
#[test]
fn test_commut_dot_vec2() {
test_commut_dot_impl!(Vector2<f64>);
}
#[test]
fn test_commut_dot_vec3() {
test_commut_dot_impl!(Vector3<f64>);
}
#[test]
fn test_commut_dot_vec4() {
test_commut_dot_impl!(Vector4<f64>);
}
#[test]
fn test_commut_dot_vec5() {
test_commut_dot_impl!(Vector5<f64>);
}
#[test]
fn test_commut_dot_vec6() {
test_commut_dot_impl!(Vector6<f64>);
}
#[test]
fn test_basis_vec1() {
test_basis_impl!(Vector1<f64>);
}
#[test]
fn test_basis_vec2() {
test_basis_impl!(Vector2<f64>);
}
#[test]
fn test_basis_vec3() {
test_basis_impl!(Vector3<f64>);
}
#[test]
fn test_basis_vec4() {
test_basis_impl!(Vector4<f64>);
}
#[test]
fn test_basis_vec5() {
test_basis_impl!(Vector5<f64>);
}
#[test]
fn test_basis_vec6() {
test_basis_impl!(Vector6<f64>);
}
#[test]
fn test_subspace_basis_vec1() {
test_subspace_basis_impl!(Vector1<f64>);
}
#[test]
fn test_subspace_basis_vec2() {
test_subspace_basis_impl!(Vector2<f64>);
}
#[test]
fn test_subspace_basis_vec3() {
test_subspace_basis_impl!(Vector3<f64>);
}
#[test]
fn test_subspace_basis_vec4() {
test_subspace_basis_impl!(Vector4<f64>);
}
#[test]
fn test_subspace_basis_vec5() {
test_subspace_basis_impl!(Vector5<f64>);
}
#[test]
fn test_subspace_basis_vec6() {
test_subspace_basis_impl!(Vector6<f64>);
}
#[test]
fn test_scalar_op_vec1() {
test_scalar_op_impl!(Vector1<f64>, f64);
}
#[test]
fn test_scalar_op_vec2() {
test_scalar_op_impl!(Vector2<f64>, f64);
}
#[test]
fn test_scalar_op_vec3() {
test_scalar_op_impl!(Vector3<f64>, f64);
}
#[test]
fn test_scalar_op_vec4() {
test_scalar_op_impl!(Vector4<f64>, f64);
}
#[test]
fn test_scalar_op_vec5() {
test_scalar_op_impl!(Vector5<f64>, f64);
}
#[test]
fn test_scalar_op_vec6() {
test_scalar_op_impl!(Vector6<f64>, f64);
}
#[test]
fn test_iterator_vec1() {
test_iterator_impl!(Vector1<f64>, f64);
}
#[test]
fn test_iterator_vec2() {
test_iterator_impl!(Vector2<f64>, f64);
}
#[test]
fn test_iterator_vec3() {
test_iterator_impl!(Vector3<f64>, f64);
}
#[test]
fn test_iterator_vec4() {
test_iterator_impl!(Vector4<f64>, f64);
}
#[test]
fn test_iterator_vec5() {
test_iterator_impl!(Vector5<f64>, f64);
}
#[test]
fn test_iterator_vec6() {
test_iterator_impl!(Vector6<f64>, f64);
}
#[test]
fn test_ord_vec3() {
// equality
assert!(Vector3::new(0.5f64, 0.5, 0.5) == Vector3::new(0.5, 0.5, 0.5));
assert!(!(Vector3::new(1.5f64, 0.5, 0.5) == Vector3::new(0.5, 0.5, 0.5)));
assert!(Vector3::new(1.5f64, 0.5, 0.5) != Vector3::new(0.5, 0.5, 0.5));
// comparable
assert!(na::partial_cmp(&Vector3::new(0.5f64, 0.3, 0.3), &Vector3::new(1.0, 2.0, 1.0)).is_le());
assert!(na::partial_cmp(&Vector3::new(0.5f64, 0.3, 0.3), &Vector3::new(1.0, 2.0, 1.0)).is_lt());
assert!(na::partial_cmp(&Vector3::new(2.0f64, 4.0, 2.0), &Vector3::new(1.0, 2.0, 1.0)).is_ge());
assert!(na::partial_cmp(&Vector3::new(2.0f64, 4.0, 2.0), &Vector3::new(1.0, 2.0, 1.0)).is_gt());
// not comparable
assert!(na::partial_cmp(&Vector3::new(0.0f64, 3.0, 0.0), &Vector3::new(1.0, 2.0, 1.0)).is_not_comparable());
}
#[test]
fn test_min_max_vec3() {
assert_eq!(na::sup(&Vector3::new(1.0f64, 2.0, 3.0), &Vector3::new(3.0, 2.0, 1.0)), Vector3::new(3.0, 2.0, 3.0));
assert_eq!(na::inf(&Vector3::new(1.0f64, 2.0, 3.0), &Vector3::new(3.0, 2.0, 1.0)), Vector3::new(1.0, 2.0, 1.0));
}
#[test]
fn test_outer_vec3() {
assert_eq!(
na::outer(&Vector3::new(1.0f64, 2.0, 3.0), &Vector3::new(4.0, 5.0, 6.0)),
Matrix3::new(
4.0, 5.0, 6.0,
8.0, 10.0, 12.0,
12.0, 15.0, 18.0));
}
#[cfg(feature="generic_sizes")]
#[test]
fn test_vecn10_add_mul() {
for _ in 0usize .. 10000 {
let v1: VectorN<f64, U10> = random();
assert!(na::approx_eq(&(v1 + v1), &(v1 * 2.0)))
}
}
#[test]
fn test_vec3_rotation_between() {
for _ in 0usize .. 10000 {
let v1: Vector3<f64> = random();
let mut v2: Vector3<f64> = random();
v2 = na::normalize(&v2) * na::norm(&v1);
let rotation = na::rotation_between(&v1, &v2);
assert!(na::approx_eq(&(rotation * v1), &v2))
}
}
#[test]
fn test_vec3_angle_between() {
for _ in 0usize .. 10000 {
let vector: Vector3<f64> = random();
let other: Vector3<f64> = random();
// Ensure the axis we are using is orthogonal to `vector`.
let axis_ang = na::cross(&vector, &other);
let ang = na::norm(&axis_ang);
let rotation = Rotation3::new(axis_ang);
let delta = na::angle_between(&vector, &(rotation * vector));
assert!(na::approx_eq(&ang, &delta))
}
}
#[test]
fn test_vec2_rotation_between() {
for _ in 0usize .. 10000 {
let v1: Vector2<f64> = random();
let mut v2: Vector2<f64> = random();
v2 = na::normalize(&v2) * na::norm(&v1);
let rotation = na::rotation_between(&v1, &v2);
assert!(na::approx_eq(&(rotation * v1), &v2))
}
}
#[test]
fn test_vec2_angle_between() {
for _ in 0usize .. 10000 {
let axis_ang: Vector1<f64> = random();
let ang = na::norm(&axis_ang);
let rotation: Rotation2<f64> = Rotation2::new(axis_ang);
let vector: Vector2<f64> = random();
let delta = na::angle_between(&vector, &(rotation * vector));
assert!(na::approx_eq(&ang, &delta))
}
}